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Abstract. By Newton’s inequality, a sequence {ai}n
i=0 of nonnegative real numbers is unimodal

if its generating function ∑n
i=0 aixi has only real zeros. This paper is devoted to show that there

exist two indices s and t with s � t , such that a0,a1, . . . ,as−1,as and at ,at+1, . . . ,an are convex,
while as−1,as, . . . ,at ,at+1 is concave.

1. Introduction

Let a0,a1,a2, . . . be a sequence of nonnegative real numbers. It is called unimodal
if a0 � a1 � · · · � am−1 � am � am+1 � · · · for certain m , where the index m is called
mode. The sequence {ai}i�0 is called log-concave if for all i � 1, ai−1ai+1 � a2

i and
called strictly log-concave if for all i � 1, ai−1ai+1 < a2

i ([6]). It is easy to verify that
if a sequence of positive numbers is strictly log-concave, then it is unimodal and has
at most two consecutive modes. A sequence {ai}i�0 of nonnegative real numbers is
called concave(resp. convex) if for i � 1, ai−1 + ai+1 � 2ai (resp. ai−1 + ai+1 � 2ai ).
By the arithmetic-geometric mean inequality, the concavity implies the log-concavity.
Unimodality problems often arise in many branches of mathematics. See articles [2, 3,
7] and references therein.

A well-known result of Newton states the following (see, e.g., [4]):

NEWTON’S INEQUALITY. If all the zeros of a polynomial f (x) = ∑n
i=0 aixi are

real, then the coefficients of the polynomial f (x) satisfy

a2
i � ai−1ai+1

(
1+

1
i

)(
1+

1
n− i

)
, 1 � i � n−1.

It should be mentioned that the coefficients of f (x) need not to be nonnegative.
By Newton’s inequality, a sequence {ai}n

i=0 of nonnegative real numbers is strictly log-
concave and is therefore unimodal with at most two modes if its generating function
∑n

i=0 aixi has only real zeros. That is, the coefficients of a polynomial with only non-
positive zeros form a bell-shaped sequence. This paper is devoted to study the convexity
and the concavity derived from Newton’s inequality, which is a further description of
the previous bell-shaped sequence. Our main result is as follows.
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THEOREM 1. Let a0,a1, . . . ,an be a sequence of nonnegative real numbers. Sup-
pose that its generating function ∑n

i=0 aixi has only real zeros. Then there exist two
indices s and t with s � t , such that a0,a1, . . . ,as−1,as and at ,at+1, . . . ,an are convex,
while as−1,as, . . . ,at ,at+1 is concave.

The proof of Theorem 1 will be given in Section 2, where we see that every mode of
the sequence {ai}n

i=0 lies between s and t . Section 3 gives some remarks.

2. Proof of Theorem 1

Assume first that the sequence {ai}n
i=0 has only one mode m . Clearly, a0 < a1 <

· · · < am−1 < am > am+1 > · · · > an and am−1 + am+1 � 2am . For i �= m , any three
adjacent terms ai−1,ai,ai+1 satisfy either ai−1 +ai+1 � 2ai or ai−1 +ai+1 � 2ai . Now
we will show that the sequence {ai}n

i=0 changes the convexity/concavity at most once
on each monotonicity interval.
The increasing segment: Suppose that ai−2 < ai−1 < ai < ai+1 and ai +ai−2 � 2ai−1 ,
where 2 � i � m−1. Now define g(x) = f (x)(1− x) , i.e.,

g(x) = a0 +(a1−a0)x+(a2−a1)x2 + · · ·+(an−an−1)xn −anx
n+1.

Using Newton’s inequality, we have

(ai−1−ai−2)(ai+1−ai) < (ai −ai−1)2 (1)

since g(x) has only real zeros. For ai−2 < ai−1 < ai < ai+1 and ai +ai−2 � 2ai−1 , we
have by (1)

ai+1−ai

ai−ai−1
<

ai−ai−1

ai−1−ai−2
� 1,

which implies ai−1 + ai+1 < 2ai . Therefore the subsequence as−1,as, . . . ,am,am+1 is
concave, where

s = min{i : ai−1 +ai+1 � 2ai and 1 � i � m}.
On the other hand, for j = s−1, a j−1 +a j+1 � 2a j . Then by (1),

1 � a j+1−a j

a j −a j−1
<

a j −a j−1

a j−1−a j−2
,

which implies a j−2+a j > 2a j−1 . Repeating the previous process, we get ai−1+ai+1 �
2ai for 1 � i � s−1, i.e., a0,a1, . . . ,as−1,as is convex. So there exists an index s such
that a0,a1, . . . ,as−1,as is convex and as−1,as, . . . ,am,am+1 is concave.
The decreasing segment: Suppose that ai−2 > ai−1 > ai > ai+1 and ai−2 +ai � 2ai−1 ,
where m+2 � i � n−1. Define h(x) = f (x)(x−1) . It follows that

h(x) = −a0 +(a0−a1)x+(a1−a2)x2 + · · ·+(an−1−an)xn +anx
n+1

and
(ai−2−ai−1)(ai −ai+1) < (ai−1−ai)2. (2)
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Since ai−2 > ai−1 > ai > ai+1 and ai−2 +ai � 2ai−1 , we have by (2)

1 � ai−2−ai−1

ai−1−ai
<

ai−1−ai

ai−ai+1
,

which implies ai−1 +ai+1 > 2ai . Hence the subsequence at−1,at , . . . ,an−1,an is con-
vex, where

t = min{i : ai−1 +ai+1 � 2ai and m+1 � i � n−1}.
On the other hand, for j = t −1, a j−1 +a j+1 � 2a j . Then by (2),

a j−2−a j−1

a j−1−a j
<

a j−1−a j

a j −a j+1
� 1,

which implies a j−2+a j < 2a j−1 . Repeating the previous process, we get ai−1+ai+1 �
2ai for m � i � t−1, i.e., am−1,am, . . . ,at−1,at is concave. Thus am−1,am, . . . ,at−1,at

is concave and at−1,at , . . . ,an is convex.
In summary, there exist two indices s,t such that a0,a1, . . . ,as,as+1 and at−1,at ,

. . . ,an are convex, while as,as+1, . . . ,am−1,am,am+1, . . . ,at−1,at is concave.
For the case that the sequence {ai}n

i=0 has two modes m and m + 1, we have
am−1+am+1 � 2am and am+am+2 � 2am+1 . Then using Newton’s inequality similarly,
we find two indices s∗ and t∗ such that: a0,a1, . . . ,as∗−1,as∗ and at∗−1,at∗ , . . . ,an are
convex, while as∗−1,as∗ , . . . ,am,am+1, . . . ,at∗−1,at∗ is concave, where

s∗ = min{i : ai−1 +ai+1 � 2ai and 1 � i � m},
t∗ = min{i : ai−1 +ai+1 � 2ai and m+2 � i � n−1}.

3. Concluding remarks

We have shown that the nonnegative sequences whose generating functions have
only real zeros can change their convexity/concavity at most once on each mono-
tonicity interval. For example, the sequences: {1,3,1} is only concave, {1,10,20}
is only convex, and {6,41,89,60} is first concave and then convex. A further ex-
ample is the binomial sequence {(n

i

)}n
i=0 . Its generating function ∑n

i=0

(n
i

)
xi = (1 +

x)n . Then by Theorem 1, the subsequences
(n
0

)
,
(n
1

)
, . . . ,

( n
� n−√

n+2
2 �

)
,
( n
� n−√

n+2
2 �+1

)
and( n

� n+
√

n+2
2 �−1

)
,
( n
� n+

√
n+2

2 �
)
, . . . ,

( n
n−1

)
,
(n
n

)
are convex, while the subsequence

( n
� n−√

n+2
2 �−1

)
,( n

� n−√
n+2

2 �
)
, . . . ,

( n
� n+

√
n+2

2 �
)
,
( n
� n+

√
n+2

2 �+1

)
is concave. Here the “inflection points” about

convexity/concavity (i.e., the indices in Theorem 1) are obtained by noting that

2

(
n
i

)
−

(
n

i−1

)
−

(
n

i+1

)
=

n!
(i+1)!(n− i+1)!

(−4i2 +4ni−n2+n+2)

and the function H(i) = −4i2 +4ni−n2+n+2 has two zeros n−√
n+2

2 and n+
√

n+2
2 .

Now let {an(i)}n
i=1 be a triangular array of nonnegative numbers, n = 1,2, . . . .

Denote by Xn a random variable which is defined as

P(Xn = i) = pn(i) =
an(i)

∑n
j=1 an( j)
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and denote gn(x) = ∑n
i=1 pn(i)xi . Let X̃n = (Xn−E(Xn))/

√
Var(Xn) , where E(Xn) and

Var(Xn) represent the mean and the variance of a random variable Xn respectively. A
well-known result due to Bender [1] states that if gn(x) has only real zeros for all n ,
and

√
Var(Xn) → ∞ as n tends to infinity, then X̃n → N (0,1) . For example, the rows

of the triangular array of the Stirling numbers of the second kind is asymptotically
normal([5]). Note that the standard normal distribution N (0,1) has the probability

density function f (x) = 1√
2π e−

x2
2 . It is easy to see that the second derivative function

f ′′(x) < 0 on (−∞,−1) and (1,+∞) , while f ′′(x) > 0 on (−1,1) . Hence the inflection
points about convexity/concavity of N (0,1) is −1 and 1. This implies that as n tends
to infinity, the inflection points of the rows of a triangular array satisfying Bender’s
assumption is asymptotically fixed. An exercise left to the readers is to consider the
inflection points of the binomial distribution {(n

i

)
pi(1− p)n−i}n

i=0 (0 < p < 1).
At the end, we point out that Theorem 1 does not hold in general if the sequence

{ai}n
i=0 is strictly log-concave only. For example, the strictly log-concave sequence

{1,3,7,10,14} , whose generating function does not have real zeros only, is first convex,
then concave and finally convex on its increasing interval.
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