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THE CONVEXITY AND THE CONCAVITY

DERIVED FROM NEWTON’S INEQUALITY

XUN-TUAN SU AND WEI-WEI ZHANG

Abstract. By Newton’s inequality, a sequence {ai}n
i=0 of nonnegative real numbers is unimodal

if its generating function ∑n
i=0 aixi has only real zeros. This paper is devoted to show that there

exist two indices s and t with s � t , such that a0,a1, . . . ,as−1,as and at ,at+1, . . . ,an are convex,
while as−1,as, . . . ,at ,at+1 is concave.
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