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NONLINEAR INTEGRAL INEQUALITIES INVOLVING
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(Communicated by J. Pečarić)

Abstract. This paper deals with some nonlinear integral inequalities that involve the maximum
of the unknown scalar function of one variable. The considered inequalities are generalizations
of the classical integral inequality of Gronwall–Bellman. The importance of these integral in-
equalities is due to their wide applications in qualitative investigations of differential equations
with “maxima”, and it is illustrated by some direct applications.

1. Introduction

In the past few years, a number of integral inequalities was established by many
scholars, which are motivated by certain applications such as existence, uniqueness,
continuous dependence, comparison, perturbation, boundedness and stability of solu-
tions of differential and integral equations (see, for example, [4, 7, 12, 13, 15] and the
references cited therein). Among these integral inequalities, we cite the famous Gron-
wall inequality and its various generalizations [1, 2, 5, 10, 9, 8].

In the last few decades, great attention has been paid to automatic control systems
and their applications to computational mathematics and modeling. Many problems
in control theory correspond to the maximal deviation of the regulated quantity (see
[14]). Such kind of problems could be adequately modeled by differential equations
that contain the maxima operator. Note that such equations involving “maxima” of the
unknown function are called differential equations with “maxima”, see [3, 6]. In his
survey [11], A. D. Mishkis also points out the necessity to study differential equations
with “maxima”.

The purpose of this paper is to establish some new nonlinear integral inequalities in
the case when the “maxima” of the unknown scalar function is involved in the integral.
Several cases depending on the type of nonlinearity are considered. These inequalities
are mathematical tools in the theory of differential equations with “maxima”. Their
importance is illustrated by some direct applications obtaining bounds of the solutions.
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2. Main results

Let h > 0 be a constant and suppose t0 and T are fixed points with 0 � t0 < T �
∞ .

DEFINITION 2.1. The function α ∈ C1([t0,T ),R+) is said to be from the class
F if it is nondecreasing and satisfies α(t) � t for t ∈ [t0,T ) .

Let αi,β j ∈ F for i = 1,2, . . . ,n and j = 1,2, . . . ,m . Denote

J = min

{
min

1�i�n
αi(t0), min

1� j�m
β j(t0)

}
.

2.1. Constant additive term

In this subsection, we discuss the case of a constant k in the inequality (2.1) below.
For this purpose, we define the following functions.

DEFINITION 2.2. The function ω ∈ C(R+,R+) is said to be from Ω1 if

(i) ω(x) > 0 for x > 0 and ω is a nondecreasing function;

(ii)
∫ ∞ dx

ω(x) = ∞ .

In the case when the nonlinear functions under the integrals in the inequality (2.1)
below are from the set Ω1 , we obtain the following result.

THEOREM 2.3. Let the following conditions be fulfilled:

(A1 ) φ ∈ C([J−h, t0],R+) .

(A2 ) k > 0 .

(A3 ) αi,β j ∈ F for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(A4 ) fi,g j ∈ C([J,T ),R+) for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(A5 ) ωi, ω̃ j ∈ Ω1 for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(A6 ) ψ ∈ C1(R+,R+) is increasing, ψ(0) = 0 , and limt→∞ ψ(t) = ∞ .

(A7 ) u ∈ C([J−h,T ),R+) satisfies for some p � 0 the inequalities

ψ
(
u(t)

)
� k+

n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)up(s)ωi

(
u(s)

)
ds (2.1)

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)up(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds for t ∈ [t0,T ),

u(t) � φ(t) for t ∈ [J−h,t0]. (2.2)
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Then for t0 � t � t1 , the inequality

u(t) � ψ−1
(

Ψ−1
(

W−1
(
W
(
Ψ(M)

)
+A(t)

)))
(2.3)

holds, where

Ψ(r) =
∫ r

r0

ds[
ψ−1(s)

]p , 0 < r0 < k, (2.4)

W (r) =
∫ r

r1

ds

q
(
ψ−1(Ψ−1(s))

) , 0 < r1 < Ψ(M), (2.5)

q(t) = max

{
max
1�i�n

ωi(t), max
1� j�m

ω̃ j(t)
}

, (2.6)

A(t) =
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)ds+

m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)ds, (2.7)

M = max

{
k, ψ

(
max

s∈[J−h,t0]
φ(s)

)}
, (2.8)

t1 = sup

{
τ ∈ [t0,T ) : W

(
Ψ(M)

)
+A(t) ∈ Dom

(
W−1),

W−1
(
W
(
Ψ(M)

)
+A(t)

)
∈ Dom

(
Ψ−1) and

Ψ−1
(

W−1
(
W
(
Ψ(M)

)
+A(t)

))
∈ Dom

(
ψ−1) for t ∈ [t0,τ]

}
.

Proof. Define a function z : [J−h,T ) → R+ by

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M +
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)up(s)ωi

(
u(s)

)
ds

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)up(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds,

t ∈ [t0,T ),

M, t ∈ [J−h,t0].

The function z is nondecreasing. Since ψ(u(t)) � ψ(maxs∈[J−h,t0] φ(s)) � M = z(t)
for t ∈ [J−h, t0] by (2.2) and (2.8) and ψ(u(t)) � z(t) for t ∈ [t0,T ) by (2.1) and (2.8),
the inequality

u(t) � ψ−1(z(t)) holds for t ∈ [J−h,T). (2.9)
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Note that maxξ∈[s−h,s] ψ−1
(
z(ξ )

)
= ψ−1

(
z(s)
)

for s ∈ [β j(t0),β j(T )) , j = 1,2, . . . ,m .
Then from inequality (2.1) and the definition of the function q , we get for t ∈ [t0,T )

z(t) � M +
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)

(
ψ−1(z(s)))p

ωi

(
ψ−1(z(s)))ds

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)

(
ψ−1(z(s)))p

ω̃ j

(
ψ−1(z(s)))ds

� M +
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)

(
ψ−1(z(s)))p

q
(

ψ−1(z(s)))ds

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)

(
ψ−1(z(s)))p

q
(

ψ−1(z(s)))ds =: K(t),

(2.10)

where the function K : [t0,T )→ [M,∞) is nondecreasing and satisfies K(t0) = M . Dif-
ferentiate the function K and use its monotonicity (observe Definition 2.1) and (2.10)
to obtain

K′(t) =
n

∑
i=1

fi
(
αi(t)

)[
ψ−1(z(αi(t))

)]p
q
(

ψ−1(z(αi(t))
))

α ′
i (t)

+
m

∑
j=1

g j
(
β j(t)

)[
ψ−1(z(β j(t))

)]p
q
(

ψ−1(z(β j(t))
))

β ′
j(t)

�
n

∑
i=1

fi
(
αi(t)

)[
ψ−1(K(αi(t))

)]p
q
(

ψ−1(z(αi(t))
))

α ′
i (t)

+
m

∑
j=1

g j
(
β j(t)

)[
ψ−1(K(β j(t))

)]p
q
(

ψ−1(z(β j(t))
))

β ′
j(t)

�
[
ψ−1(K(t)

)]p
{ n

∑
i=1

fi(αi(t))q
(

ψ−1(z(αi(t))
))

α ′
i (t)

+
m

∑
j=1

g j(β j(t))q
(

ψ−1(z(β j(t))
))

β ′
j(t)
}

.

(2.11)

From (2.4) and (2.11), we have that

(Ψ◦K)′(t) =
K′(t)[

ψ−1
(
K(t)

)]p �
n

∑
i=1

fi
(
αi(t)

)
q
(

ψ−1(z(αi(t))
))

α ′
i (t)

+
m

∑
j=1

g j
(
β j(t)

)
q
(

ψ−1(z(β j(t))
))

β ′
j(t).

(2.12)

Integrate (2.12) from t0 to t ∈ [t0,t1] and change the variables to get

Ψ
(
K(t)

)
� Ψ(M)+

n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)q

(
ψ−1(z(s)))ds

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)q

(
ψ−1(z(s)))ds =: K1(t),

(2.13)
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where the function K1 is nondecreasing and satisfies K1(t0) = Ψ(M) and, due to (2.10)
and (2.13),

z(t) � K(t) � Ψ−1(K1(t)
)

holds for t ∈ [t0,t1). (2.14)

Differentiate the function K1 and use its monotonicity (observe Definition 2.1) and
(2.14) to obtain

K′
1(t) =

n

∑
i=1

fi(αi(t))q
(

ψ−1(z(αi(t))
))

α ′
i (t)

+
m

∑
j=1

g j(β j(t))q
(

ψ−1(z(β j(t))
))

β ′
j(t)

� q
(

ψ−1
(

Ψ−1(K1(t)
))){ n

∑
i=1

fi(αi(t))α ′
i (t)+

m

∑
j=1

g j(β j(t))β ′
j(t)
}

.

(2.15)

From (2.15) and (2.5), we get

(W ◦K1)′(t) =
K′

1(t)

q
(

ψ−1
(

Ψ−1
(
K1(t)

)))
�

n

∑
i=1

fi(αi(t))α ′
i (t)+

m

∑
j=1

g j(β j(t))β ′
j(t).

(2.16)

Integrate (2.16) from t0 to t ∈ [t0,t1] and change the variables to get

W
(
K1(t)

)
= W

(
Ψ(M)

)
+A(t), (2.17)

where the function A is defined by (2.7). Since W−1 is increasing and since, due to

(2.9) and (2.14), u(t) � ψ−1(z(t)) � ψ−1
(

Ψ−1
(
K1(t)

))
, (2.17) implies the required

inequality (2.3). �

COROLLARY 2.4. Let k = 0 and φ(t) ≡ 0 . Suppose (A3 )–(A7 ) hold. Then for
t0 � t � t2 , the inequality

u(t) � ψ−1
(

Ψ−1
(

W−1
(
A(t)

)))

holds, where

t2 = sup

{
τ ∈ [t0,T ) : A(t) ∈ Dom

(
W−1), W−1(A(t)

) ∈ Dom
(
Ψ−1)

and Ψ−1
(
W−1(A(t)

)) ∈ Dom
(
ψ−1) for t ∈ [t0,τ]

}
.

Proof. This claim follows from Theorem 2.3 by choosing an arbitrary ε > 0, let-
ting k = φ(t) = ε , and taking the limit as ε → 0. �

Note that the inequalities (2.1), (2.2) could have another type of solution as fol-
lows, which is simpler than (2.3) but the used integral function is more complicated.
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THEOREM 2.5. Suppose (A1 )–(A7 ) hold. Then for t0 � t � t3 , the inequality

u(t) � ψ−1
(

Ψ−1
1

(
Ψ1(M)+A(t)

))
(2.18)

holds, where Ψ−1
1 is the inverse function of

Ψ1(r) =
∫ r

r3

ds[
ψ−1(s)

]p
q
(
ψ−1(s)

) , 0 < r3 < k, (2.19)

the functions q and A and the constant M are defined by (2.6), (2.7), and (2.8), respec-
tively, and

t3 = sup

{
τ ∈ [t0,T ) : Ψ1(M)+A(t) ∈ Dom

(
Ψ−1

1

)
and

Ψ−1
1

(
Ψ1(M)+A(t)

)
∈ Dom

(
ψ−1) for t ∈ [t0,τ]

}
.

Proof. Following the proof of Theorem 2.3, we obtain the inequalities (2.10) and
(2.11). From (2.11) and Definition 2.1, we conclude

K′(t) �
[
ψ−1(K(t)

)]p
q
(

ψ−1(K(t)
)){ n

∑
i=1

fi(αi(t))α ′
i (t)

+
m

∑
j=1

g j(β j(t))β ′
j(t)
}

.

(2.20)

From (2.19) and (2.20), we have that

(Ψ1 ◦K)′(t) =
K′(t)[

ψ−1
(
K(t)

)]p
q
(

ψ−1
(
K(t)

))
�

n

∑
i=1

fi
(
αi(t)

)
α ′

i (t)+
m

∑
j=1

g j
(
β j(t)

)
β ′

j(t).

(2.21)

Integrate inequality (2.21) from t0 to t ∈ [t0,t3] and change the variables to get

Ψ1

(
K(t)

)
� Ψ1(M)+

n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)ds+

m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)ds = Ψ1(M)+A(t). (2.22)

By (2.9), (2.10), and (2.22), we obtain the required inequality (2.18). �
In the case when p = 0, both solutions of inequalities (2.1), (2.2) given in Theorem

2.3 and Theorem 2.5 coincide.

COROLLARY 2.6. Suppose (A1 )–(A6 ) hold and assume
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(A ′
7 ) u ∈ C([J−h,T ),R+) satisfies the inequalities

ψ
(
u(t)

)
� k+

n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)ωi

(
u(s)

)
ds

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds for t ∈ [t0,T ),

u(t) � φ(t) for t ∈ [J−h,t0].

Then for t0 � t � t4 , the inequality

u(t) � ψ−1
(

W−1
(
W (M)+A(t)

))

holds, where W−1 is the inverse function of

W (r) =
∫ r

r4

ds

q
(
ψ−1(s)

) , 0 < r4 < k,

the functions q and A and the constant M are defined by (2.6), (2.7), and (2.8), respec-
tively, and

t4 = sup

{
τ ∈ [t0,T ) : W (M)+A(t) ∈ Dom

(
W−1) and

W−1
(
W (M)+A(t)

)
∈ Dom

(
ψ−1) for t ∈ [t0,τ]

}
.

In the case when the left part of the considered inequality is linear, i.e., ψ(x) = x ,
we obtain the following particular case of Theorem 2.3.

COROLLARY 2.7. Suppose (A1 )–(A5 ) hold and assume

(A ′′
7 ) u ∈ C([J−h,T ),R+) satisfies the inequalities

u(t) � k+
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)ωi

(
u(s)

)
ds

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds for t ∈ [t0,T ),

u(t) � φ(t) for t ∈ [J−h,t0].

Then for t0 � t � t5 , the inequality

u(t) � W−1

(
W (M)+A(t)

)
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holds, where W−1 is the inverse function of

W (r) =
∫ r

r5

ds
q(s)

, r5 > 0, (2.23)

the functions q and A and the constant M are defined by (2.6), (2.7), and (2.8), respec-
tively, and

t5 = sup

{
τ ∈ [t0,T ) : W (M)+A(t) ∈ Dom

(
W−1) for t ∈ [t0,τ]

}
.

2.2. Monotone additive term

In this subsection, we solve an inequality in which the constant k from Subsection
2.1 is replaced by a monotonic function. For this purpose, we introduce the following
set of functions.

DEFINITION 2.8. The function ψ ∈ C1(R+,R+) is said to be from Λ if

(i) ψ is an increasing function;

(ii) tψ(x) � ψ
(
tx
)

for 0 � t � 1.

REMARK 2.9. Note that the functions ψ(x) = x and ψ(x) = xn , where n > 1, are
from Λ .

DEFINITION 2.10. The function ω ∈ Ω1 is said to be from Ω2 if

ω(tx) � tω(x) for 0 � t � 1.

THEOREM 2.11. Let the following conditions be fulfilled:

(B1 ) φ ∈ C([J−h, t0], [0, k̃]) , where k̃ = k(t0) .

(B2 ) k ∈ C([t0,T ), [1,∞)) is nondecreasing.

(B3 ) αi,β j ∈ F for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(B4 ) fi,g j ∈ C([J,T ),R+) for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(B5 ) ωi, ω̃ j ∈ Ω2 for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(B6 ) ψ ∈ Λ .

(B7 ) u ∈ C([J−h,T ),R+) satisfies for some p � 0 the inequalities

ψ
(
u(t)

)
� k(t)+

n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)up(s)ωi

(
u(s)

)
ds (2.24)

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)up(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds, t ∈ [t0,T ),

u(t) � φ(t), t ∈ [J−h,t0]. (2.25)
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Then for t0 � t � t6 , the inequality

u(t) � k(t)ψ−1
(

Ψ−1
(

W−1
(

W
(

Ψ(1)
)

+A1(t)
)))

(2.26)

holds, where the functions Ψ and W are defined by (2.4) and (2.5), respectively, and

A1(t) =
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)

(
k(s)

)p
ds+

m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)

(
k(s)

)p
ds, (2.27)

t6 = sup

{
τ ∈ [t0,T ) : W

(
Ψ(1)

)
+A1(t) ∈ Dom

(
W−1),

W−1
(
W
(

Ψ(1)
)

+A1(t)
)
∈ Dom

(
Ψ−1) and

Ψ−1
(
W−1

(
W
(
Ψ(1)

)
+A1(t)

))
∈ Dom

(
ψ−1) for t ∈ [t0,τ]

}
.

Proof. From (2.24), (2.25), (B2 ), (B6 ), and 0 � 1
k(t) � 1, we obtain

ψ
(

u(t)
k(t)

)
� 1+

n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)up(s)ωi

(
u(s)
k(s)

)
ds (2.28)

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)up(s)ω̃ j

(
maxξ∈[s−h,s] u(ξ )

k(s)

)
ds, t ∈ [t0,T ),

u(t)
k(t0)

� φ(t)
k(t0)

� 1, t ∈ [J−h,t0]. (2.29)

Let s ∈ [β j(t0),β j(T )) , where 1 � j � m is arbitrary. From the monotonicity of the
function k in [t0,T ) , we obtain the inequality

maxξ∈[s−h,s] u(ξ )
k(s)

=
u(ξ1)
k(s)

� u(ξ1)
k(ξ1)

� max
ξ∈[s−h,s]

u(ξ )
k(ξ )

,

where ξ1 ∈ [s−h,s] . Define a function v ∈ C([J−h,T),R+) by

v(t) =

⎧⎪⎪⎨
⎪⎪⎩

u(t)
k(t)

for t ∈ [t0,T )

u(t)
k(t0)

for t ∈ [J−h,t0].

Then inequalities (2.28) and (2.29) can be rewritten as

ψ
(
v(t)
)

� 1+
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)kp(s)vp(s)ωi

(
v(s)

)
ds (2.30)

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)kp(s)vp(s)ω̃ j

(
max

ξ∈[s−h,s]
v(ξ )

)
ds, t ∈ [t0,T ),

v(t) � 1, t ∈ [J−h,t0]. (2.31)
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Theorem 2.3, applied to the inequalities (2.30) and (2.31), implies the validity of in-
equality (2.26). �

In the case when Theorem 2.5 is applied instead of Theorem 2.3 in the last part of
the proof of Theorem 2.11, we obtain the following result.

THEOREM 2.12. Suppose (B1 )–(B7 ) hold. Then for t0 � t � t7 , the inequality

u(t) � k(t)ψ−1
(

Ψ−1
1

(
Ψ1(1)+A1(t)

))
holds, where Ψ1 and A1 are defined by (2.19) and (2.27), respectively, and

t7 = sup

{
τ ∈ [t0,T ) : Ψ1(1)+A1(t) ∈ Dom

(
Ψ−1

1

)
and

Ψ−1
1

(
Ψ1(1)+A(t)

)
∈ Dom

(
ψ−1) for t ∈ [t0,τ]

}
.

In the case when p = 0 and the left part of the considered inequality is linear, i.e.,
ψ(x) = x , the results of Theorem 2.11 and Theorem 2.12 coincide, and we obtain the
following result.

COROLLARY 2.13. Suppose (B1 )–(B5 ) hold and assume

(B ′
7 ) u ∈ C([J−h,T ),R+) satisfies the inequalities

u(t) � k(t)+
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)ωi

(
u(s)

)
ds

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds, t ∈ [t0,T ),

u(t) � φ(t), t ∈ [J−h,t0].

Then for t0 � t � t8 , the inequality

u(t) � k(t)W−1

(
W (1)+A(t)

)

holds, where the functions W and A are defined by (2.23) and (2.7), respectively, and

t8 = sup

{
τ ∈ [t0,T ) : W (1)+A(t) ∈ Dom

(
W−1) for t ∈ [t0,τ]

}
.
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2.3. Arbitrary additive term

In this subsection, we solve a nonlinear inequality in which the constant k of
Subsection 2.1 is replaced by an arbitrary function. In this case, we define the following
set of functions.

DEFINITION 2.14. The function ω ∈ Ω2 is said to be from Ω3 if

ω(x)+ ω(y) � ω(x+ y).

REMARK 2.15. Note that the functions ω(x) =
√

x and ω(x) = x are from Ω3 .

THEOREM 2.16. Let the following conditions be fulfilled:

(C2 ) k ∈ C([J−h,T),R+) .

(C3 ) αi,β j ∈ F for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(C4 ) fi,g j ∈ C([J,T ),R+) for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(C5 ) ωi, ω̃ j ∈ Ω3 for i = 1,2, . . . ,n, j = 1,2, . . . ,m.

(C6 ) μ ∈ C([t0,T ), [1,∞)) is nondecreasing.

(C7 ) u ∈ C([J−h,T ),R+) satisfies the inequalities

u(t) � k(t)+ μ(t)

{
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)ωi

(
u(s)

)
ds (2.32)

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds

}
, t ∈ [t0,T ),

u(t) � k(t), t ∈ [J−h,t0]. (2.33)

Then for t0 � t � t9 , the inequality

u(t) � k(t)+M (t)e(t)W−1
(
W (1)+A2(t)

)
(2.34)

holds, where the function W is defined by (2.23),

e(t) = 1+
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)ωi

(
k(s)

)
ds (2.35)

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)ω̃ j

(
max

ξ∈[s−h,s]
k(ξ )

)
ds, t ∈ [t0,T ),
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A2(t) =
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)M (s)ds+

m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)M (s)ds,

M (t) =
{

μ(t) for t ∈ [t0,T ),
μ(t0) for t ∈ [J−h,t0],

t9 = sup
{

τ ∈ [t0,T ) : W (1)+A2(t) ∈ Dom
(
W−1) for t ∈ [t0,τ]

}
.

Proof. Define a function z : [J−h,T ) → R+ by

z(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)ωi

(
u(s)

)
ds

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds, t ∈ [t0,T ),

0, t ∈ [J−h, t0].

From (2.32) and the definition of the function z , we obtain for s ∈ [β j(t0),β j(T )) and
1 � j � m

u(t) � k(t)+M (t)z(t) for t ∈ [J−h,T ]. (2.36)

Since the function M is nondecreasing on [J−h,T) , we obtain

max
ξ∈[s−h,s]

u(ξ ) � max
ξ∈[s−h,s]

k(ξ )+M (s) max
ξ∈[s−h,s]

z(ξ ). (2.37)

From (2.36), (2.37), (C3 ), and (C5 ), we get for t ∈ [t0,T )
∫ αi(t)

αi(t0)
fi(s)ωi

(
u(s)

)
ds �

∫ αi(t)

αi(t0)
fi(s)ωi

(
k(s)+M (s)z(s)

)
ds (2.38)

�
∫ αi(t)

αi(t0)
fi(s)ωi

(
k(s)

)
ds+

∫ αi(t)

αi(t0)
fi(s)M (s)ωi

(
z(s)
)
ds

and

∫ β j(t)

β j(t0)
g j(s)ω̃ j

(
max

ξ∈[s−h,s]
u(ξ )

)
ds

�
∫ β j(t)

β j(t0)
g j(s)ω̃ j

(
max

ξ∈[s−h,s]
k(ξ )

)
ds+

∫ β j(t)

β j(t0)
g j(s)M (s)ω̃ j

(
max

ξ∈[s−h,s]
z(ξ )

)
ds.

(2.39)

From the definition of the function z and (2.36), (2.38), and (2.39), it follows that

z(t) � e(t)+
n

∑
i=1

∫ αi(t)

αi(t0)
fi(s)M (s)ωi

(
z(s)
)
ds (2.40)

+
m

∑
j=1

∫ β j(t)

β j(t0)
g j(s)M (s)ω̃ j

(
max

ξ∈[s−h,s]
z(ξ )

)
ds, t ∈ [t0,T ),

z(t) � 0, t ∈ [J−h,t0], (2.41)



NONLINEAR INTEGRAL INEQUALITIES 823

where the function e is defined by (2.35). Note that e : [t0,T )→ [1,∞) is nondecreasing
and e(t0) = 1. Corollary 2.13 applied to inequalities (2.40) and (2.41) implies the
required inequality (2.34). �

3. Applications

In this section, we consider the differential equation with “maxima”

pxp−1x′ = F
(
t,x(t), max

s∈[σ(t),τ(t)]
x(s)

)
for t ∈ [t0,T ), (3.1)

with the initial condition

x(t) = ϕ(t) for t ∈ [τ(t0)−h,t0], (3.2)

where ϕ : [τ(t0)−h, t0] → R , F : [t0,T )×R×R→ R , and p is a natural number.

THEOREM 3.1. (Upper bound) Let the following conditions be fulfilled:

(H1 ) ϕ ∈ C([τ(t0)−h,t0],R) .

(H2 ) τ,σ ∈ F and there exists a constant h with 0 < τ(t)−σ(t) � h for t � t0 .

(H3 ) F ∈ C([t0,T )×R×R,R) satisfies

∣∣F(t,u,v)
∣∣� Q(t)

∣∣u∣∣q +R(t)
∣∣v∣∣q for u,v ∈ R and t � t0,

where Q,R ∈ C([t0,T ),R+) and q ∈ (0, p) .

(H4 ) x : [τ(t0)−h,T) → R is a solution of the initial value problem (3.1), (3.2).

Then x satisfies the inequality

∣∣x(t)∣∣� p−q

√
M

p−q
p +

p−q
p

∫ t

t0

[
Q(s)+R(s)

]
ds for t ∈ [t0,T ), (3.3)

where M = sups∈[τ(t0)−h,t0]

(
ϕ(s)

)p
.

Proof. The function x satisfies the integral problem

(
x(t)
)p =

(
ϕ(t0)

)p +
∫ t

t0
F
(
s,x(s), max

ξ∈[σ(s),τ(s)]
x(ξ )

)
ds for t ∈ [t0,T ),

x(t) = ϕ(t) for t ∈ [τ(t0)−h,t0].
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Then for the norm of the solution x , we obtain∣∣x(t)∣∣p �
∣∣ϕ(t0)

∣∣p +
∫ t

t0

∣∣∣F(s,x(s), max
ξ∈[σ(s),τ(s)]

x(ξ )
)∣∣∣ds

�
∣∣ϕ(t0)

∣∣p +
∫ t

t0

(
Q(s)

∣∣x(s)∣∣q +R(s)
∣∣∣ max

ξ∈[σ(s),τ(s)]
x(ξ )

∣∣∣q)ds

�
∣∣ϕ(t0)

∣∣p +
∫ t

t0
Q(s)

∣∣x(s)∣∣qds

+
∫ t

t0
R(s)

(
max

ξ∈[σ(s),τ(s)]

∣∣x(ξ )
∣∣)q

ds for t ∈ [t0,T ), (3.4)∣∣x(t)∣∣ =
∣∣ϕ(t)

∣∣ for t ∈ [τ(t0)−h,t0]. (3.5)

Change the variable s = τ−1(η) in the second integral of (3.4), use the inequality
maxξ∈[σ(s),τ(s)] |x(ξ )| � maxξ∈[τ(s)−h,τ(s)] |x(ξ )| for s ∈ [t0,T ) that follows from (H2 ),
and obtain ∣∣x(t)∣∣p �

∣∣ϕ(t0)
∣∣p +

∫ t

t0
Q(s)

∣∣x(s)∣∣qds

+
∫ τ(t)

τ(t0)
R(τ−1(η))(τ−1)′(η)

(
max

ξ∈[η−h,η]

∣∣x(ξ )
∣∣)q

dη .

(3.6)

Note that the conditions of Corollary 2.6 are satisfied for

u(t) = |x(t)|, n = 1, α1(t) = t, m = 1, β1 = τ,

k = |ϕ(t0)|p, f1 = Q, g1 = (R◦ τ−1)(τ−1)′ on [τ(t0),T ),

ψ(x) = xp, ψ−1(x) = p
√

x, Dom(ψ−1) = R+,

ω1(x) = ω̃1(x) = xq, W (r) =
∫ r

0
s−

q
p ds =

p
p−q

r
p−q
p ,

W−1(r) = p−q

√( p−q
p

r
)p

, Dom(W−1) = R+.

According to Corollary 2.6, from (3.6) and (3.5), we obtain (3.3). �

COROLLARY 3.2. Let ϕ(t) ≡ 0 . Suppose (H2 )–(H4 ) hold. Then the solution x
of the initial value problem (3.1), (3.2) satisfies the inequality

∣∣x(t)∣∣� p−q

√
p−q

p

∫ t

t0

[
Q(s)+R(s)

]
ds for t ∈ [t0,T ).

REMARK 3.3. Note that in the case of p = q = 1 in (H3 ), we use the functions
ψ(x) = ψ−1(x) = x and W (r) = lnr , W−1(r) = er , apply Corollary 2.6, and obtain

|x(t)| � e
lnM+

∫ t
t0

[
Q(s)+R(s)

]
ds

= Me
∫ t
t0

[
Q(s)+R(s)

]
ds

for t ∈ [t0,T ),

which gives us the known result about uniqueness of the solution of a first-order differ-
ential equation with Lipschitz-continuous right-hand side.
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