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THE INVERSE THEOREM OF APPROXIMATION
THEORY IN SMIRNOV-ORLICZ CLASSES

SADULLA Z. JAFAROV

(Communicated by I. Peri¢)

Abstract. Let I be a Dini- smooth curve in the complex plane C. In this study we prove inverse
theorem of approximation theory by polynomials in Smirnov-Orlicz classes Ey (G).

1. Introduction and main results

Let T be a rectifiable Jordan curve in the complex plane C. This curve separates
the plane into two domains G :=intI", G~ :=extI". Without loss of generality we may
assume 0 € G. Let D be the unit disc, T := dD, D~ :=extT. We denote by ¢ the
conformal mapping of G~ onto D~ normalized by ¢ (e0) = o and ZILI?O ¢ (z)/z>0.

Let y(w) be the inverse to ¢ (z).
Let & be a continuous function on [0, 27x]. Its modulus of continuity is defined by

o (t,h) :==sup{|h(t;) —h(t2)|: 11,1, €]0,27], |ty —12] <t}, t=0.
DEFINITION 1. The curve I' is called Dini-smooth if it has a parametrization
T:do(s), 0<s< 2
such that @] (s) is Dini-continuous, i.e.

/”w(r,qb(;)dt@
0

t

and @ (s) # 0 [25, p. 48].
Note that, when I' is Dini-smooth curve then the following inequalities hold

a<lyml<e W=, )
3<[9' ()| <eq, zEG, '
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where the constants ¢y, ¢ and c3, ¢4 are independent of w and z respectively [29].
A convex and continuous function M : [0,00) — [0, o) for which M (0) =0, M (x)
>0 for x > 0 and
M M

lim ﬂ =0, lim ﬂ =

x—0 X X—eo X
is called a Young function. The complementary Young function N of M is defined by

N(y) :=max(xy—M(x)),  y=0.

x>0

We denote by Ly(I'") the linear space of Lebesgue measurable functions f: " — C
satisfying the condition

[Mlalf@N)dz <o
r

for some o > 0. Equipped with the norm

I£llyry = supq [ 17(@)(@)]1d2]: ¢ € Lu(D), ple.N) <1 ¢,
T

where

p(eN) = [N () az],
r

the space Ly (I') becomes a Banach space [27, pp. 52-68]. The norm ||-[| ( is called
Orlicz norm and the Banach space Ly (T') is called Orlicz space. It is known [27, p.
50], that every function in Ly (T") is integrable on T, i.e

Ly(T) C Ly(T).
An N function M satisfies the Ay— condition if

. M(2x)
Jim sup M0)

The Orlicz space Ly (') is reflexive if and only if the N-function M and its com-
plementary function N both satisfy the A;-condition [27, p. 113]. Furter information
about Orlicz spaces may be found in [18] and [27].

Let M~!:[0,00) — [0,0) be the inverse function of the N function M. The lower
and upper indices oy, By [20]

< oo

logh logh
oy := lim ey (x)7 By = lim logh(x)
x—0 logx x—e  logx
of the function
M~
h:(0,00) — (0,00], h(x) := lim sup (t) ) x>0

1—0o0 M_l _)

X
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first considered by W. Matuszewska and W. Orlicz [22], are called the Boyd indices of
the Orlicz space Ly (I'). It is known that

0<oy<Pu<l

and
on +Bu =1, oy + By =1.

The Boyd indices oy, By are called nontrivial if 0 < oy and By < 1. The Orlicz
space Ly (T') is reflexive if and only if 0 < oy < By < 1, i.e. if the Boyd indices are
nontrivial.

DEFINITION 2. ([19]) The analytic function f in domain G will be called a
function of the class Ey(G) if

[ @Dz <
I

where T, is the image of the circumference |w| = rwith regard to a conformal mapping
of the disc |w| <1 onto G.

DEFINITION 3. ([19]) We shall call the Ey(G) class the Smirnov-Orlicz class.

If M(u) = |ul’ (1< p <o), the Ey(G)—class coincides with the well-known
E,(G) Smirnov class.

It is evident that any analytic function f(z) belonging to the Ey(G) class will
also belong to the E;(G) class, that is,

[1f@az <<=,
1—‘r

uniformly in , 0 < r < 1. Since Ey(G) C E|(G), every function in the class Ey(G)
has the nontangential boundary values almost everywhere (a.e.) on I' and the boundary
value function belongs to Ly (') [19]. Hence the Ey(G) norm can be defined as:

HfHEM(G) = Hf”LM(F)'

DEFINITION 4. Let g € Ly/(T). The function

’g (ei(eJrh)) —8 (em) HLM(T)

orym(6,g) ;= sup
|nl<6

is called modulus of continuity of g.

We denote f, (w) = f") [y (w)]. We define the modulus of continuity for (") (z) €

Ly () as
Jr (ei(6+h)> —Jr (em) HLM(T) '

of r (8,f1)) == wra (8.f,) = sup

n|<é
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Throughout this work by ¢y, c3, ..., we denote the constants which are different in
different places.

The direct and inverse problems of approximation theory in different spaces have
been investigated by several authors (see, for example, [1]-[4], [6]-[17], [19], [23],
[24], [26], [28]) All of these have been done under different restrictive conditions on
'=9dG.

When T' = dG is a Dini-smooth curve, in this work we prove inverse theorem
of approximation theory in Smirnov-Orlicz classes Eys (G). This theorem extended to
Smirnov-Orlicz classes Ey (G) of the proved theorem for the Smirnov class E,(G),
p > 1, in the work given by [1]. Similar results in weighted Smirnov and Smirnov-
Orlicz classes were obtained in [8]-[15].

The following inverse theorem holds:

THEOREM 1. (Main) Let T be a Dini-smooth curve, Ly (T') be a reflexive Orlicz
space on T. For each natural number n there exists a polynomial P, (z) of degree n,

such that
Cs

1 (s) _Pn(Q)HLM(r) < e (12)

where 0 < oo < 1 and r is a nonegative integer. Then f € Ey (G) and for the modulus
of continuity a)l’i M (5 U )> the following inequalities hold:

O a1 <67f<’)> <cd% O<a<l, (1.3)

w;ﬁM(&fW) <erd(1+d]), a=1 (1.4)

B

2. Auxiliary results

Let f € Ly (T'). The functions f and f~ defined by

1L fs)
Fr@ =55 =0 €0
r
and | £s)
_ s _
f (Z>:_277:ir —S_st, z€G

are analytic in G and G~ respectively, and f~ (eo) = 0. The Cauchy singular integral
of f ata point zo € T is defined by

e f(s)
Sr(f)(Zo)-—glf(l)% / mds

M\I(zp.€)

if limit exists.
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According to the Privalov’s theorem [3, p. 431], if one of the functions f (z) and
/7 (z) has a nontangential limit on T, a.e., then Sr-(f)(z) exists a.e. on T, and also
the other one of the functions f*(z) and f~(z) has a nontangential limit on T a.e.
Conversely, if Sr(f)(z) exists a.e. on T', then the functions f(z) and f~ (z) have
nontangential limits a.e. on I'. In both cases, the formulas

FR=SrNEO+3/@. T @=SrNE- 3O

holda.e. on T'".
The followings lemmas will play an important role in the proof the main results.

LEMMA 1. ([12]) Ly(T) be a reflexive Orlicz space and let M be an N function,
then for each trigonometric polynomial T, of degree n the inequality

17,

nHLM(T) < csnl|Tallp, ) (2.1)

holds with a constant ¢ independent of n.

LEMMA 2. Let T be a Dini-smooth curve and let Ly (T) be a reflexive Orlicz
space on T, then for a polynomial P, (z) of degree n the inequality

122 @), ) < conllPa )] (2.2)

Ly (T)

holds with a constant cg independent of n.

Proof. For the trigonometric polynomial 7, this inequality was obtained in the
study [12]. For z = €% we obtain

P,(2)=T,(0) and P.(z)ie"® =T!(0).

For polynomial P, (z) with respect to Faber polynomials the following expansion
holds:

Zak¢k Eak ! /dC Eak , z€extl. (2.3)

271'1 J —z;2
Then for z € extI” we have
’a:mem“ww-—/—iz ). (24
k=1 C— 2

Consider the function P, o(7) =P, [y ()] € Ly (T).
The Cauchy type integral
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represents analytic functions P;r o and P, in D and D™, respectively. For w € T we
have '

PIO(W) = 2 apwk.
k=0

By (1.1)
1Bn [w (O]l 1y () < 10 1B (D)) - (2.5)
Using (2.5) and the boundedness of the singular integral we obtain
187 (o) ), 7y < IPall Ly - (2.6)

Applying the inequalities (2.5), (2.6) and Minkowski inequality we get

St (Buo) (9) — 3Pao (0

Lu(T) ‘ Ly (T)
1
< 187 (Pao) 09) gy + 5 1P 09) 7y < 11 [Py
(2.7)
Then by (2.1), (2.7) for the nontangential limits on 7 we obtain

!/
H (P,j,o (w)) <cinl[Ba(@) L, -
Ly(T)
By (1.1) we get
2 kay [¢ (Z)]k—l o' (z) <cCi4 2 kagw*1 <cisnl|By (Z>HLM(1") - (28)
~ Ly () k=1 Ly (T)

Using (2.8), Minkowski’s inequality and the boundedness of the singular operator St
in weighted Orlicz spaces [21] for the non-tangential limits on I" in (2.4) of the integral
we have

3(E a0 @) +se| £ ralo @00
k=1 k=1 Ly (T)
(2.9)
<cie < crn||Pa (@)l -
Ly ()

S kac[p ()9 (2)
k=1

From (2.4), (2.8) and (2.9) we have inequality (2.2).

3. Proof of the main results

Proof of Theorem 1. The following inequality holds:

10 ()l ) < 1P (S) = (Sl ry + 1S ()l ) < €18 (3.1)
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where constant ¢ independent of n.

The sequence {P,(g)} converges in Ly (T'). Therefore, the sequence {P,(g)}
converges with respect to a measure. Since, condition (3.1) is satisfied, according to
[13], [19] sequence {P,(c)} converges uniformly within the domain to the function
f(z) € Ey (G) and nontangential boundary values of the function f(z)( from inside
I') coincides with f(¢) a.e.on T.

We define the following form polynomials sequence:

To(z) = Pi(2), Ti(z) = Py (2) — Py-1(2) (k=1,2,...).
The series |J Ti(z) converges uniformly to the function f (z) into G. Then the series
k=0

G Tk(r) converges uniformly to the function f() (z) into G. We define the following
k=0

form sequence:
n
Ka(s) = X 17 (s).
k=0

Now show that the sequence K, (g) convergesin Ly (I'). By (1.2) we obtain

C19

1T gy < 17(9) = (@) yiry +|FO) ~Pus @, o < 5 B2)
According to (3.2) and (2.2) we get
(r) €20
HT" (Q)HLM(F) S 2ka” (3:3)
By (3.3) we have
m , c
K@) =Ky < X 1@, <5 mmm. (4

k=n+1

Then according to inequality (3.4) sequence K, (s) is a Cauchy sequence. Since,
Ly (T') is a Banach space the sequence {K,(g)} convergesin Ly (T'). Therefore, the
sequence K,(g) converges with respect to a measure.

Since, [|Ku(6)|l1,,(r) < 22 the sequence K, (g) converges with respect to a mea-

sure to f(") (¢) nontangential boundary values of the function f() (z). There exists
subsequence Ky, (s) of the sequence K (s), such that

Ky (s) — £ (s)

a.eon I'. Then we obtain a.e. on I
1Ko ()~ Kul6)| = | £7) (6) = Kalg)-

According to Fatou’s Lemma and (3.4) we have

1@ -ko)|| <5 (3.5)
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N —

where K, (g) polynomial of degree 2". We fix 0, satisfying the condition 0 < § <

1
and choose m € N, such that 21 < = < 2" If we pass on to the complex plane (w),
then from the inequality (3.5) we obtain

5 0e) <0 s [ )] e ], 00

Ly (T)

We define the sequence of the polynomials in the following form:

01(z) = Ki(2), Or(z) = Ki(2) — Ki—1(2),

where the polynomial Qy(z) of degree 2.
From (3.5) we have

€23
1Ok @)1y, () = 1Kk (2) = Kiet (21 r) € > K22 (3.7)

Putting w = ™ we define Oy [y (¢™)] = vi(x). Then we obtain
[[Vie e+ 1) = V() |, (1)

= sup{ [p [Vi(x+h) = vi(x)| g(x)dx: g € Lw (T) , [ N (lg (x)|) dx < 1}

i (3.8)
= sup{ J; | [ vi(x-+ m)de| g()dx: g € Ly(T), Jy N (g (0))dx < 1}
<h Hvl/c(x)HLM(T)
Since, the curve I" is Dini-smooth, by (1.1) we have
Ve 7y < €24 | Q@) - (3.9)
By (3.8) and (3.9) we obtain
[0 [ (1we)] - 01w ) HLM(T) < eash |04, ) (3.10)
According to (2.2), (3.9) we get
ih
[ [y (we)] = Kcs w0
m—1
<cxh Y, HQZ(Z)HLM( <ch Z 24|10 (2) @,y (3.11)
k=1

Using (3.6), (3.11) and (3.7) for || < & we have

0f p (8.17) < S + 208 2 2K 4 305, (3.12)
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From the inequality (3.12) the required inequalities (1.3) and (1.4) are obtained.

Then the proof of Theorem 1 is completed. [
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