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SOME INEQUALITIES INVOLVING UNITARILY INVARIANT NORMS
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(Communicated by J. Pečarić)

Abstract. This paper aims to present some inequalities for unitarily invariant norms. We first
give inverses of Young and Heinz type inequalities for scalars. Then we use these inequalities to
establish some inequalities for unitarily invariant norms.

1. Introduction

Let Mm,n be the space of m×n complex matrices and Mn = Mn,n . Let ‖·‖ denote
any unitarily invariant norm on Mn . So, ‖UAV‖ = ‖A‖ for all A ∈ Mn and for all
unitary matrices U, V ∈ Mn . For A = (ai j) ∈ Mn , the Hilbert-Schmidt norm of A is

defined by ‖A‖2 =

√
n
∑
j=1

s2
j (A) , where s1 (A) � · · · � sn (A) are the singular values of

A , that is, the eigenvalues of the positive semidefinite matrix |A| = √
AA∗ , arranged in

decreasing order and repeated according to multiplicity. Note that ‖A‖2 =
√

tr(AA∗) ,
where tr is the usual trace functional. It is known that the Hilbert-Schmidt norm is
unitarily invariant, and it is evident that each unitarily invariant norm is a symmetric
gauge function of singular values [1, p. 54-55].

The scalar Young inequality says that if a, b � 0 and 0 � v � 1, then

avb1−v � va+(1− v)b (1.1)

with equality if and only if a = b . The scalar Heinz inequality says that if a, b � 0 and
0 � v � 1,

avb1−v +a1−vbv � a+b. (1.2)

Hirzallah and Kittaneh [2] obtained a refinement of the Young inequality (1.1) as
follows: (

avb1−v)2 + r2
0 (a−b)2 � (va+(1− v)b)2 , (1.3)

where r0 = min{v, 1− v} . Kittaneh and Manasrah [3] obtained a refinement of the
Heinz inequality (1.2):

(
avb1−v +a1−vbv)2 +2r0 (a−b)2 � (a+b)2 , (1.4)
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where r0 = min{v, 1− v} .
Kosaki [4] and Bhatia and Parthasarathy [5] proved that if A, B, X ∈Mn such that

A and B are positive semidefinite and if 0 � v � 1, then

∥∥AvXB1−v
∥∥2

2 � ‖vAX +(1− v)XB‖2
2 . (1.5)

Based on the refined Young inequality (1.3), Hirzallah and Kittaneh [2] proved that if
A, B, X ∈ Mn such that A and B are positive semidefinite and if 0 � v � 1, then

∥∥AvXB1−v
∥∥2

2 + r2
0 ‖AX −XB‖2

2 � ‖vAX +(1− v)XB‖2
2 . (1.6)

Bhatia and Davis [6] proved that if A, B, X ∈ Mn such that A and B are positive
semidefinite and if 0 � v � 1, then

2
∥∥∥A1/2XB1/2

∥∥∥�
∥∥AvXB1−v +A1−vXBv

∥∥� ‖AX +XB‖ . (1.7)

Kittaneh and Manasrah [3] obtained an improvement of the second inequality in (1.7)
for the Hilbert-Schmidt norm, which can be stated as follows:

∥∥AvXB1−v +A1−vXBv
∥∥2

2 +2r0‖AX −XB‖2
2 � ‖AX +XB‖2

2 , (1.8)

where r0 = min{v, 1− v} .
In this paper, we present the reverses of the inequalities (1.3) and (1.4). Based on

these inequalities, we establish the reverses of the inequalities (1.6) and (1.8) and give
some other inequalities for unitarily invariant norms.

2. Reverses of Young and Heinz type inequalities

In this section, we present reverses of the improved Young inequality (1.3) and the
refined Heinz inequality (1.4). To achieve this goal, we need the following lemma [7,
p. 137]; for the reader’s convenience, we will give a sketch of its proof.

LEMMA 2.1. If a, b � 0 and 0 � v � 1 , then

va2 +(1− v)b2 �
(
avb1−v)2 + s0 (a−b)2 , (2.1)

where s0 = max{v, 1− v} .

Proof. If v = 1
2 , the inequality becomes equality. If v > 1

2 , then by (1.1), we have

(
avb1−v

)2 + s0 (a−b)2− va2− (1− v)b2

=
(
avb1−v

)2 +(2v−1)b2−2vab

=
(
avb1−v

)2 +(2v−1)b2 +(2−2v)ab−2ab

�
(
avb1−v

)2 +
(
a1−vbv

)2−2ab � 0.
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If v < 1
2 , then by (1.1), we have

(
avb1−v

)2 + s0 (a−b)2 − va2− (1− v)b2

=
(
avb1−v

)2 +(1−2v)a2−2(1− v)ab

=
(
avb1−v

)2 +(1−2v)a2 +2vab−2ab

�
(
avb1−v

)2 +
(
a1−vbv

)2 −2ab � 0.

Hence, for all v ∈ [0,1] ,

va2 +(1− v)b2 �
(
avb1−v)2 + s0 (a−b)2 .

This completes the proof. �
The following result gives a reverse of the inequality (1.3).

THEOREM 2.1. If a, b � 0 and 0 � v � 1 , then

(va+(1− v)b)2 �
(
avb1−v)2 + s2

0 (a−b)2 , (2.2)

where s0 = max{v, 1− v} .

Proof. If v = 1
2 , the inequality becomes equality. If v > 1

2 , then we have

(va+(1− v)b)2− s2
0 (a−b)2 = (va+(1− v)b)2 − v2 (a−b)2

= (1−2v)b2 +2vab
= va2 +(1− v)b2 +2vab− vb2− va2.

By Lemma 2.1, we have

va2 +(1− v)b2 +2vab− vb2− va2 �
(
avb1−v)2

and so
(va+(1− v)b)2 �

(
avb1−v)2 + v2 (a−b)2 .

If v < 1
2 , then

(va+(1− v)b)2 − s2
0 (a−b)2 = (va+(1− v)b)2− (1− v)2 (a−b)2

= (2v−1)a2 +2(1− v)ab
= va2 +(1− v)b2 +2(1− v)ab− (1− v)a2

−(1− v)b2.

By Lemma 2.1, we have

va2 +(1− v)b2 +2(1− v)ab− (1− v)a2− (1− v)b2 �
(
avb1−v)2

and so
(va+(1− v)b)2 �

(
avb1−v)2 +(1− v)2 (a−b)2 .
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Hence, for all v ∈ [0,1] ,

(va+(1− v)b)2 �
(
avb1−v)2 + s2

0 (a−b)2 .

This completes the proof. �
It is easy to see that the left- and right-hand sides of the inequality (2.1) are greater

than or equal to the corresponding sides of the inequality (2.2), respectively. Therefore,
neither the inequality (2.1) nor the inequality (2.2) is uniformly better than the other.

By Lemma 2.1, we have the following result, i.e., a reverse inequality of (1.4).

THEOREM 2.2. If a, b � 0 and 0 � v � 1 , then

(a+b)2 �
(
avb1−v +a1−vbv)2 +2s0 (a−b)2 , (2.3)

where s0 = max{v, 1− v} .

Proof. By Lemma 2.1, we have

(a+b)2− (avb1−v +a1−vbv
)2 = a2 +b2− (avb1−v

)2− (a1−vbv
)2

= va2 +(1− v)b2− (avb1−v
)2 +(1− v)a2

+vb2− (a1−vbv
)2

� s0 (a−b)2 + s0 (a−b)2

= 2s0 (a−b)2 .

This completes the proof. �

3. Some inequalities for unitarily invariant norms

In this section, we first establish reverses of the inequalities (1.6) and (1.8) and
then give some other inequalities for unitarily invariant norms, which are based on the
inequalities (2.1)-(2.3).

By Theorem 2.1, we have a reverse inequality of (1.6).

THEOREM 3.1. Let A, B, X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then

‖vAX +(1− v)XB‖2
2 �

∥∥AvXB1−v
∥∥2

2 + s2
0 ‖AX −XB‖2

2 ,

where s0 = max{v, 1− v} .

Proof. Since every positive semidefinite matrix is unitarily diagonalizable, it fol-
lows that there are unitary matrices U, V ∈ Mn such that

A = UΛ1U
∗, B = VΛ2V

∗,

where

Λ1 = diag(λ1, · · · ,λn) , Λ2 = diag(μ1, · · · ,μn) , λi, μi � 0, i = 1, · · · ,n.
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Let Y =U∗XV = [yi j] , then

vAX +(1− v)XB = U (vΛ1Y +(1− v)YΛ2)V ∗ = U [(vλi +(1− v)μ j)yi j]V ∗,

AX −XB = U [(λi− μ j)yi j]V ∗

and
AvXB1−v = U

[
λ v

i μ1−v
j yi j

]
V ∗.

By the inequality (2.2), we have

‖vAX +(1− v)XB‖2
2 =

n
∑

i, j=1
(vλi +(1− v)μ j)

2 ∣∣yi j
∣∣2

�
n
∑

i, j=1

(
λ v

i μ1−v
j

)2 ∣∣yi j
∣∣2 + s2

0

n
∑

i, j=1
(λi − μ j)2 ∣∣yi j

∣∣2
=
∥∥AvXB1−v

∥∥2
2 + s2

0‖AX −XB‖2
2 .

This completes the proof. �
By Theorem 2.2, we have the following result, i.e., a reverse inequality of (1.8).

THEOREM 3.2. Let A, B, X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then

‖AX +XB‖2
2 �

∥∥AvXB1−v +A1−vXBv
∥∥2

2 +2s0‖AX −XB‖2
2 ,

where s0 = max{v, 1− v} .

Proof. Since every positive semidefinite matrix is unitarily diagonalizable, it fol-
lows that there are unitary matrices U, V ∈ Mn such that

A = UΛ1U
∗, B = VΛ2V

∗,

where

Λ1 = diag(λ1, · · · ,λn) , Λ2 = diag(μ1, · · · ,μn) , λi, μi � 0, i = 1, · · · ,n.

Let Y =U∗XV = [yi j] , we have

AvXB1−v +A1−vXBv = U
(
Λv

1YΛ1−v
2 + Λ1−v

1 YΛv
2

)
V ∗.

Therefore,

∥∥AvXB1−v +A1−vXBv
∥∥2

2 =
n

∑
i, j=1

(
λ v

i μ1−v
j + λ 1−v

i μv
j

)2 ∣∣yi j
∣∣2.

By the inequality (2.3), we obtain

‖AX +XB‖2
2 =

n
∑

i, j=1
(λi + μ j)

2 ∣∣yi j
∣∣2

�
n
∑

i, j=1

(
λ v

i μ1−v
j + λ 1−v

i μv
j

)2 ∣∣yi j
∣∣2 +2s0

n
∑

i, j=1
(λi− μ j)2 ∣∣yi j

∣∣2
=
∥∥AvXB1−v +A1−vXBv

∥∥2
2 +2s0‖AX −XB‖2

2 .
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This completes the proof. �
Kittaneh proved in [8] that if A, B, X ∈Mn such that A and B are positive semidef-

inite and if 0 � v � 1, then∥∥AvXB1−v +A1−vXBv
∥∥ − 4r0

∥∥A1/2XB1/2
∥∥+2r0‖AX +XB‖

� ‖AX +XB‖ ,
(3.1)

where r0 = min{v, 1− v} . This is a refinement of the second inequality in (1.7).
Here, we have a reverse inequality of (3.1).

THEOREM 3.3. Let A, B, X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then

‖AX +XB‖ �
∥∥AvXB1−v +A1−vXBv

∥∥−4s0

∥∥∥A1/2XB1/2
∥∥∥+2s0‖AX +XB‖ ,

where s0 = max{v, 1− v} .

Proof. If∥∥AvXB1−v +A1−vXBv
∥∥ − 4s0

∥∥A1/2XB1/2
∥∥+2s0‖AX +XB‖

< ‖AX +XB‖ ,
(3.2)

then it follows from (3.1) and (3.2) that

2
∥∥AvXB1−v +A1−vXBv

∥∥−4
∥∥∥A1/2XB1/2

∥∥∥+2‖AX +XB‖ < 2‖AX +XB‖ .

So, ∥∥AvXB1−v +A1−vXBv
∥∥< 2

∥∥∥A1/2XB1/2
∥∥∥ ,

which contradicts the first inequality in (1.7). This completes the proof. �
In view of the inequalities (1.7) and (3.1), one may ask whether it is true that

2
∥∥A1/2XB1/2

∥∥ − 4r0
∥∥A1/2XB1/2

∥∥+2r0‖AX +XB‖
�
∥∥AvXB1−v +A1−vXBv

∥∥ ,

where r0 = min{v, 1− v} .
This is refuted by the following example

A =
(

5 1
1 1

)
, X =

(
1 0
0 1

)
, B =

(
4 1
1 2

)
,

r0 = v = 1
4 , ‖·‖ = ‖·‖2 .

Let A, B, X ∈ Mn such that A and B are positive semidefinite. If 0 � v � 1, then
the following inequality holds (see [6]):∥∥AvXB1−v

∥∥� v‖AX‖+(1− v)‖XB‖ . (3.3)
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Recently, Kittaneh and Manasrah [3] presented a refinement of (3.3):

∥∥AvXB1−v
∥∥+ r0

(√
‖AX‖−

√
‖XB‖

)2
� v‖AX‖+(1− v)‖XB‖ , (3.4)

where r0 = min{v, 1− v} .
Next, we ask whether the reverse of (3.4):

v‖AX‖+(1− v)‖XB‖ �
∥∥AvXB1−v

∥∥+ s0

(√
‖AX‖−

√
‖XB‖

)2
, (3.5)

is true or not, where s0 = max{v, 1− v} .
It is not always true; we give two examples as follows:

A =
(

5 −2
−2 5

)
, X =

(
1 0
0 1

)
, B =

(
3 −2
−2 2

)
, s0 = v = 9

10 ,

then we have
v‖AX‖2 +(1− v)‖XB‖2 = 7.3125

and ∥∥AvXB1−v
∥∥

2 + s0

(√
‖AX‖2−

√
‖XB‖2

)2

= 7.4798.

However, if we choose

A =
(

2 −2
−2 4

)
, X =

(
1 0
0 1

)
, B =

(
4 −2
−2 2

)
, s0 = v = 3

5 ,

then we have
v‖AX‖2 +(1− v)‖XB‖2 = 5.2915

and ∥∥AvXB1−v
∥∥

2 + s0

(√
‖AX‖2−

√
‖XB‖2

)2

= 4.9112.

It should be pointed out that although the inequality (3.5) doesn’t hold, the follow-
ing inequality is true:

v‖AX‖+(1− v)‖XB‖ � ‖AX‖v ‖XB‖1−v + s0

(√
‖AX‖−

√
‖XB‖

)2
,

which is a direct consequence of the inequality (2.1). Note that this inequality is clearly
weaker than the inequality (3.5) by the following result [9]:

LEMMA 3.1. Let A, B, X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then ∥∥AvXB1−v

∥∥� ‖AX‖v ‖XB‖1−v .
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Let A, B, X ∈ Mn such that A and B are positive semidefinite. In view of the
inequality (2.1), one may ask whether the following result is true or not:∥∥AvXB1−v +A1−vXBv

∥∥2
2 � ‖vAX +(1− v)XB‖2

2

+‖(1− v)AX + vXB‖2
2

+2
(
‖AXB‖2

2 − s0‖AX −XB‖2
2

)
,

where 0 � v � 1 and s0 = max{v, 1− v} .
The inequality above is not always true, as the next counterexample shows:

A =
(

25 0
0 4

)
, X =

(
1 0
0 1

)
, B =

(
16 0
0 9

)
, v = 1

2 = s0 .

We obtain that

∥∥AvXB1−v +A1−vXBv
∥∥2

2 =
∥∥∥2A1/2B1/2

∥∥∥2

2
= 1744

and

‖vAX +(1− v)XB‖2
2 + ‖(1− v)AX + vXB‖2

2 +2
(
‖AXB‖2

2− s0 ‖AX −XB‖2
2

)
= 1

2 ‖A+B‖2
2 +2‖AB‖2

2−‖A−B‖2
2 = 323411.

Next, we give another improvement of the inequality (3.3).

THEOREM 3.4. Let A, B, X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then∥∥AvXB1−v

∥∥2
+ r2

0 (‖AX‖−‖XB‖)2 � (v‖AX‖+(1− v)‖XB‖)2

where r0 = min{v, 1− v} .

Proof. By Lemma 3.1 and the inequality [3]:

(
avb1−v)2 + r0 (a−b)2 � va2 +(1− v)b2,

we have

∥∥AvXB1−v
∥∥2 + r2

0 (‖AX‖−‖XB‖)2 �
(
‖AX‖v ‖XB‖1−v

)2
+ r2

0 (‖AX‖−‖XB‖)2

� (v‖AX‖+(1− v)‖XB‖)2 .

This completes the proof. �
Finally, we give an inequality involving the trace norm and the Hilbert-Schmidt

norm. To do this, we need the following lemma (see [1, p. 48]).

LEMMA 3.2. Let A, B ∈ Mn . Then

n

∑
j=1

s j (AB) �
n

∑
j=1

s j (A)s j (B).
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THEOREM 3.5. Let A, B ∈ Mn be positive semidefinite. If 0 � v � 1 , then

tr (vA+(1− v)B) � ‖Av‖2

∥∥B1−v
∥∥

2 + s0

(
trA+ trB− tr

∣∣∣A1/2B1/2
∣∣∣) ,

where s0 = max{v, 1− v} .

Proof. By the inequality (2.1), we have

vs j (A)+ (1− v) s j (B) � sv
j (A)s1−v

j (B)+ s0

(
s1/2

j (A)− s1/2
j (B)

)2

for j = 1, · · · ,n . Thus, by Lemma 3.2 and the Cauchy-Schwarz inequality, we obtain

tr (vA+(1− v)B)
= vtrA+(1− v)trB

=
n
∑
j=1

(vs j (A)+ (1− v) s j (B))

�
n
∑
j=1

s j (Av)s j
(
B1−v

)
+ s0

n
∑
j=1

(
s1/2

j (A)− s1/2
j (B)

)2

=
n
∑
j=1

s j (Av)s j
(
B1−v

)
+ s0

n
∑
j=1

(s j (A)+ s j (B))−2s0

n
∑
j=1

s1/2
j (A)s1/2

j (B)

�
(

n
∑
j=1

s2
j (A

v)

)1/2(
n
∑
j=1

s2
j

(
B1−v

))1/2

+ s0

(
trA+ trB−

n
∑
j=1

s j
(
A1/2B1/2

))

= ‖Av‖2

∥∥B1−v
∥∥

2 + s0
(
trA+ trB− tr

∣∣A1/2B1/2
∣∣) .

This completes the proof. �
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