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A NOTE ON THE ESTIMATE OF THE BETA DISTRIBUTION

DAWEI LU, JINGHAI FENG AND XINGZHI LIANG

(Communicated by N. Elezović)

Abstract. The lower and the upper estimates with explicit coefficients for the beta distribution
with a > 1,b > 1 are given. Furthermore, using these results, the lower and the upper esti-
mates of the beta distribution of the second kind and F-distribution, and also partial estimates of
Student’s t-distribution are obtained.

1. Introduction

It is well known that the beta distribution provides the premier family of continu-
ous distributions on bounded support. Recently, attempts have been made to construct
new distributions based on the beta distribution. Variety of distributions generated from
the beta distribution have extended the original beta distribution. There are many beta-
generated families of distributions discussed in the literature. For example, in the paper
of Eugene et al. [2], the beta-normal distribution was introduced and its properties were
studied. In Nadarajah and Kotz [9], the beta-exponential distribution has been studied
wherein the authors gave the detailed presentation. Zografos and Balakrishnan [11] dis-
cussed in another point of view that they concerned the entropy characterizations and
related properties. On the basis of previous work about the beta-Weibull distribution,
Giovana et al. [3] considered the beta modified Weibull distribution with five parame-
ters. The beta-Burr XII distribution has been studied by Patrı́cia et al. [10], they derived
moment generating function, the estimation of parameters and so on. Gittins and Maher
[4] studied the incomplete beta function and gave its applications. Kenneth and Lauren
[8] concentrated on folded beta random variable.

The beta distribution has received great attention for a long time. However, we
find that there are very few estimates with explicit coefficients for the beta distribution
in the literature. This is the motivation of our work in this paper.

Returning to our problem, in this paper, the beta ratio is defined as

J(s) =
∫ 1
s h(t,a1,b1)dt
h(s,a1,b1)

, (1.1)

where

h(s,a1,b1) =
Γ(a1 +b1)
Γ(a1)Γ(b1)

sa1−1(1− s)b1−1
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with a1 > 1, b1 > 1 and 0 < s < 1, Γ is the usual gamma function. It represents
the beta probability beyond a certain point divided by the beta density at that point.
(1.1) plays an important role in practice. In insurance, (1.1) is the reciprocal of hazard
function where h(s,a1,b1) is a probability density function and

∫ 1
s h(t,a1,b1)dt is a

survivor function. We concern the asymptotic of J(s) as s → 1. In another way, by
integral transformation, we have

J(s) = H(x) =
∫ x
0 h(t,a,b)dt
h(x,a,b)

, (1.2)

where x = 1− s , a = b1 and b = a1 . From (1.2), it is easy to see that the asymptotic of
J(s) as s→ 1 is equivalent to the asymptotic of H(x) as x→ 0. So we only concentrate
on H(x) throughout this paper. Using variable substitution, we know that the beta
distribution of the second kind, F-distribution and Student’s t-distribution have a close
connection with the beta distribution. We can apply our results for the beta distribution
to these three distributions.

The rest of this paper is arranged as follows. In Section 2, for giving the main
result of this paper, some useful propositions are provided. In Section 3, some lower
and upper estimates with explicit coefficients for the beta ratio are obtained. In Section
4, in view of the relations among the beta distribution of the second kind, F-distribution
and Student’s t-distribution, some estimates of these three distributions are given.

2. Useful propositions for the beta ratio

Throughout the paper, the set of natural numbers is denoted by N , the set of posi-
tive integers is denoted by Z

+ .
From (1.2), the beta ratio is denoted again by

H(x) =
∫ x
0 ta−1(1− t)b−1dt
xa−1(1− x)b−1 . (2.1)

For the sake of brevity, let

f (x) = xa−1(1− x)b−1, g(x) =
∫ x

0
ta−1(1− t)b−1dt,

0

∏
i=1

de f
= 1. (2.2)

If b ∈ Z
+ , it is easy to see

f (x) = xa−1(1− x)b−1 =
b−1

∑
i=0

(−1)i ∏
i
j=1(b− j)

i!
xa+i−1,

g(x) =
∫ x

0
ta−1(1− t)b−1dt =

b−1

∑
i=0

(−1)i ∏i
j=1(b− j)
i!(a+ i)

xa+i.
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Plugging f (x) and g(x) into (2.1) yields

H(x) =

b−1
∑
i=0

(−1)i ∏i
j=1(b− j)
i!(a+i) xa+i

b−1
∑
i=0

(−1)i ∏i
j=1(b− j)

i! xa+i−1

. (2.3)

If b �∈ Z
+ , by power series expansion and Riemann integral, it is also easy to obtain

f (x) =
∞

∑
i=0

fi(x), g(x) =
∞

∑
i=0

gi(x), (2.4)

where

fi(x) = (−1)i ∏
i
j=1(b− j)

i!
xa+i−1, gi(x) = (−1)i ∏i

j=1(b− j)
i!(a+ i)

xa+i. (2.5)

From the expression above, it is easy to see that the signs of gi(x) and fi(x) alter-
nate when i is small. However, gi(x) and fi(x) are always negative or positive for a
large i . Details are given in the following proposition.

PROPOSITION 2.1. Let gi(x) and fi(x) be defined as above, b �∈ Z
+ and i ∈ N .

For 2k1 +1 < b < 2k1 +2 , k1 ∈ N , if i � 2k1 and an even number i , we have

gi(x) > 0 and fi(x) > 0. (2.6)

If i � 2k1 and i is an odd number, we have

gi(x) < 0 and fi(x) < 0. (2.7)

If i � 2k1 +1 , we have
gi(x) < 0 and fi(x) < 0. (2.8)

Similarly, for 2k2 < b < 2k2 +1 , k2 ∈ Z
+ , if i � 2k2−1 and i is an even number, we

have
gi(x) > 0 and fi(x) > 0. (2.9)

If i � 2k2−1 and i is an odd number, we have

gi(x) < 0 and fi(x) < 0. (2.10)

If i � 2k2 , we have
gi(x) > 0 and fi(x) > 0. (2.11)

Proof. The results are obvious and we omit the details of the proof. �
In fact, we can get more detailed results for gi(x) and fi(x) . Next we give some

properties of gi(x) .
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PROPOSITION 2.2. For 2k1 +1 < b < 2k1 +2 , k1 ∈ N . If x < 1
b−1 , we have∣∣∣∣gi+1(x)

gi(x)

∣∣∣∣< 1, i = 0,1, . . . ,2k1. (2.12)

If x < 2k1+1
b , we have

g2k1(x)+
∞

∑
i=2k1+1

gi(x) > 0. (2.13)

For 2k2 < b < 2k2 +1 , k2 ∈ Z
+ . If x < 1

b−1 , we have∣∣∣∣gi+1(x)
gi(x)

∣∣∣∣< 1, i = 0,1, . . . ,2k2−1. (2.14)

If x < 2k2
b , we have

g2k2−1(x)+
∞

∑
i=2k2

gi(x) < 0. (2.15)

Proof. First, let 2k1 + 1 < b < 2k1 + 2, k1 ∈ N . If i � 2k1 , we have i < b− 1.
Using the expression for gi(x) in (2.5), we have∣∣∣∣gi+1(x)

gi(x)

∣∣∣∣= x · (b− i−1)(a+ i)
(i+1)(a+ i+1)

. (2.16)

Plugging x < 1
b−1 into (2.16), we have∣∣∣∣gi+1(x)

gi(x)

∣∣∣∣< b− i−1
b−1

1
i+1

a+ i
a+ i+1

. (2.17)

By assumption, it is easy to verify that

b− i−1
b−1

� 1,
1

i+1
� 1 and

a+ i
a+ i+1

< 1.

Then we obtain (2.12).
Next, using (2.5) again, we have

g2k1(x)+
∞

∑
i=2k1+1

gi(x)

=
∏2k1

j=1(b− j)

(2k1)!(a+2k1)
xa+2k1 − ∏2k1+1

j=1 (b− j)

(2k1 +1)!(a+2k1+1)
xa+2k1+1

×
(

1+
∞

∑
s=2k1+2

( s

∏
j=2k1+2

j−b
j

)a+2k1 +1
a+ s

xs−2k1−1

)
. (2.18)
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Note that, for j � 2k1 +2 and s � 2k1 +2, we have

j−b
j

< 1 and
a+2k1 +1

a+ s
< 1.

For the last sum in (2.18), we have

1+
∞

∑
s=2k1+2

( s

∏
j=2k1+2

j−b
j

)a+2k1 +1
a+ s

xs−2k1−1 <
∞

∑
m=0

xm. (2.19)

Plugging (2.19) into (2.18), we have

g2k1(x)+
∞

∑
i=2k1+1

gi(x)

>
∏2k1

j=1(b− j)

(2k1)!(a+2k1)
xa+2k1 − ∏2k1+1

j=1 (b− j)

(2k1 +1)!(a+2k1+1)
xa+2k1+1×

∞

∑
m=0

xm

=
∏2k1

j=1(b− j)

(2k1)!(a+2k1)
xa+2k1

(
1− a+2k1

a+2k1 +1
(b−2k1−1)x

(2k1 +1)(1− x)

)
, (2.20)

where we use the fact ∑∞
m=0 xm = 1/(1− x) for 0 < x < 1. Since a > 1, we have

0 < a+2k1
a+2k1+1 < 1. This implies

1− a+2k1

a+2k1 +1
(b−2k1−1)x

(2k1 +1)(1− x)
> 1− (b−2k1−1)x

(2k1 +1)(1− x)
> 0, (2.21)

where we use the assumption x < (2k1 +1)/b in the last inequality in (2.21).
Hence, combining (2.20) and (2.21), we obtain (2.13).
In the case 2k2 < b < 2k2 +1, k2 ∈ Z

+ , using the same argument, we also obtain
(2.14) and (2.15). �

Combing Proposition 2.1 and Proposition 2.2, the following results follow easily.
We denote In(x) = ∑n

i=0 gi(x) , n ∈ N .

PROPOSITION 2.3. For 1 < b < 2 and any n ∈ N , we have

g(x) < In(x). (2.22)

For 2k1 +1 < b < 2k1 +2 , k1 ∈ Z
+ , if x < 1

b−1 , we have

I1(x) < I3(x) < · · ·< I2k1−1(x) < g(x) < · · · < I2k1+1(x) < I2k1(x) < · · ·< I2(x) < I0(x).
(2.23)

For 2k2 < b < 2k2 +1 , k2 ∈ Z
+ , if x < 1

b−1 , we have

I1(x) < I3(x) < · · ·< I2k2−1(x) < I2k2(x) < · · · < g(x) < I2k2−2(x) < · · ·< I2(x) < I0(x).
(2.24)
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Proof. In the case 1 < b < 2, from (2.8), we immediately obtain gi(x) < 0 as
i � 1. Hence, we obtain (2.22).

In the case 2k1 + 1 < b < 2k1 + 2, k1 ∈ Z
+ , we can easily get 1

b−1 < 2k1+1
b by

assumption. Hence, (2.12) and (2.13) follow if x < 1
b−1 . From (2.13), we have

I2k1−1(x) < g(x). (2.25)

From (2.8), we have
g(x) < · · · < I2k1+1(x) < I2k1(x). (2.26)

From (2.12), (2.6) and (2.7), we have

I1(x) < I3(x) < · · · < I2k1−1(x) and I2k1(x) < · · · < I2(x) < I0(x). (2.27)

Combining the results above, we complete the proof of (2.23).
It is easy to verify (2.24) by the same argument and we omit the proof. �
In addition, using the similar argument, we have the following conclusion. We

denote Rn(x) = ∑n
i=0 fi(x) , n ∈ N .

PROPOSITION 2.4. For 1 < b < 2 and any n ∈ N , we have

f (x) < Rn(x). (2.28)

For 2k1 +1 < b < 2k1 +2 , k1 ∈ Z
+ , if x < 1

b−1 , we have

R1(x)<R3(x)< · · ·<R2k1−1(x)< f (x)< · · ·<R2k1+1(x)<R2k1(x)< · · ·<R2(x)<R0(x).
(2.29)

For 2k2 < b < 2k2 +1 , k2 ∈ Z
+ , if x < 1

b−1 , we have

R1(x)<R3(x)< · · ·<R2k2−1(x)<R2k2(x)< · · ·< f (x)<R2k2−2(x)< · · ·<R2(x)<R0(x).
(2.30)

REMARK. From the proofs, it is easy to see that Propositions 2.1-2.4 are also
valid for 0 < a � 1. However, when giving Theorem 3.1 and 3.2 in Section 3, we only
consider the case a > 1.

3. Asymptotic estimates for the beta ratio

Propositions 2.1-2.4 are the key steps for Theorem 3.1 and Theorem 3.2. In this
section, we give our main results. We denote

Ĩn(x) =
n

∑
i=0

g̃i(x) =
n

∑
i=0

(−1)i ∏i
j=1(b̃− j)
i!(ã+ i)

xã+i,

Rn(x) =
n

∑
i=0

f i(x) =
n

∑
i=0

(−1)i ∏i
j=1(b− j)

i!
xa+i−1,

n ∈ N . The expression for g̃i(x) is the same as for gi(x) after substituting the explicit
coefficients of gi(x) with ã = a−1, b̃ = b+1. The expression for f i(x) is the same as
for fi(x) after substituting the explicit coefficients of fi(x) with a = a, b = b+1.
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THEOREM 3.1. Let s be any positive integer. For 2k1 +1 < b < 2k1 +2 , k1 ∈ N ,
if x < 1

b , we have

− xa−1(1− x)b

b
+

a−1
b

Ĩ2k1+s(x) < g(x) < I2k1+s(x). (3.1)

For 2k2 < b < 2k2 +1 , k2 ∈ Z
+ , if x < 1

b , we have

I2k2+s(x) < g(x) < −xa−1(1− x)b

b
+

a−1
b

Ĩ2k2+s(x). (3.2)

Proof. Note that x < 1
b < 1

b−1 . For 2k1 +1 < b < 2k1 +2, k1 ∈ Z
+ , from (2.23),

we know that I2k1+s(x) is strictly decreasing with respect to s and converges to g(x) as
s → ∞ .

On the other hand, using integration by parts, we get∫ x

0
ta−1(1− t)b−1dt = −xa−1(1− x)b

b
+

a−1
b

∫ x

0
ta−2(1− t)bdt, (3.3)

where
∫ x
0 ta−2(1− t)bdt = ∑∞

i=0 g̃i(x) and the explicit coefficients of g̃i(x) are ã = a−
1, b̃ = b+1. We can prove (2.24) is also correct for 0 < a < 1. 2k1 +2 < b̃ = b+1 <
2k1 + 3 and x < 1

b = 1
b̃−1

, this satisfies the condition of (2.24). Then, by (2.24), we
complete (3.1).

Using the same argument, we also obtain the results under the case 1 < b < 2 and
2k2 < b < 2k2 +1. �

Moreover, we can also give some estimates of the beta ratio H(x) .

THEOREM 3.2. Let s be any positive integer. For 2k1 +1 < b < 2k1 +2 , k1 ∈ N ,
if x < 1

b , we have

− 1− x
b

+
a−1

b

Ĩ2k1+s(x)
R2k1+s(x)

< H(x) <
(1− x)I2k1+s(x)

R2k1+s(x)
. (3.4)

For 2k2 < b < 2k2 +1 , k2 ∈ Z
+ , if x < 1

b , we have

(1− x)I2k2+s(x)
R2k2+s(x)

< H(x) < −1− x
b

+
a−1

b

Ĩ2k2+s(x)
R2k2+s(x)

. (3.5)

Proof. From (2.1) and (3.1), for 2k1 +1 < b < 2k1 +2, k1 ∈ N , x < 1
b , we have

− 1− x
b

+
a−1

b

Ĩ2k1+s(x)
f (x)

< H(x) <
I2k1+s(x)

f (x)
. (3.6)

For the first inequality in (3.6), in view of x < 1
b < 1

b−1 , from (2.28) and (2.29), we
have

− 1− x
b

+
a−1

b

Ĩ2k1+s(x)
R2k1+s(x)

< H(x). (3.7)
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For the second inequality in (3.6), we know that

I2k1+s(x)
f (x)

=
(1− x)I2k1+s(x)

xa−1(1− x)b−1
. (3.8)

From 2k1 + 1 < b < 2k1 + 2, x < 1
b , we have 2k1 + 2 < b < 2k1 + 3, x < 1

b = 1
b−1

.
Using (2.30), we have

H(x) <
(1− x)I2k1+s(x)

R2k1+s(x)
. (3.9)

Combining (3.7) and (3.9), we obtain (3.4).
Using the same argument, we can get the result for the case 2k2 < b < 2k2 + 1,

k2 ∈ Z
+ . �

4. Application in the beta distribution of the second kind, F-distribution and
Student’s t-distribution

In this section, applying Theorem 3.1 and 3.2 into the beta distribution of the
second kind, F-distribution and Student’s t-distribution, some estimates of these three
distributions are obtained. First, we introduce the definitions of the beta distribution of
the second kind as follows.

The probability density function of the beta distribution of the second kind is de-
fined by

fII(y) =
Γ(a+b)
Γ(a)Γ(b)

ya−1

(1+ y)a+b , a > 1,b > 1,y > 0.

Similarly to (1.2), we have

Hsec(x) =
∫ x
0 fII(t)dt
fII(x)

=
gsec(x)
fsec(x)

,

where

gsec(x) =
∫ x

0

ta−1

(1+ t)a+b dt = g

(
x

1+ x

)
,

fsec(x) =
xa−1

(1+ x)a+b =
1

(1+ x)2 f

(
x

1+ x

)
.

Furthermore, in view of the relation between (2.1) and (2.2), we also have

Hsec(x) = (1+ x)2H

(
x

1+ x

)
.

Thus, using Theorem 3.1 and Theorem 3.2, we have

COROLLARY 4.1. Let s be any positive integer. For 2k1 +1 < b < 2k1 +2 , k1 ∈
N , if x < 1

b−1 , we have

− xa−1

b(1+ x)a+b−1 +
a−1

b
Ĩ2k1+s

(
x

1+ x

)
< gsec(x) < I2k1+s

(
x

1+ x

)
.
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For 2k2 < b < 2k2 +1 , k2 ∈ Z
+ , if x < 1

b−1 , we have

I2k2+s

(
x

1+ x

)
< gsec(x) < − xa−1

b(1+ x)a+b−1 +
a−1

b
Ĩ2k2+s

(
x

1+ x

)
.

Moreover, we can also give some estimates of Hsec(x) .

COROLLARY 4.2. Let s be any positive integer. For 2k1 +1 < b < 2k1 +2 , k1 ∈
N , if x < 1

b−1 , we have

−1+ x
b

+
(a−1)(1+ x)2

b

Ĩ2k1+s( x
1+x )

R2k1+s( x
1+x )

< Hsec(x) <
(1+ x)I2k1+s( x

1+x )

R2k1+s( x
1+x )

.

For 2k2 < b < 2k2 +1 , k2 ∈ Z
+ , if x < 1

b−1 , we have

(1+ x)I2k2+s( x
1+x )

R2k2+s( x
1+x )

< Hsec(x) < −1+ x
b

+
(a−1)(1+ x)2

b

Ĩ2k2+s( x
1+x )

R2k2+s( x
1+x )

.

Secondly, we introduce the definitions of F-distribution and Student’s t-distribution
as follows.

The probability density function of F-distribution and Student’s t-distribution are
defined by

fF(x) =
Γ(m+n

2 )
Γ(m

2 )Γ( n
2 )

m
m
2 n

n
2 x

m
2 −1(n+mx)−

m+n
2 , x > 0

and

ft(x) =
Γ( d+1

2 )√
dπΓ( d

2 )

(
1+

x2

d

)− d+1
2

, −∞ < x < +∞,

where m > 0, n > 0 and d > 0. In this paper, F ratio is defined as

rF(x) =
∫ x
0 fF (t)dt
fF(x)

=
∫ x
0 t

m
2 −1(1+ m

n t)−
m+n

2 dt

x
m
2 −1(1+ m

n x)−
m+n

2
, (4.1)

and we define

Pt(0 < X < x) =
∫ x

0
ft(t)dt.

In addition, before applying Theorem 3.2, we introduce a useful Lemma.

LEMMA 4.1. Let H(x) and rF(x) be the beta ratio and F ratio, respectively.
Then,

H(x) =
∫ x
0 ta−1(1− t)b−1dt

xa−1(1− x)b−1 =
2
∫ α
0 sin2a−1 θ cos2b−1 θdθ
sin2a−2 α cos2b−2 α

, (4.2)

where x = sin2 α .

rF(x) =
∫ x
0 t

m
2 −1(1+ m

n t)−
m+n

2 dt

x
m
2 −1(1+ m

n x)−
m+n

2
=

2n
∫ α1
0 sinm−1 θ cosn−1 θdθ

msinm−2 α1 cosn+2 α1
, (4.3)
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where x = n
m tan2 α1 . Furthermore,

Pt(0 < X < x) =
Γ( d+1

2 )√
dπΓ( d

2 )

∫ x

0

(
1+

t2

d

)− d+1
2

dt =
Γ( d+1

2 )√
πΓ( d

2 )

∫ α2

0
cosd−1 θdθ , (4.4)

where x =
√

d tanα2 .

Proof. For H(x) , using variable substitution t = sin2 θ and the fact (sin2 θ )′ =
2sinθ cosθ , we obtain (4.2).

For rF(x) , let t = n
m tan2 θ , using variable substitution again, we obtain (4.3).

For Pt(0 < X < x) , we can get (4.4) by using t =
√

d tanθ . �
It is easily seen that H(x) and rF(x) have similar expression. Hence, we can apply

Theorem 3.2 to rF (x) .

COROLLARY 4.3. Let rF(x) be F ratio, m > 2 and n > 2 . Then we have

rF(x) =
n
m

(
1+

m
n

x
)2

H

(
mx

n+mx

)
, (4.5)

where the explicit coefficients of H(x) are a = m
2 , b = n

2 .
For 4k1 +2 < n < 4k1 +4 , k1 ∈ N , if x < 2n

m(n−2) , H
(

mx
n+mx

)
satisfies (3.4).

For 4k2 < n < 4k2 +2 , k2 ∈ Z
+ , if x < 2n

m(n−2) , H
(

mx
n+mx

)
satisfies (3.5).

Proof. Using cos4 α1 = 1
(1+tan2 α1)2

and tan2 α1 = mx
n , from Lemma 4.1 we get

rF(x) =
n
m

(
1+

m
n

x
)2 2

∫ α1
0 sinm−1 θ cosn−1 θdθ
sinm−2 α1 cosn−2 α1

. (4.6)

Let m−1 = 2a−1 and n−1 = 2b−1, we get a = m
2 , b = n

2 . Using variable substi-
tution, we obtain

rF(x) =
n
m

(
1+

m
n

x
)2

H

(
mx

n+mx

)
. (4.7)

From 2k1 + 1 < b < 2k1 + 2, we have 4k1 + 2 < n < 4k1 + 4. From mx
n+mx < 2

n ,

we obtain x < 2n
m(n−2) , then we can use inequality (3.4) in Theorem 3.2 to obtain the

estimates.
For the other cases, the proof is similar, so we omit it. �
Next, we give the estimate of Pt(0 < X < x) .

COROLLARY 4.4. Let d > 2 . Then we have

Pt(0 < X < x) =
Γ( d+1

2 )
2
√

πΓ( d
2 )

g

(
x2

x2 +d

)
, (4.8)
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where the explicit coefficients of g(x) are a = 1
2 , b = d

2 .

For 2 < d < 4 , g
(

x2

x2+d

)
satisfies (2.22).

For 4k1 +2 < d < 4k1 +4 , k1 ∈ Z
+ , if x <

√
2d

d−4 , g
(

x2

x2+d

)
satisfies (2.23).

For 4k1 < d < 4k1 +2 , k1 ∈ Z
+ , if x <

√
2d

d−4 , g
(

x2

x2+d

)
satisfies (2.24).

Proof. First, we have

Pt(0 < X < x) =
Γ( d+1

2 )√
πΓ( d

2 )

∫ α2

0
cosd−1 θdθ . (4.9)

Let 0 = 2a−1 and d−1 = 2b−1, we get a = 1
2 , b = d

2 . Using variable substitution,
we obtain

Pt(0 < X < x) =
Γ
(

d+1
2

)
2
√

πΓ
(

d
2

)g( x2

x2 +d

)
, (4.10)

where we use tan2 α2 = x2

d .

From 2k1 +1 < b < 2k1 +2, we have 4k1 +2 < d < 4k1 +4. From x2

x2+d
< 1

b−1 ,

we obtain x <
√

2d
d−4 , then we can use inequality (2.23) in Proposition 2.3 to obtain the

estimate of Pt(0 < X < x) .
For the other two cases, we omit the proofs since they are similar. �
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