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FUGLEDE-PUTNAM’S THEOREM FOR W-HYPONORMAL OPERATORS

A. BACHIR AND F. LOMBARKIA

(Communicated by F. Hansen)

Abstract. An asymmetric Fuglede-Putnam’s Theorem for w-hyponormal operators and domi-
nant operators is proved, as a consequence of this result, we obtain that the range of the general-
ized derivation induced by the above classes of operators is orthogonal to its kernel.

1. Introduction

For complex Hilbert spaces ¢ and ¥, L(s¢),L(.#") and L(7,.%") denote
the set of all bounded linear operators on .77, the set of all bounded linear operators on
2 and the set of all bounded linear transformations from J# to % respectively. A
bounded operator A € L(#¢) is called normal if A*A = AA*. According to [5, 15], a
bounded operator is called dominant if

(A—ADNS C(A—AL)* 22, forall A € C.

This condition is equivalent to the existence of a positive constant M, for each A € C
such that
(A=ADA =AD" <M (A—AD)*(A—AI).

If there exist a constant M such that M; < M for all A € C, then A is called M-
hyponormal, and if M =1, A is hyponormal. Easily we see the following inclusion
relations

{Normal} C {Hyponormal} C {M — Hyponormal } C {Dominant }.

Also A is called p-hyponormal [1, 6, 7, 18], if (A*A)? > (AA*)P for some 0 < p < 1,
log-hyponormal [16] if A is invertible operator and satisfies log(A*A) > log(AA*), w-
hyponormalif |A] > |A| > |(A)*|, where A = \A\%U \A\% is the Aluthge transformation.
It was shown in [2] and [3] that the class of w-hyponormal operators contains both the
p— and log-hyponormal operators. We have the following inclusion

{Normal} C {Hyponormal} C {p — Hyponormal} C {w — Hyponormal}.
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{inversible — hyponormal } C {inversible — p — hyponrmal }

C {log—hyponormal} C {w — hyponormal}.

If an operator A is p-hyponormal, then kerA C kerA*, and if A is log-hyponormal,
then kerA =kerA*. However, if A is w-hyponormal, it is not known whether the kernel
condition kerA C kerA* holds. Nevertheless in ([2, 3]) w-hyponormal operators have
many properties similar to those of p-hyponormal operators.

The familiar Fuglede-Putnam’s theorem asserts that if A € L(#°) and B € L(.%")
are normal operators and AX = XB for some operators X € L(.# , ), then A*X =
XB* ([9], [14]). Many authors have extended this theorem for several classes of op-
erators, recently A. Uchiyama and k. Tanahashi [17] proved that Fuglede-Putnam’s
theorem holds for p-hyponormal or log-hyponormal and dominant operators, B. P.
Duggal [8] and I. H. Jeon, K. Tanahashi and A. Uchiyama [13] proved that Fuglede-
Putnam’s theorem holds for p-hyponormal or log-hyponormal. We say that the pair
(A, B) satisfy Fuglede-Putnam’s theorem if AX = XB implies A*X = XB*.

In this work, we prove that if either

1. A is dominant and B* is w-hyponormal such that ker B* C kerB or
2. A is w-hyponormal and B* is injective w-hyponormal or

3. A is w-hyponormal such that kerA C kerA* and B* is w-hyponormal such that
ker B* C kerB,

then the pair (A, B) satisfy Fuglede-Putnam’s theorem at the end of this paper we study
the orthogonality of the range and the null space of the generalized derivation for some
classes of operators.
Let A,B € L(#), we define the generalized derivation d4 5 induced by A and B
by
Oap(X)=AX —XB, forall X € L(J7).

DEFINITION 1.1. [4] Given subspaces .# and .4 of a Banach space ¥ with
norm || -||. .# is said to be orthogonal to .4 if m+n > ||n|| for all m € .# and
nenN.

J.H. Anderson and C. Foias [4] proved that if A and B are normal, S is an operator
such that AS = SB, then

| Oa(X) =S ||| S|, forall X € L(.57).
Where || - || is the usual operator norm. Hence the range of 04 g is orthogonal to the

null space of 84 p. The orthogonality here is understood to be in the sense of definition

[4].



FUGLEDE-PUTNAM’S THEOREM FOR w-HYPONORMAL OPERATORS 779

2. Preliminaries

We will recall some known results which will be used in the sequel.

DEFINITION 2.1. [1] Let A € L(.%°) and A = U|A| be the polar decomposition
of A, the Aluthge transformation of A is A = |A| 2 UJA| .

THEOREM 2.2. [12] An operator A € L(A) is w-hyponormal if and only if

1

1
(JA%|2|A]A%[2)7 > A7),

LEMMA 2.3. [15] Let A € L(57) be dominant and .# an invariant subspace
for A, then the restriction of A to ./ is dominant.

LEMMA 2.4. [18] Let A € L(57) be p-hyponormal and .4 an invariant sub-
space for A, then the restriction of A to # is p-hyponormal.

THEOREM 2.5. [17] Let A € L() be dominant and B* € L(.%") be p-hypo-
normal or log-hyponormal, then the pair (A,B) satisfy Fuglede-Putnam’s theorem.

THEOREM 2.6. [8] Let A € L(5¢) and B* € L(%") are p-hyponormal, then the
pair (A,B) satisfy Fuglede-Putnam’s theorem, R(X) reduces A, ker(X )" reduces B,
and A \m, B |( )L are unitarily equivalent normal operators.

kerX

THEOREM 2.7. [13] Let A € L(S%) and B* € L(¢") are p-hyponormal or log-
hyponormal operators, then the pair (A,B) satisfy Fuglede-Putnam’s theorem, R(X)
reduces A, ker(X)* reduces B, and A |m, B |( L are unitarily equivalent normal
operators.

ker X

3. Main results

Our goal is to investigate the orthogonality of R(84 ) (the range of 84 p) and
ker(84 p) (the kernel of 4 p) for some operators. We prove that R(84 p) is orthogonal
to ker(64 5) when either (1) A is dominantand B* is w-hyponormal such that ker B* C
kerB or (2) A is w-hyponormal and B* is injective w-hyponormal or (3) A is w-
hyponormal such that kerA C kerA* and B* is w-hyponormal such that ker B* C kerB.
Before proving these results, we need the following ones.

THEOREM 3.1. Let A € L(5) be w-hyponormal and .# an invariant subspace
for A, then the restriction of A to M is w-hyponormal.

Proof. Let P be the orthogonal projection on . . We have

AP = PAP.
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It is easy to see that APPA* < AA*, therefore
(AP)" 2 < A"
By Lo wner-Heinz theorem [11], we obtain
[(AP)*| < |A7|. 3.1
Since |AP|? = PA*AP = P|A|*P, by Hansen’s inequality [10] we get
|AP| > P|A|P,

hence
P|AP|P > P|A|P.
Since ker P C ker|AP| C ker|A[, from [12, Lemme 8] we obtain

|AP| > |A]. (3.2)

We have A is w-hyponormal, then

1

oy PN *
(|A%2]A]]A%[7)2 = |A™].
By (3.1) and [19, Lemme 5] we obtain
w4 N
(I(AP)*[2|A]|(AP)*|2)} > |(AP)". (3.3)

By (3.2) we obtain

1

(AP)* |2 |A|[(AP)"|2 < |(AP)"|? |AP]|(AP)"|.

Applying Lo wner Heinz theorem [1 1], we get

1 1

(ICAPY|? JAI[(APY'|)? < ((AP)'|* |AP||(AP)"| )2 (3.4)

Hence
1

o N *
(I(AP)*[Z|AP[|(AP)"[2)2 = |(AP)"|
hold by (3.3) and (3.4), and this shows that AP is w-hyponormal. [J
LEMMA 3.2. Let A € L(S7) be w- hyponormal operator, let A be an invariant

subspace for A and a reduced subspace for A such that A |.# the restriction of A to
M is an injective normal operator, then A | y=A | 4 and M reduces A.
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Proof. Let

~ (A0 (A1 B - n
A_<O*>,A—<OD>OH%—///@///.

Since A is w-hyponormal, then |A| > |A| > |(A)*|. Let P be the orthogonal projection
on ./ , then
1 ~ ~ 1
(ApAo)? = P|AP = P|AIP = P|(A)7|P = (AoAp)>.

By applying L6 wner Heinz theorem [1 1] we get
Aolt = PIAI*P > PIAIP > PIAY 2P = Ay .
Since \A\%A :X|A|% and P\A\%P = |Ao\%, we deduce that
40|12 A1 = AolAol?

We have Ay is an injective normal operator, then A| =A | = Ao =A | 4, consequently

(Ao B _ 1
A_<OD) on . =.HDM.

Hence

L (Ao ALB B N
AA_(B*AOB*B—i—D*D on =M.

So we can write \A\% as

1
A} = (@glz §> on A= MS.M"

Since 1 1
P|A|2[A[2P = |A¢],

then |Ao| = |Ao| +XX*, and thus X =0.
It follows that |A| = [A¢| & Y? implying A*A = AjAo @ Y*. Consequently we get
AB =0 and so B = 0. This shows that .# reduces A. [J

THEOREM 3.3. Let A € L(57) be dominant operator and B* € L(¢") be w-
hyponormal such that kerB* C kerB, then the pair (A,B) satisfy Fuglede-Putnam’s
theorem.

Proof. We consider two cases.

Case 1. If B* is injective. Assume that AX = XB for some X € L(.#", 7). Since
R(X) is invariant for A and (kerX)" is invariant for B*, we consider the following
decompositions

# =RX)BRX) , A = (kerX)* ©kerX,
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(AA) , (B O
= (50) - (5a)

x:(xlo);(kerx) @kerX — RX) @ RX) .

then we have

——L
00

From AX = XB we get
A1X, =X,B,. (3.5)

Let B] = U*|B;| be the polar decomposition of Bj. Multiply the two members of

(3.5) by |B’[|%, we obtain
AIX\[Bi|* = XiBilB{|,
hence ) L
A1X\[B|? =X, |B|2 (B})".

Since A is dominant from Lemma 2.3 and B} is w-hyponormal from Theorem 3.1,
then BT is semi-hyponorml, applying Theorem 2.5 we get the pair (A17B*) satisfy

Fuglede-Putnam’s theorem. Therefore A; |———— and B | 1 are normal
R(X,|B;|2) ker(X,|B}|2)
operators.

Since X is injective with dense range and |B7|2 is injective thus

R(X1|B;|?) = R(X1) = R(X),

and .
ker(X;|B}|2) = ker(X;) = ker(X).
Applying Lemma 3.2 we get B} |ker(X) 1 is normal and ker(X)" reduces B*. Therefore

R(X) reduces A and ker(X)" reduces B, it follows that Ay = B, = 0. Since A; and
By are normal operators, then A7X; = X B} . Therefore A*X = XB".

Case 2. If B* is not injective, the condition ker B* C ker B implies that ker B* re-
duces B*, since kerA reduces A, the operators A and B can be written on the following
decompositions

A = (kerA)* ©kerA, # = (kerB*)* @ kerB*,

(A 0\ . (B0
= ()= (1)

Since A is injective dominant operator and B} is injective w-hyponormal operator.
Let

as follows

X : (kerB*): @ kerB* — (kerA)® @ kerA,

and let X = [X; 1]12 j—1 be the matrix representation, then AX = X B implies that A1 X;; =
X11B1 and Xj2 = X»; = 0. From the first case we deduce that A7X; = X{1B]. Thus
A*X =XB*. [O
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REMARK 3.4. A necessary condition for the pair (A,A*) to satisfy Fuglede-Put-
nam’s theorem is kerA C kerA*. Since for a w-hyponormal operator this is not always
true, w-hyponormal operators do not satisfy Fuglede-Putnam’s theorem. For example,
if P is the orthogonal projection onto kerA, with A is w-hyponormal, then AP = PA*
but A*P # PA. However, if A, B* are w-hyponormal operators such that kerA reduces
A and ker B* reduces B*, then the pair (A, B) satisfy Fuglede-Putnam’s theorem. The
following results prove more.

THEOREM 3.5. Let A € L() be w-hyponormal operator and B* € L(¢") be
injective w-hyponormal, then the pair (A,B) satisfy Fuglede-Putnam’s theorem.

Proof. Assume that AX = XB for some X € L(.#,.). Since R(X) is invariant
for A and (kerX)' is invariant for B*, we consider the following decompositions

A =R(X)®R(X) ) H = (kerX)* @ kerX,

(A Ay _(B1 O
=(08) o= (5e)

x:(ﬁlg);(kerx) @kerX — RX) @ RX) .

then we have

——l
From AX = XB we get
AX; = X,B,. (3.6)
Let A; = V|A;| and Bj = U*|Bj| be the polar decompositions of A; and Bj.
Multiply the two members of (3.6) by |A; \% and |Bj| %, we obtain
1 ol 1 ol
[A1[2A1X,|B] |7 = |A1[2X,B1| By,

hence N .
ALJALZX1BI|? = |A 2 X4 |B] | (BY)",

Since A; and B} are w-hyponormal from Theorem 3.1, it follows that Avl and 5’1: are

semi-hyponormal, applying Theorem 2.6 we get A| |—————— and B | 1 1
R(|A1|2X,|B}|2) Uker(142X, B} 2)+
are unitarily normal operators.
Since B | | 1, isinjective, then A |——— 7 is also injective. As
ker(|A1[2 X1 [B}|2)4 R(|A1|2X,|B}|2)

L T
Xi|Bj|2 is injective with dense range and |A|2 is injective, it follows that

(\A1\2X1\B| ) =R(X1) = R(X),

and . .
ker(JA1]|2X,|B}|2) = ker(X;) = ker(X).
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Then B |ier(x). and Ay are injective normal operators by Lemma 3.2. Therefore

")
R(X) reduces A and ker(X )" reduces B it follows that Ay = B = 0. Since A; and B;
are normal operators then A7X; = X B} . Therefore A*X = XB*. [

THEOREM 3.6. Let A € L(s7) be w-hyponormal operator such that kerA C
kerA* and B* € L(X') be w-hyponormal such that ker B* C ker B, then the pair (A,B)
satisfy Fuglede-Putnam’s theorem.

Proof. the conditions kerB* C kerB and kerA C kerA* implies that kerB* re-
duces B* and kerA reduces A, the operators A and B can be written with respect to
the following decompositions

A = (kerA)*t ©kerA, # = (kerB*)* @ kerB*,

(A0 . (B0
A‘(oo)’B_<oo>'

Since A is injective w-hyponormal operator and Bj is injective w-hyponormal oper-
ator. Let

as follows

X : (kerB*)* @ kerB* — (kerA)* @ kerA,

and let X = [X; 1]12 =1 be the matrix representation, then AX = XB implies that A X|; =
X11B1 and X2 = Xp1 = 0. From Theorem 3.5 we get A7X1 = X11B]. Thus A*X =
XB*. 0O

In the following theorem we prove the orthogonality of the range and the null
space of 04 g, for some classes of operators

THEOREM 3.7. Let A,B* € L(J7). If one of the following assertions
1. A is dominant and B* is w-hyponormal with ker B* C ker B.
2. A is w-hyponormal and B* is injective w-hyponormal.

3. A is w-hyponormal operator with kerA C kerA* and B* is w-hyponormal with
ker B* C kerB.

is verified, then R(8a g) is orthogonal to ker(d4 ).

Proof. The pair (A,B) verify the Fuglede-Putman’s theorem by Theorem 3.3,
Theorem 3.5 and Theorem 3.6. Let C € L(5¢) be such that AC = CB. According
to the following decompositions of .77

H = =R(C)®R(C) -, # = 7 = (kerC)* @kerC,



FUGLEDE-PUTNAM’S THEOREM FOR w-HYPONORMAL OPERATORS 785

We can write A,B,C and X

(A0 _(B1 O _(C0 (X1 X
A_<O A2>’B_<0 B2>’C_<O 0 X = X3 Xy )
Where A and B; are normal operators and X is an operator from .7 to J#. Since
AC = CB, then A|C; = CB;. Hence

_ [(AX) —X1B) — C) AyXs — XoB,
AX_XB_C_( A1 X3 — X3B; A2X4—X4Bz)'

Since C; € ker(64, 5,) and Ay, B; are normal, it follows by [4]
|AX =XB—C||>]|AiX, —Xi1B; = C1 | =] Cy [|[=[ C ||, VX € L(7).
This implies that R(64 ) is orthogonal to ker(84 ). O

At the end of this paper we would like to thank the referee for his useful remarks.
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