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FUGLEDE–PUTNAM’S THEOREM FOR W–HYPONORMAL OPERATORS
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(Communicated by F. Hansen)

Abstract. An asymmetric Fuglede-Putnam’s Theorem for w -hyponormal operators and domi-
nant operators is proved, as a consequence of this result, we obtain that the range of the general-
ized derivation induced by the above classes of operators is orthogonal to its kernel.

1. Introduction

For complex Hilbert spaces H and K , L(H ),L(K ) and L(H ,K ) denote
the set of all bounded linear operators on H , the set of all bounded linear operators on
K and the set of all bounded linear transformations from H to K respectively. A
bounded operator A ∈ L(H ) is called normal if A∗A = AA∗ . According to [5, 15], a
bounded operator is called dominant if

(A−λ I)H ⊂ (A−λ I)∗H , for all λ ∈ C.

This condition is equivalent to the existence of a positive constant Mλ for each λ ∈ C

such that
(A−λ I)(A−λ I)∗ � Mλ (A−λ I)∗(A−λ I).

If there exist a constant M such that Mλ � M for all λ ∈ C , then A is called M -
hyponormal, and if M = 1, A is hyponormal. Easily we see the following inclusion
relations

{Normal} ⊆ {Hyponormal} ⊆ {M−Hyponormal}⊆ {Dominant}.

Also A is called p -hyponormal [1, 6, 7, 18], if (A∗A)p � (AA∗)p for some 0 < p � 1,
log-hyponormal [16] if A is invertible operator and satisfies log(A∗A) � log(AA∗), w-

hyponormal if |Ã|� |A|� |(Ã)∗|, where Ã = |A| 1
2U |A| 1

2 is the Aluthge transformation.
It was shown in [2] and [3] that the class of w-hyponormal operators contains both the
p− and log-hyponormal operators. We have the following inclusion

{Normal} ⊂ {Hyponormal} ⊂ {p−Hyponormal}⊂ {w−Hyponormal}.
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{inversible−hyponormal}⊂ {inversible− p−hyponrmal}

⊂ {log−hyponormal}⊂ {w−hyponormal}.
If an operator A is p -hyponormal, then kerA ⊂ kerA∗ , and if A is log-hyponormal,
then kerA = kerA∗ . However, if A is w-hyponormal, it is not known whether the kernel
condition kerA ⊂ kerA∗ holds. Nevertheless in ([2, 3]) w-hyponormal operators have
many properties similar to those of p -hyponormal operators.

The familiar Fuglede-Putnam’s theorem asserts that if A ∈ L(H ) and B ∈ L(K )
are normal operators and AX = XB for some operators X ∈ L(K ,H ), then A∗X =
XB∗ ([9], [14]). Many authors have extended this theorem for several classes of op-
erators, recently A. Uchiyama and k. Tanahashi [17] proved that Fuglede-Putnam’s
theorem holds for p -hyponormal or log-hyponormal and dominant operators, B. P.
Duggal [8] and I. H. Jeon, K. Tanahashi and A. Uchiyama [13] proved that Fuglede-
Putnam’s theorem holds for p -hyponormal or log-hyponormal. We say that the pair
(A,B) satisfy Fuglede-Putnam’s theorem if AX = XB implies A∗X = XB∗.

In this work, we prove that if either

1. A is dominant and B∗ is w-hyponormal such that kerB∗ ⊂ kerB or

2. A is w-hyponormal and B∗ is injective w-hyponormal or

3. A is w-hyponormal such that kerA ⊂ kerA∗ and B∗ is w-hyponormal such that
kerB∗ ⊂ kerB,

then the pair (A,B) satisfy Fuglede-Putnam’s theorem at the end of this paper we study
the orthogonality of the range and the null space of the generalized derivation for some
classes of operators.

Let A,B ∈ L(H ), we define the generalized derivation δA,B induced by A and B
by

δA,B(X) = AX −XB, for all X ∈ L(H ).

DEFINITION 1.1. [4] Given subspaces M and N of a Banach space V with
norm ‖ · ‖ . M is said to be orthogonal to N if m + n � ‖n‖ for all m ∈ M and
n ∈ N .

J.H. Anderson and C. Foias [4] proved that if A and B are normal, S is an operator
such that AS = SB, then

‖ δA,B(X)−S ‖�‖ S ‖, for all X ∈ L(H ).

Where ‖ · ‖ is the usual operator norm. Hence the range of δA,B is orthogonal to the
null space of δA,B . The orthogonality here is understood to be in the sense of definition
[4].
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2. Preliminaries

We will recall some known results which will be used in the sequel.

DEFINITION 2.1. [1] Let A ∈ L(H ) and A = U |A| be the polar decomposition

of A , the Aluthge transformation of A is Ã = |A| 1
2U |A| 1

2 .

THEOREM 2.2. [12] An operator A ∈ L(H ) is w-hyponormal if and only if

(|A∗| 1
2 |A||A∗| 1

2 )
1
2 � |A∗|.

LEMMA 2.3. [15] Let A ∈ L(H ) be dominant and M an invariant subspace
for A, then the restriction of A to M is dominant.

LEMMA 2.4. [18] Let A ∈ L(H ) be p-hyponormal and M an invariant sub-
space for A, then the restriction of A to M is p-hyponormal.

THEOREM 2.5. [17] Let A ∈ L(H ) be dominant and B∗ ∈ L(K ) be p-hypo-
normal or log -hyponormal, then the pair (A,B) satisfy Fuglede-Putnam’s theorem.

THEOREM 2.6. [8] Let A ∈ L(H ) and B∗ ∈ L(K ) are p-hyponormal, then the
pair (A,B) satisfy Fuglede-Putnam’s theorem, R(X) reduces A, ker(X)⊥ reduces B,
and A |R(X), B |(kerX)⊥ are unitarily equivalent normal operators.

THEOREM 2.7. [13] Let A ∈ L(H ) and B∗ ∈ L(K ) are p-hyponormal or log-
hyponormal operators, then the pair (A,B) satisfy Fuglede-Putnam’s theorem, R(X)
reduces A, ker(X)⊥ reduces B, and A |R(X), B |(kerX)⊥ are unitarily equivalent normal
operators.

3. Main results

Our goal is to investigate the orthogonality of R(δA,B) (the range of δA,B ) and
ker(δA,B) (the kernel of δA,B ) for some operators. We prove that R(δA,B) is orthogonal
to ker(δA,B) when either (1) A is dominant and B∗ is w-hyponormal such that kerB∗ ⊂
kerB or (2) A is w-hyponormal and B∗ is injective w-hyponormal or (3) A is w-
hyponormal such that kerA⊂ kerA∗ and B∗ is w-hyponormal such that kerB∗ ⊂ kerB .
Before proving these results, we need the following ones.

THEOREM 3.1. Let A ∈ L(H ) be w-hyponormal and M an invariant subspace
for A, then the restriction of A to M is w-hyponormal.

Proof. Let P be the orthogonal projection on M . We have

AP = PAP.



780 A. BACHIR AND F. LOMBARKIA

It is easy to see that APPA∗ � AA∗ , therefore

|(AP)∗|2 � |A∗|2.
By L öwner-Heinz theorem [11], we obtain

|(AP)∗| � |A∗|. (3.1)

Since |AP|2 = PA∗AP = P|A|2P , by Hansen’s inequality [10] we get

|AP| � P|A|P,

hence

P|AP|P � P|A|P.
Since kerP ⊂ ker |AP| ⊂ ker |A| , from [12, Lemme 8] we obtain

|AP|� |A|. (3.2)

We have A is w-hyponormal, then

(|A∗| 1
2 |A||A∗| 1

2 )
1
2 � |A∗|.

By (3.1) and [19, Lemme 5] we obtain

(|(AP)∗| 1
2 |A||(AP)∗| 1

2 )
1
2 � |(AP)∗|. (3.3)

By (3.2) we obtain

|(AP)∗| 1
2 |A||(AP)∗| 1

2 � |(AP)∗| 1
2 |AP||(AP)∗| 1

2 .

Applying L öwner Heinz theorem [11], we get

(|(AP)∗| 1
2 |A||(AP)∗| 1

2 )
1
2 � (|(AP)∗| 1

2 |AP||(AP)∗| 1
2 )

1
2 . (3.4)

Hence

(|(AP)∗| 1
2 |AP||(AP)∗| 1

2 )
1
2 � |(AP)∗|

hold by (3.3) and (3.4), and this shows that AP is w-hyponormal. �

LEMMA 3.2. Let A ∈ L(H ) be w-hyponormal operator, let M be an invariant
subspace for A and a reduced subspace for Ã such that Ã |M the restriction of Ã to
M is an injective normal operator, then A |M = Ã |M and M reduces A.
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Proof. Let

Ã =
(

A0 0
0 ∗

)
,A =

(
A1 B
0 D

)
on H = M ⊕M⊥.

Since A is w-hyponormal, then |Ã| � |A| � |(Ã)∗|. Let P be the orthogonal projection
on M , then

(A∗
0A0)

1
2 = P|Ã|P � P|A|P � P|(Ã)∗|P = (A0A

∗
0)

1
2 .

By applying L öwner Heinz theorem [11] we get

|A0| 1
2 = P|Ã|

1
2 P � P|A| 1

2 P � P|(Ã)∗|
1
2 P = |A∗

0|
1
2 .

Since |A| 1
2 A = Ã|A| 1

2 and P|A| 1
2 P = |A0| 1

2 , we deduce that

|A0| 1
2 A1 = A0|A0| 1

2

We have A0 is an injective normal operator, then A1 = A |M = A0 = Ã |M , consequently

A =
(

A0 B
0 D

)
on H = M ⊕M⊥.

Hence

A∗A =
(

A∗
0A0 A∗

0B
B∗A0 B∗B+D∗D

)
on H = M ⊕M⊥.

So we can write |A| 1
2 as

|A| 1
2 =

(
|A0| 1

2 X
X∗ Y

)
on H = M ⊕M⊥.

Since
P|A| 1

2 |A| 1
2 P = |A0|,

then |A0| = |A0|+XX∗ , and thus X = 0.
It follows that |A| = |A0|⊕Y 2 implying A∗A = A∗

0A0 ⊕Y 4. Consequently we get
A∗

0B = 0 and so B = 0. This shows that M reduces A. �

THEOREM 3.3. Let A ∈ L(H ) be dominant operator and B∗ ∈ L(K ) be w-
hyponormal such that kerB∗ ⊂ kerB, then the pair (A,B) satisfy Fuglede-Putnam’s
theorem.

Proof. We consider two cases.
Case 1. If B∗ is injective. Assume that AX = XB for some X ∈ L(K ,H ) . Since

R(X) is invariant for A and (kerX)⊥ is invariant for B∗ , we consider the following
decompositions

H = R(X)⊕R(X)
⊥
,K = (kerX)⊥⊕kerX ,
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then we have

A =
(

A1 A2

0 A3

)
,B =

(
B1 0
B2 B3

)
.

X =
(

X1 0
0 0

)
: (kerX)⊥⊕kerX → R(X)⊕R(X)

⊥
.

From AX = XB we get
A1X1 = X1B1. (3.5)

Let B∗
1 = U∗|B∗

1| be the polar decomposition of B∗
1. Multiply the two members of

(3.5) by |B∗
1|

1
2 , we obtain

A1X1|B∗
1|

1
2 = X1B1|B∗

1|
1
2 ,

hence
A1X1|B∗

1|
1
2 = X1|B∗

1|
1
2 (B̃∗

1)
∗.

Since A1 is dominant from Lemma 2.3 and B∗
1 is w-hyponormal from Theorem 3.1,

then B̃∗
1 is semi-hyponorml, applying Theorem 2.5 we get the pair (A1, B̃∗

1) satisfy

Fuglede-Putnam’s theorem. Therefore A1 |
R(X1|B∗

1|
1
2 )

and B̃∗
1 |

ker(X1|B∗
1|

1
2 )⊥

are normal

operators.
Since X1 is injective with dense range and |B∗

1|
1
2 is injective thus

R(X1|B∗
1|

1
2 ) = R(X1) = R(X),

and
ker(X1|B∗

1|
1
2 ) = ker(X1) = ker(X).

Applying Lemma 3.2 we get B∗
1 |ker(X)⊥ is normal and ker(X)⊥ reduces B∗ . Therefore

R(X) reduces A and ker(X)⊥ reduces B , it follows that A2 = B2 = 0. Since A1 and
B1 are normal operators, then A∗

1X1 = X1B∗
1 . Therefore A∗X = XB∗.

Case 2. If B∗ is not injective, the condition kerB∗ ⊂ kerB implies that kerB∗ re-
duces B∗ , since kerA reduces A , the operators A and B can be written on the following
decompositions

H = (kerA)⊥⊕kerA, K = (kerB∗)⊥⊕kerB∗,

as follows

A =
(

A1 0
0 0

)
,B =

(
B1 0
0 0

)
.

Since A1 is injective dominant operator and B∗
1 is injective w-hyponormal operator.

Let
X : (kerB∗)⊥⊕kerB∗ → (kerA)⊥⊕kerA,

and let X = [Xi j]2i, j=1 be the matrix representation, then AX = XB implies that A1X11 =
X11B1 and X12 = X21 = 0. From the first case we deduce that A∗

1X11 = X11B∗
1 . Thus

A∗X = XB∗. �
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REMARK 3.4. A necessary condition for the pair (A,A∗) to satisfy Fuglede-Put-
nam’s theorem is kerA ⊂ kerA∗. Since for a w-hyponormal operator this is not always
true, w-hyponormal operators do not satisfy Fuglede-Putnam’s theorem. For example,
if P is the orthogonal projection onto kerA, with A is w-hyponormal, then AP = PA∗
but A∗P 
= PA. However, if A,B∗ are w-hyponormal operators such that kerA reduces
A and kerB∗ reduces B∗, then the pair (A,B) satisfy Fuglede-Putnam’s theorem. The
following results prove more.

THEOREM 3.5. Let A ∈ L(H ) be w-hyponormal operator and B∗ ∈ L(K ) be
injective w-hyponormal, then the pair (A,B) satisfy Fuglede-Putnam’s theorem.

Proof. Assume that AX = XB for some X ∈ L(K ,H ) . Since R(X) is invariant
for A and (kerX)⊥ is invariant for B∗ , we consider the following decompositions

H = R(X)⊕R(X)
⊥
, K = (kerX)⊥⊕kerX ,

then we have

A =
(

A1 A2

0 A3

)
,B =

(
B1 0
B2 B3

)
.

X =
(

X1 0
0 0

)
: (kerX)⊥⊕kerX → R(X)⊕R(X)

⊥
.

From AX = XB we get
A1X1 = X1B1. (3.6)

Let A1 = V |A1| and B∗
1 = U∗|B∗

1| be the polar decompositions of A1 and B∗
1.

Multiply the two members of (3.6) by |A1| 1
2 and |B∗

1|
1
2 , we obtain

|A1| 1
2 A1X1|B∗

1|
1
2 = |A1| 1

2 X1B1|B∗
1|

1
2 ,

hence
Ã1|A1| 1

2 X1|B∗
1|

1
2 = |A1| 1

2 X1|B∗
1|

1
2 (B̃∗

1)
∗,

Since A1 and B∗
1 are w-hyponormal from Theorem 3.1, it follows that Ã1 and B̃∗

1 are

semi-hyponormal, applying Theorem2.6 we get Ã1 |
R(|A1|

1
2 X1|B∗

1|
1
2 )

and B̃∗
1 |ker(|A1|

1
2 X1|B∗

1|
1
2 )⊥

are unitarily normal operators.
Since B̃∗

1 |ker(|A1|
1
2 X1|B∗

1|
1
2 )⊥

is injective, then Ã1 |
R(|A1|

1
2 X1|B∗

1|
1
2 )

is also injective. As

X1|B∗
1|

1
2 is injective with dense range and |A1| 1

2 is injective, it follows that

R(|A1| 1
2 X1|B∗

1|
1
2 ) = R(X1) = R(X),

and
ker(|A1| 1

2 X1|B∗
1|

1
2 ) = ker(X1) = ker(X).
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Then B∗
1 |ker(X)⊥ and A1 |R(X) are injective normal operators by Lemma 3.2. Therefore

R(X) reduces A and ker(X)⊥ reduces B it follows that A2 = B2 = 0. Since A1 and B1

are normal operators then A∗
1X1 = X1B∗

1 . Therefore A∗X = XB∗. �

THEOREM 3.6. Let A ∈ L(H ) be w-hyponormal operator such that kerA ⊂
kerA∗ and B∗ ∈ L(K ) be w-hyponormal such that kerB∗ ⊂ kerB, then the pair (A,B)
satisfy Fuglede-Putnam’s theorem.

Proof. the conditions kerB∗ ⊂ kerB and kerA ⊂ kerA∗ implies that kerB∗ re-
duces B∗ and kerA reduces A , the operators A and B can be written with respect to
the following decompositions

H = (kerA)⊥⊕kerA, K = (kerB∗)⊥⊕kerB∗,

as follows

A =
(

A1 0
0 0

)
,B =

(
B1 0
0 0

)
.

Since A1 is injective w-hyponormal operator and B∗
1 is injective w-hyponormal oper-

ator. Let
X : (kerB∗)⊥⊕kerB∗ → (kerA)⊥⊕kerA,

and let X = [Xi j]2i, j=1 be the matrix representation, then AX = XB implies that A1X11 =
X11B1 and X12 = X21 = 0. From Theorem 3.5 we get A∗

1X11 = X11B∗
1 . Thus A∗X =

XB∗. �

In the following theorem we prove the orthogonality of the range and the null
space of δA,B, for some classes of operators

THEOREM 3.7. Let A,B∗ ∈ L(H ). If one of the following assertions

1. A is dominant and B∗ is w-hyponormal with kerB∗ ⊂ kerB.

2. A is w-hyponormal and B∗ is injective w-hyponormal.

3. A is w-hyponormal operator with kerA ⊂ kerA∗ and B∗ is w-hyponormal with
kerB∗ ⊂ kerB.

is verified, then R(δA,B) is orthogonal to ker(δA,B).

Proof. The pair (A,B) verify the Fuglede-Putman’s theorem by Theorem 3.3,
Theorem 3.5 and Theorem 3.6. Let C ∈ L(H ) be such that AC = CB. According
to the following decompositions of H .

H = H1 = R(C)⊕R(C)
⊥
, H = H2 = (kerC)⊥⊕kerC,
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We can write A,B,C and X

A =
(

A1 0
0 A2

)
, B =

(
B1 0
0 B2

)
, C =

(
C1 0
0 0

)
, X =

(
X1 X2

X3 X4

)
.

Where A1 and B1 are normal operators and X is an operator from H1 to H2. Since
AC =CB, then A1C1 = C1B1. Hence

AX −XB−C =
(

A1X1−X1B1−C1 A2X2−X2B2

A1X3−X3B1 A2X4−X4B2

)
.

Since C1 ∈ ker(δA1,B1) and A1, B1 are normal, it follows by [4]

‖ AX −XB−C ‖�‖ A1X1−X1B1−C1 ‖�‖C1 ‖=‖C ‖, ∀X ∈ L(H ).

This implies that R(δA,B) is orthogonal to ker(δA,B). �

At the end of this paper we would like to thank the referee for his useful remarks.
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