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ON ω –QUASICONVEX FUNCTIONS

JACEK TABOR, JÓZEF TABOR AND MAREK ŻOŁDAK

(Communicated by S. Varošanec)

Abstract. In the paper we introduce convexity-like notions based on modification of quasicon-
vexity.

DEFINITION. Let I be a real interval and ω � 0 a given number. We say that a function
f : I → R is ω -quasiconvex, ω -quasiconcave, respectively, if

f (tx+(1− t)y) � max( f (x), f (y))−ω min(t,1− t)|x− y|,
f (tx+(1− t)y) � max( f (x), f (y))−ω max(t,1− t)|x− y|,

for x,y ∈ I,t ∈ (0,1).

If f : I → R is simultaneously ω -quasiconvex and ω -quasiconcave then we say that f is
ω -quasiaffine.

We characterize these notions, in particular we show that ω -quasiconcave functions co-
incide with Lipschitz functions with constant ω . We conclude the paper with the following
separation type result.

THEOREM. Let f : I → R be ω -quasiconvex function and g : I →R ω -quasiconcave such that
f � g .

Then there exists an ω -quasiaffine function h : I → R such that f � h � g .

1. Introduction

The notion of quasiconvex function is a very far generalization of the convex func-
tion. Let I be a real interval. A function f : I → R is called quasiconvex [1, 4] if

f (tx+(1− t)y) � max( f (x), f (y)) for x,y ∈ I, t ∈ (0,1). (1)

This notion occured to be very useful in mathematical economics (for more information
and further references see [1]). As quasiconvexity is a rather weak assumption, there
appeared a natural need to strenghten it. In such a way, in an analogy to strict con-
vexity, there appeared the notion of strict quasiconvexity [1]. A function f is strictly
quasiconvex if

f (tx+(1− t)y) < max( f (x), f (y)) for x,y ∈ I,x �= y, t ∈ (0,1).
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Following the way from convexity to strong convexity [9] (see also [8, 7]), which relies
on subtracting from the right hand side of (1) a nonnegative expression, we introduce
the notion of ω -quasiconvexity. Let ω � 0 be a given number. A function f is ω -
quasiconvex if

f (tx+(1− t)y) � max( f (x), f (y))−ω min(t,1− t)|x− y| for x,y ∈ I,x �= y,t ∈ (0,1).

Observe that for ω > 0 every ω -quasiconvex function is strictly quasiconvex, while for
ω = 0 we obtain classical quasiconvexity. The above condition for t = 1

2 was studied in
[10]. It follows from Theorem 2.2 [10] that there are no ω -quasiconvex functions with
ω > 0 on convex domain of dimension greater then one (obviously in multidimensional
case ” | |” is replaced by ”‖ ‖” ).

A similar approach was earlier applied in [5], where the notion of strong quasi-
convexity was introduced. A function f is strongly quasiconvex if for a certain ω > 0

f (tx+(1− t)y) � max( f (x), f (y))−ωt(1− t)|x− y|2 for x,y ∈ I,t ∈ [0,1].

In our opinion ω -quasiconvexity has a stronger resemblance to the convexity theory
than strong quasiconvexity. The reasons behind this assertion are the following:

• ω -quasiconvexity is a local notion, that is a locally ω -quasiconvex function is
ω -quasiconvex;

• ω -quasi-convexity/concavity/affinity have a very natural geometric description.
In particular, ω -quasiconvex functions are functions which first decrease and
then increase with speed not smaller then ω ; ω -quasiconcave functions coin-
cide with Lipschitz functions with constant ω ; and ω -quasiaffine functions are
functions of the form x → ω |x− x0|+ y0 ;

• We can naturally define ω -quasiconcave and ω -quasiaffine functions in such
a way that we can separate ω -quasiconvex functions from ω -quasiconcave by
ω -quasiaffine ones.

2. Characterization of ω -quasiconvexity

Now we are ready to proceed with formal definition. In the whole paper we assume
that I is a nondegenerate1 subinterval of R and ω � 0 is a given number.

DEFINITION 2.1. We say that a function f : I → R is

(i) ω -quasiconvex if

f (tx+(1− t)y) � max( f (x), f (y))−ω min(t,1− t)|x− y|

for all x,y ∈ I , t ∈ (0,1) ;

1an interval is degenerate if it is either empty or a singleton.
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(ii) ω -quasiconcave if

f (tx+(1− t)y) � max( f (x), f (y))−ω max(t,1− t)|x− y|
for all x,y ∈ I , t ∈ (0,1) ;

(iii) ω -quasiaffine if it is simultaneously ω -quasiconvex and ω -quasiconcave.

One can directly verify that the maximum of two ω -quasiconvex functions is ω -
quasiconvex and that minimum of two ω -quasiconcave functions is ω -quasiconcave.

We introduce the following denotations. Let f : I → R be any function. If

f (x)− f (y)
x− y

� −ω for x,y ∈ I, x �= y

then we will write that f ∈↘ (ω) and if

f (x)− f (y)
x− y

� ω for x,y ∈ I, x �= y

then we write that f ∈↗ (ω) . In case if ω = 0 instead of f ∈↘ (0) , f ∈↗ (0) we
will write f ∈↗ , f ∈↘ respectively.

We begin our considerations with the case of monotonic functions.

PROPOSITION 2.1. (i) A nondecreasing function f : I → R is ω -quasiconvex if
and only if f ∈↘ (ω) .
(ii) A nondecreasing function f : I → R is ω -quasiconvex if and only if f ∈↗ (ω) .

Proof. One can easily notice that (ii) follows from (i) by applying in the domain
the substitution x →−x .

We prove (i). Assume that f : I → R is nonincreasing and ω -quasiconvex. We
prove that f ∈↘ (ω) . Since f is monotonic it is sufficient to show that f |int I ∈↘
(ω) . Consider an arbitrary z ∈ int I . We can find a neighbourhood Iz of z such that
2Iz− Iz ⊂ int I . Obviously Iz ⊂ 2Iz− Iz . Let us consider arbitrary x,y ∈ Iz , x < y . Then
we have

f (y) = f

(
x+(2y− x)

2

)
� f (x)−ω(y− x).

It proves that f |Iz ∈↘ (ω) . Since it holds for each z ∈ int I and respective neighbour-
hood Iz of z , we obtain that f |int I ∈↘ (ω) .

Assume now that f ∈↘ (ω) . We prove that f is ω -quasiconvex. Consider arbi-
trary x,y ∈ I , t ∈ (0,1) . Without loss of generality we may assume that x < y . Then
we have

f (x)− f (tx+(1− t)y)
x− (tx+(1− t)y)

� −ω .

Whence we obtain

f (tx+(1− t)y) � f (x)−ω(1− t)(y− x)
� max( f (x), f (y))−ωt(1− t)|x− y|. �
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Given (possibly empty) sets I1, I2 ⊂ R , we write that I1 < I2 if x1 < x2 for all
x1 ∈ I1 , x2 ∈ I2 .

THEOREM 2.1. A function f : I → R is ω -quasiconvex if and only if there exist
(possibly degenerate) intervals I1, I2 , I1 < I2 such that I = I1∪ I2 and

f |I1 ∈↘ (ω) and f |I2 ∈↗ (ω). (2)

Proof. Assume that f is ω -quasiconvex. Then it is quasiconvex. By [1, Theorem
2.5.1] there exist intervals I1 < I2 such that I1 ∪ I2 = I and f |I1 ∈↘ and f |I2 ∈↗ .
Proposition 2.1 proves (2).

Assume now that I1, I2 are subintervals of I such that I1 < I2 , I = I1∪ I2 and (2)
is valid. Consider arbitrary x,y ∈ I , x < y , t ∈ (0,1) . If x,y ∈ I1 or x,y ∈ I2 then by
Proposition 2.1 applied to functions f |I1 , f |I1 respectively we obtain that

f (tx+(1− t)y) � max( f (x), f (y))−ω min(t,1− t)|x− y|.
So assume now that x ∈ I1,y ∈ I2 . Two cases may occur.

If tx+(1− t)y∈ I1 then

f (tx+(1− t)y)− f (x)
(1− t)(y− x)

� −ω .

Whence we obtain

f (tx+(1− t)y) � f (x)−ω(1− t)(y− x)
� max( f (x), f (y))−ω min(t,1− t)|x− y|.

In the case when tx+(1− t)y∈ I2 we obtain that

f (y)− f (tx+(1− t)y)
t(y− x)

� ω ,

and consequently

f (tx+(1− t)y) � f (y)−ωt(y− x)
� max( f (x), f (y))−ω min(t,1− t)|x− y|. �

Theorem 2.1 can be written in a more explicit way if one of the intervals I1, I2 is
degenerate. If I2 is a degenerate then (2) takes the form

f |I\{sup I} ∈↘ (ω),

while when I1 is degenerate it takes the form

f |I\{inf I} ∈↗ (ω).

Taking in mind the above remarks Theorem 2.1 can be written as follows.
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COROLLARY 2.1. A function f : I → R is ω -quasiconvex if and only if exactly
one the following conditions hold:

(i) f |I\{sup I} ∈↘ (ω) or f |I\{inf I} ∈↗ (ω);

(ii) there exists an x0 ∈ int I such that

f |I∩(−∞,x0] ∈↘ (ω) and f |I∩(x0,∞) ∈↗ (ω)

or
f |I∩(−∞,x0) ∈↘ (ω) and f |I∩[x0 ,∞) ∈↗ (ω).

We are going to show that ω -quasiconvexity has a local character. We begin with
some new notations. Let I0 be a subinterval of I . We denote

I−0 := {x ∈ I : {x} < I0}, I+0 := {x ∈ I : I0 < {x}}.

Then evidently
I−0 < I0 < I+0

and
I = I−0 ∪ I0∪ I+0 .

LEMMA 2.1. Let f : I → R be locally ω -quasiconvex and let I0 be a nonempty
open subinterval of I . If f |I0 ∈↘ (ω) then f |I−0 ∪I0

∈↘ (ω) and if f |I0 ∈↗ (ω) then

f |I0∪I+0
∈↗ (ω) .

Proof. Assume that f , I , I0 have the meaning specified in the Lemma. Let
f |I0 ∈↘ (ω) . We fix arbitrarily x0 ∈ I0 and consider an arbitrary x ∈ I , x < x0 . Then,
by the compactness argument, we can find a sequence in I

x = xn < ... < x1 < x0

and their open neighbourhoods Ixi , i = 1, ...,n ; Ix0 := I0 , such that f |Ixi is ω -quasiconvex
for i = 1, ...,n and

Ixi ∩ Ixi−1 �= /0 for i = 1, ...,n.

We claim that f |Ix1 ∈↘ (ω) . Suppose for the proof by contradiction that it is not
the case. Then in virtue of Corollary 2.1 there exists an open interval Ĩ ⊂ Ix1 such
that Ĩ ∩ Ix0 �= /0 and f |Ĩ ∈↗ (ω) . But then f |Ĩ∩Ix0

∈↗ (ω) , which contradicts to our

assumption that f |Ix0 ∈↘ (ω) . Hence f |Ix1 ∈↘ (ω) and consequently f |Ix1∪Ix0
∈↘

(ω) . Continuing this procedure we obtain that f |Ixn∪...∪Ix0
∈↘ (ω) . Since xn = x < x0

was arbitrary it proves that f |I−0 ∪I0
↘ (ω) .

The second part of the assertion easily follows from the first applied for the map-
ping x → f (−x) . �

THEOREM 2.2. If f : I → R is locally ω -quasiconvex then it is ω -quasiconvex.
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Proof. Assume that f : I → R is locally ω -quasiconvex. For each x ∈ int I we
choose an open neighbourhood Ix ⊂ int I such that f |Ix is ω -quasiconvex. Three cases
may occur.

10 . f |Ix ∈↘ (ω) for all x ∈ ∫ I .
Then by Lemma 2.1 we obtain that f |I\{sup I} ∈↘ (ω) . By Corollary 2.1 it implies

that f is ω -quasiconvex.
20 . f |Ix ∈↗ (ω) for all x ∈ ∫ I .
By Lemma 2.1 we conclude that f |I\{inf I} ∈↗ (ω) and consequently by Corol-

lary 2.1 that f is ω -quasiconvex.
30 Neither 10 nor 20 is valid. Let

I↘ := {x ∈ int I |∃δx > 0 : f |Ix∩(x−δx,x+δx) ∈↘ (ω)},
I↗ := {x ∈ I |∃δx > 0 : f |Ix∩(x−δx,x+δx) ∈↗ (ω)}.

One can easily observe that I↘ and I↗ are open and disjoint subsets of int I . Since
int I is connected, we obtain that int I �= I↘ ∪ I↗ , and therefore there exists an x ∈
(int I)\ (I↘∪ I↗) . Thus

f |Ix /∈↘ (ω) and f |Ix /∈↗ (ω).

Since f |Ix is ω -quasiconvex, by Corollary 2.1 there exists an x0 ∈ Ix such that

f |Ix∩(−∞,x0] ∈↘ (ω) and f |Ix∩(x0,∞) ∈↗ (ω)

or
f |Ix∩(−∞,x0) ∈↘ (ω) and f |Ix∩[x0,∞) ∈↗ (ω).

Then by Lemma 2.1 we obtain that

f |I∩(−∞,x0] ∈↘ (ω) and f |I∩(x0,∞) ∈↗ (ω)

or
f |I∩(−∞,x0) ∈↘ (ω) and f |I∩[x0 ,∞) ∈↗ (ω).

Now by Corollary 2.1 we get that f is ω -quasiconvex. �

3. Characterizations of ω -quasiconcavity and ω -quasiaffinity

In this section we characterize ω -quasiconcave and ω -quasiaffine functions.

THEOREM 3.1. Let I be open, and let f : I → R be ω -quasiconcave. Then f is
Lipschitz with constant ω .

Proof. Consider arbitrary x,y ∈ I , x < y . Let n0 ∈ N be such that

x− 1
n0

∈ I, y+
1
n0

∈ I,
1
n0

< y− x.
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We put

xn := x− 1
n
, yn := y+

1
n

for n ∈ N, n � n0.

Then xn,yn ∈ I for n ∈ N,n � n0 . We have for n ∈ N , n � n0

y =
yn− y
yn− x

x+
y− x
yn− x

yn,

and hence

f (y) � max( f (x), f (yn))−ω max

(
1
n

y− x+ 1
n

,
y− x

y− x+ 1
n

)∣∣∣∣x− y− 1
n

∣∣∣∣
� f (x)−ω

∣∣∣∣x− y− 1
n

∣∣∣∣ .
Whence we get

f (y)− f (x) � −ω
∣∣∣∣x− y− 1

n

∣∣∣∣ for n ∈ N, n � n0. (3)

Similarly we have for n ∈ N , n � n0

f (x) = f

(
y− x
y− xn

xn +
x− xn

y− xn
y

)

� max( f (xn), f (y))−ω max

(
y− x

y− x+ 1
n

,
1
n

y− x+ 1
n

)∣∣∣∣x− y− 1
n

∣∣∣∣� f (y)−ω
∣∣∣∣x− y− 1

n

∣∣∣∣ ,
and hence

f (x)− f (y) � −ω
∣∣∣∣x− y− 1

n

∣∣∣∣ for n ∈ N, n � n0. (4)

Letting in (3), (4) n → ∞ we obtain that

| f (x)− f (y)| � ω |x− y|. �

Now we characterize ω -quasiconcave functions.

THEOREM 3.2. A function f : I → R is ω -quasiconcave if and only if f |int I is
Lipschitz with the constant ω and

f (inf I) � lim
x→inf I

f (x) if inf I ∈ I, (5)

f (sup I) � lim
x→sup I

f (x) if sup I ∈ I. (6)
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Proof. Assume that f : I → R is ω -quasiconcave. By Theorem 3.1 f |int I is
Lipschitz with the constant ω . Suppose that inf I ∈ I . Then there exists a finite limit
limx→inf I f (x) . We have

f

(
inf I + y

2

)
� max( f (inf I), f (y))− ω

2
| inf I− y|

� f (inf I)− ω
2
| inf I− y| for y ∈ I.

Letting in this inequality y → inf I we get

lim
x→inf I

f (x) � f (inf I).

Similarly one can show condition (6).
Assume now that f |int I is Lipschitz with the constant ω and that conditions (5)

and (6) are satisfied. We define function f̃ : I → R in the following way

f̃ (x) =

⎧⎪⎪⎨
⎪⎪⎩

f (x) for x ∈ int I,

lim
x→inf I

f (x) if inf I ∈ I,

lim
x→sup I

f (x) if sup I ∈ I.

(7)

Then obviously f̃ is Lipschitz with the constant ω . Therefore we have for x,y ∈
I , t,t ′ ∈ [0,1]

−ω |t− t ′| |x− y|� f̃ (tx+(1− t)y)− f̃(t ′x+(1− t ′)y).

Substituting sequentially t ′ = 0 and t ′ = 1 in the above inequality we obtain for x,y∈ I ,
t ∈ [0,1]

f̃ (tx+(1− t)y) � f̃ (y)−ωt|x− y|� f̃ (y)−ω max(t,1− t)|x− y|,
f̃ (tx+(1− t)y) � f̃ (x)−ω(1− t)|x− y|� f̃ (x)−ω max(t,1− t)|x− y|.

Hence

f̃ (tx+(1−t)y)� max( f̃ (x), f̃ (y))−ω max(t,1−t)|x−y| for x,y∈ I, t ∈ [0,1]. (8)

Whence and from (7) we obtain

f (tx+(1− t)y) � max( f (x), f (y))−ω max(t,1− t)|x− y| for x,y ∈ int I, t ∈ (0,1).

To prove that f is ω -quasiconcave we have to consider yet the following cases:

(a) x = inf I ∈ I , y ∈ int I ,

(b) x ∈ int I , y = sup I ∈ I ,

(c) x = inf I ∈ I , y = sup I ∈ I .
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In case (a) by (8), (7) and (5) we get for t ∈ (0,1)

f (t inf I +(1− t)y) � max( f̃ (inf I), f (y))−ω max(t,1− t)| inf I− y|
� max( f (inf I), f (y))−ω max(t,1− t)| inf I− y|.

The case (b) is analogous.
In case (c) by (7), (8), (5) and (6) we obtain for t ∈ (0,1)

f (t inf I +(1− t)sup I) � max( f̃ (inf I), f̃ (sup I))−ω max(t,1− t)| inf I− sup I|
� max( f (inf I), f (sup I))−ω max(t,1− t)| inf I− sup I|. �

The next results gives a characterization of ω -quasiaffine functions.

THEOREM 3.3. A function f : I → R is ω -quasiaffine if and only if it has one of
the following forms:

(i) f (x) = −ωx+ y0 for x ∈ I \ {sup I} , where y0 ∈ R

and
f (sup I) � −ω sup I + y0 if sup I ∈ I;

(ii) f (x) = ωx+ y0 for x ∈ I \ {inf I} , where y0 ∈ R

and
f (inf I) � ω inf I + y0 if inf I ∈ I;

(iii) f (x) = ω |x− x0|+ y0 for x ∈ I , where x0 ∈ int I , y0 ∈ R .

Proof. It follows from Theorems 2.1 and 3.2 that the functions of the above forms
are ω -quasiaffine.

Assume now that f : I → R is ω -quasiaffine. Then by Corollary 2.1, either
f |I\{supI} ∈↘ (ω) or f |I\{in f I} ∈↗ (ω) or there exists an x0 ∈

∫
I such that f |I∩(−∞,x0]

∈↘ (ω) and f |I∩(x0,∞) ∈↗ (ω) or f |I∩(−∞,x0) ∈↘ (ω) and f |I∩[x0 ,∞) ∈↗ (ω) .
In the first case by Theorem 3.2 we obtain that

f (x)− f (y)
x− y

= −ω for x,y ∈ int I, x �= y,

which implies that there exists a y0 ∈ R such that

f (x) = −ωx+ y0 for x ∈ int I.

Since f |I\{sup I} is nonincreasing we obtain from Theorem 3.2 that if inf I ∈ I then

f (inf I) = lim
x→inf I

f (x) = −ω inf I + y0.

Furthermore if sup I ∈ I then by Theorem 3.2 we have

f (sup I) � lim
x→sup I

f (x) = −ωx+ y0.
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By the similar reasoning in the second case we obtain that f has the form (ii).
Consider now the third case. By the same argumentation as in the first and second

case we obtain that there exist y1,y2 ∈ R such that

f (x) = −ωx+ y1 for x ∈ I∩ (−∞,x0),
f (x) = ωx+ y2 for x ∈ I∩ (x0,∞).

Since f is continuous on int I , the above conditions implies that f is of the form
(iii). �

As the direct corollary from Theorem 3.2 we obtain the following result.

COROLLARY 3.1. If a function f : I → R is locally ω -quasiconcave then it is
ω -quasiconcave.

As the direct consequence of Theorem 2.2 and Corollary 3.1 we get analogous
result for ω -quasiaffinity.

COROLLARY 3.2. If a function f : I → R is locally ω -quasiaffine then it is ω -
quasiaffine.

4. Separation

Now we prove ”sandwich” type theorem. Such the result is characteristic for con-
vex functions.

THEOREM 4.1. Let f : I → R be ω -quasiconvex, g : I → R ω -quasiconcave,
and let

g(x) � f (x) for x ∈ I. (9)

Then there exists an ω -quasiaffine function h : I → R which separates f and g, i.e.

f (x) � h(x) � g(x) for x ∈ I. (10)

Proof. Consider first the case when f is of the form (iii) from Corollary 2.1. It
means that there exists an x0 ∈ int I such that f |I∩(−∞,x0) ∈↘ (ω) , f |I∩(x0,∞) ∈↗ (ω) .
Then there exist the limits:

lim
x→x−0

f (x), lim
x→x+

0

f (x).

In view of (9) we have

g(x0) � lim
x→x−0

f (x) and g(x0) � lim
x→x+

0

f (x).

We put
y0 := min( lim

x→x−0
f (x), f (x0), lim

x→x+
0

f (x)).
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Then
g(x0) � y0 (11)

and
f (x) � y0 for x ∈ I. (12)

We define
h(x) := ω |x− x0|+ y0 for x ∈ I.

By Theorem 3.3 the function h is ω -quasiaffine. By (11) and (12) we have

g(x0) � y0 = h(x0) � f (x0). (13)

Since f |I∩(x0 ,∞) ∈↗ (ω) and g is Lipschitz with the constant ω , in virtue of (13) we
obtain that

g(x) � h(x) � f (x) for x ∈ I∩ [x0,∞).

Similarly, since f |I∩(−∞,x0) ∈↘ (ω) and g is Lipschitz with the constant ω , in view of
(13) we get

g(x) � h(x) � f (x) for x ∈ I∩ (−∞,x0].

We have proved (10).
Now we assume that f is of the form (ii) from Corollary 2.1, i.e. that f |I\{inf I} ∈↗

(ω) . We are going to prove that

sup
x∈int I

[g(x)−ωx] � inf
x∈int I

[ f (x)−ωx]. (14)

Let a := inf I . Since f |I\{a} ∈↗ (ω) , the function I \ {a}  x �→ f (x)−ωx is
nondecreasing. It follows from Theorem 3.2 that the function g|int I is Lipschitz with
the constant ω . Therefore we have for x,y ∈ int I , x < y

ω(x− y) � g(x)−g(y)

and consequently that
g(x)−ωx � g(y)−ωy,

which means that the function int I  x �→ g(x)−ωx is nonincreasing. Hence there
exist the limits

lim
x→a+

[ f (x)−ωx], lim
x→a+

[g(x)−ωx]

and
lim

x→a+
[ f (x)−ωx] = inf

x∈int I
[ f (x)−ωx], (15)

lim
x→a+

[g(x)−ωx] = sup
x∈int I

[ f (x)−ωx]. (16)

Obviously we have
g(x)−ωx � f (x)−ωx for x ∈ I.

From this inequality, (15) and (16) we obtain (14).
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We fix an arbitrary y0 ∈ R such that

sup
x∈int I

[g(x)−ωx] � y0 � inf
x∈int I

[ f (x)−ωx]. (17)

The existence of such y0 is guaranteed by (14). We put

g(x) =
{

ωx+ y0 for x ∈ I \ {a}
g(a) for x = a if a ∈ I∩R.

(18)

Assume that a ∈ I∩R . Making use of (17), (16) and next Theorem 3.2 we obtain that

y0 � lim
x→a+

[g(x)−ωx] = lim
x→a+

g(x)−ωa � g(a)−ωa.

Whence we have
h(a) = g(a) � ωa+ y0. (19)

In view of Theorem 3.3 this together with (18) mean that h is ω -quasiaffine.
Now we prove that

g(x) � h(x) � f (x) for x ∈ I. (20)

For x ∈ int I it follows directly from (17) and (18).
Assume that a ∈ I∩R . Since

g(x) � f (x) for x ∈ I,

in view of (19) we have
g(a) = h(a) � f (a).

It remains to consider the case if sup I ∈ I∩R . We have to prove that then

g(sup I) � ω sup I + y0 � f (sup I). (21)

It follows from Theorem 3.2 that

g(sup I) � lim
x→sup I

g(x). (22)

Since the function int I  x �→ g(x)−ωx is nonincreasing, we obtain from (17)

lim
x→sup I

[g(x)−ωx] � sup
x∈int I

[g(x)−ωx] � y0,

i.e.
lim

x→sup I
g(x) � ω sup I + y0.

This inequality and (22) yields the first inequality in (21). Now we prove the second
one. Since the function I \{a}  x �→ f (x)−ωx is nondecreasing we obtain from (17)

y0 � inf
x∈int I

[ f (x)−ωx] � lim
x→sup I

[ f (x)−ωx]

= lim
x→sup I

f (x)−ω sup I � f (sup I)−ω sup I.



ON ω -QUASICONVEX FUNCTIONS 857

Hence
ω sup I + y0 � f (sup I).

We have proved that the function h defined by (18) is ω -affine and that it separates f
and g .

In the case when f is of the form (i) from Theorem 2.1 we can get the assertion
by a similar reasoning. We can also reduce this case to the previous one by applying
the substitution −I  x �→ −x . �

RE F ER EN C ES

[1] A. CAMBINI, L. MARTEIN, Generalized Convexity and Optimalization. Theory and Applications,
Lecture Notes in Economic and Mathematical Systems, Springer-Verlag, Berlin, Heidelberg, 2009.
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