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OPERATOR INEQUALITIES FOR J-CONTRACTIONS

N. BEBIANO, R. LEMOS, J. DA PROVIDENCIA AND G. SOARES

(Communicated by T. Ando)

Abstract. A selfadjoint involutive matrix J endows C" with an indefinite inner product |-, ]
given by [x,y] = (Jx,y), x,y € C". Characterizations of the J-chaotic order Log(A) >’ Log(B)
are presented for J-selfadjoint matrices A,B with positive eigenvalues, in terms of operator
functions involving the o -power mean and the J-relative entropy. An indefinite complete form
of the Furuta inequality and some exponential operator inequalities for J-selfadjoint matrices are
also obtained. The parallelism between the inequalities in Hilbert spaces and the corresponding
indefinite versions in Krein spaces is pointed out.

1. Introduction

Let M, denote the algebra of n x n complex matrices. For a selfadjoint involu-
tion J € M,,, thatis, J =J* and J? = I,, we consider C" with a Krein space structure
induced by the indefinite inner product [x,y] = (Jx,y), x,y € C", where (-,-) denotes
the standard inner product in C". For A € M,,, the J-adjoint of A is the matrix Al¥]
defined by [Ax,y] = [x,A[*] y], x,y € C", or equivalently, Al = JA*J, and A is said
to be J-selfadjoint if A = Al*. These matrices appear in several problems of relativis-
tic quantum mechanics and quantum physics, and recently inequalities involving them
deserved the attention of researchers [2, 4, 5, 15, 16]. The theory of inequalities for
selfadjoint matrices has a long and rich history. In contrast with selfadjoint matrices,
the eigenvalues of J-selfadjoint matrices may not be real [14], and so attention should
focus on classes of these matrices with real spectra.

As usual, A > 0 means that the selfadjoint matrix A is positive semidefinite. For
J -selfadjoint matrices A, B € M,,, we define A >’ B by [Ax,x] > [Bx,x], x € C", which
means that J(A—B) > 0. If A € M, is J-selfadjoint and I, >’ A, then all the eigenval-
ues of A are real, because I,, — A is the product of the selfadjoint involution J and a pos-
itive semidefinite matrix. A matrix A € M, is called a J-contraction if [x,x] > [Ax,Ax],
for all x € C", that s, I, >’ A[*]A, and in this case all the eigenvalues of AlA are non-
negative [3]. Analogously, A € M, is a J-expansion if AllA >/ I,. We observe that
the results throughout this note stated for J-contractions have analogous counterparts
for J-expansions.
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Let f be a real valued function defined on an open (finite or infinite) interval
# CR. Such a continuous function f is said to be operator monotone if A > B
implies f(A) > f(B) for any A,B € M,, with spectrain .#, n € N. If f is analytic on
& and A is a J-selfadjoint matrix with real eigenvalues on .#, then f(A) is defined
by the Dunford-Riesz integral

1) = 5 [ 1) ED—a)1ae,

where I" is a closed rectifiable contour in the domain of analytic continuation of f,
surrounding positively the spectrum of A, Further, f(A) is J-selfadjoint.
Ando [2] obtained the following result concerning operator monotone functions.

THEOREM 1.1. Let A,B € M,, be J-selfadjoint matrices with eigenvalues in an
open real interval .% . Then A >’ B implies f(A) =’ f(B) for any operator monotone
Sfunction f defined on & .

Let O < o < 1. The Lowner-Heinz inequality [1 1, 13] for selfadjoint operators on
a Hilbert space states that A > B > 0 implies A% > B” and it has a famous extension:
the Furuta inequality [8, 10]. Since f(r) =¢” is an operator monotone function on
(0,+o0), it follows by Theorem 1.1 that A >/ B implies A% >/ B*, whenever A,B €
M, are J-selfadjoint matrices with positive eigenvalues. The same result holds if the
eigenvalues of A,B are nonnegative under the additional assumption 7, >/ A >/ B.
In this case, the J-selfadjoint powers A% ,B* are well defined and I, >’ A% >/ B*
[15]. This is the Lowner inequality of indefinite type, at first obtained by Ando [1] for
o= % Motivated by these results, the Furuta inequality of indefinite type [4, 15] was
established as follows:

THEOREM 1.2. Let A,B € M,, be J-selfadjoint with nonnegative eigenvalues and
wi, >TA >/ B for some 1 > 0. For each r > 0, the following inequalities hold

N,

1
(A%APA%>q >/ (A%BPA%) , (1)

—_
Q=

(B%APB%)a >/ (B%BPB%) , 2)
forall p>0and g =1 with (1+r)g>p+r.

The Lowner inequality of indefinite type is recovered by Theorem 1.2 in the par-
ticular case r =0. If ¢ = ’%I and p > 1 in Theorem 1.2, we obtain the so-called es-
sential part of the indefinite Furuta inequality, because the indefinite Lowner inequality
implies the remaining cases g > ’I’TJr: and 0 < p < 1. The optimal domain on p,q,r
for the validity of the Furuta inequality of indefinite type is an open problem (for the
definite case see [17]). For J-selfadjoint matrices A, B € M,, with positive eigenvalues,
the J-chaotic order is defined by Log(A) >’ Log(B), where Log denotes the princi-
pal branch of the logarithm function. Since Log(r) is an operator monotone function

on (0,+o), we conclude by Theorem 1.1 that the J-chaotic order Log(A) >’ Log(B)
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is weaker than the usual J-order A >’ B. Sano [16] obtained the following useful
characterization of the J-chaotic order.

THEOREM 1.3. Let A,B € M, be J-selfadjoint matrices with positive eigenval-
ues such that I, >’ A and I, >’ B. Then Log(A) >’ Log(B) if and only if A" >’

(A%BI’A%)# forall p>0 and r > 0.

The aim of this note is to present a survey of indefinite versions of well-known
inequalities in the context of Hilbert spaces. In Section 2, some operator functions as-
sociated with the Furuta inequality of indefinite type are considered and additional char-
acterizations of the J-chaotic order are presented. In Section 3, an indefinite complete
Jform of the Furuta inequality is obtained. In Section 4, exponential operator inequalities
are derived, being some of them indefinite variants of results obtained by Ando [1] and
Uchiyama [18]. The proofs combine techniques established in the Hilbert space set-
ting and are included for the sake of completeness. The specificities inherent to Krein
spaces are emphasized.

2. Operator functions related to the indefinite Furuta inequality

Let A,B € M,, be J-selfadjoint matrices, such that A >/ B. If A, B have non-
. . .. . 1 1 . .
negative eigenvalues and A is invertible, then B2A™2 is a J-contraction, because
I, >’ A"2BA~%. Then all the eigenvalues of A"2BA"? are nonnegative and the J-

selfadjoint power (A’%BA’%)Q is well defined for 0 < a < 1. Under these assump-
tions, the a-power mean of A and B is defined by

AtgB = A (A*%BA*%YA%,

and A >’ At4B holds. If AB = BA, then AfuB = A'"*B*. We remark that fi is
positively homogeneous, that is, (UA)#(UB) = p (AfgB) for any u > 0 and if B is
also invertible, then (AfeB) ' = A~'#,B~'. If A,B have positive eigenvalues, the
J-relative entropy of A and B is defined by

1

S(A|B) = A? Log (A’%BA’%>A7.

Since I, >/ A"2BA~2, itis easy to see that 0 >’ S(A|B). Moreover, S(A|B) = 0 if and
only if A = B. This concept introduced in [4] extends the concept of relative operator
entropy for positive definite operators due to Fujii and Kamei [6].

The following lemmas will be used throughout this section.

LEMMA 2.1. [4] Let A,B € M, be J-selfadjoint matrices. Then XFAX >/
XFBX forall X € M, ifand only if A>' B .

LEMMA 2.2. [I5] If A € M, is a J-selfadjoint matrix with nonnegative eigenval-
ues and I, > A, then A* is well defined and I, >/ A* forall & > 0.
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From Theorem 1.1 and the fact that f(z) = —[l is an operator monotone function
on (0,+eo), the following result holds (see [15] for another proof).

LEMMA 2.3. If A,B € M,, are J-selfadjoint with positive eigenvalues and A >’
B, then B~' >/ A~

LEMMA 2.4. [15] Let A,B € M,, be J-selfadjoint matrices with positive eigen-
values and I, >JA, I, >' B. Then

A—1
(ABA)* = AB? (B%A'ZB%) BiA, AER.

The next proposition provides additional properties of the ¢ -power mean, namely
the effect of interchanging A and B, and the J-monotonicity in the second variable.

PROPOSITION 2.1. Let A,B,C € M,, be J -selfadjoint matrices with positive eigen-
values and 0 < o < 1.

() If A>7 ul, >’ B for some u >0, then AfqB = Bf1_4A.
(i) If A>' B and A >’ C, then B >’ C implies AtoB >’ Af,C.

Proof. (1) Without loss of generality, let 1 = 1. Otherwise, replace A, B respec-
tively by ﬁA, ﬁB. By Lemmas 2.2 and 2.3, we have I, >’ A7, Applying Lemma 2.4

to the J-selfadjoint matrices A2 ,B, we find
_1 I\© I AN ST AN e S R _1 _1
(A 3 BA 2> — A tph (BzA Bz) BIA“t = A Z(Bﬁl_aA>A z,

which is equivalent to AffgB = Bfij_oA.
(i1) The result follows from Lemma 2.1 and the Lowner inequality of indefinite
type. O

The essential part of the indefinite Furuta inequality can be formulated in terms of
the o-power mean as follows. If A, B € M,, are J-selfadjoint with positive eigenvalues,
such that pl, >’ A >’ B for some p > 0, then

A>'A74,,B> and B $1.,AP >'B
p+r p+r
forall p > 1 and r > 0. A real valued continuous function f defined on a real interval
7 is said to be J-increasing if f(r) >’ f(s) whenever r > s. Analogously, f is
said to be J-decreasing if f(r) =’ f(s) whenever r < s. The characterizations of the

J-chaotic order in the next theorem have been stated in the context of Hilbert spaces
[9, 10].

THEOREM 2.1. Let A,B € M, be J-selfadjoint matrices with positive eigenval-
ues, such that ul, >’ A, ul, >’ B for some > 0. Then the following statements are
mutually equivalent:
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(i) Log(A) >/ Log(B);
(i) I, > A rﬁ BI’ forall p>=0and r>0;

(iii) B ﬁ Ap >'I, forall p>0and r > 0;

(iv) For any fixed t > 0, F,(p,r) = A4 i B?P is a J-decreasing function of both
ptr
p=tandr>=0;

(v) B >JA*’ﬁ,+T,BP forall p>t>0andr>0;
ptr

(vi) Foranyfixedt>0and r >0, H; ,(p) = % S(A"|BP) is a J-decreasing func-
tionof p>t;

(vii) For any fixed t > 0, G,(p,r) = B4 i AP is a J-increasing function of both
p+r
p=>tandr>0;

(viii) B_’ﬁHTrAP >V A forall p>t>0and r>0;
p+r

(ix) Foranyfixedt >0 andr >0, K; »(p) = ;j‘r’rs( “"|AP) is a J-increasing func-
tionof p>t;

1

(x) (AgAPA5>q >/ <A5BPA5> Jorall p=0,r>0and g=>1 withrqg>p+r;
1 1

(xi) <B5AP35>q >/ (B%BPB%>q forallp>0,r>0and g>1 with rg > p+r.

Proof. Without loss of generality, consider y = 1. Otherwise, replace A,B re-
spectively by A, = ﬁA, By = ﬁB and observe that Log(A) >’ Log(B) if and only if
Log(Ay) >’ Log(By). Further, the following relations are satisfied:

Fip.r) = 0 (A"t BL)
Gi(p,r) = (B " AL )

p+r
1 1+ - -
Ht,r(p) = EpTrS(Aquﬁ) +10g (“t+r)A r’
1 t+ —r r —r
Kir(p) = 7 S (By71AL) +log (1) B

(i) < (i) It is a consequence of the application of Lemma 2.1 to a rewriting of
Theorem 1.3.

(i) < (iii) From Lemmas 2.2 and 2.3, we have A~? >’ I, >/ B" for p=0,r>0.
Interchanging the roles of r and p in (ii) and bearing in mind Proposition 2.1, we get
I, > A pjj » B"=B'§_r A™P. By Lemma 2.3, this is equivalent to B~"4 - A” >,

forall p > 0 and r>= O
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(i) = (iv) By Theorem 1.3, the assumption (i) implies A" >’ (AfBI’Af)lﬁ for
u

r>0 and p > 0. By the Lowner inequality of indefinite type with oo = 7 and Lemma
2.3, we get

(A%BpAz) P p 3)
forall » > u >0 and p > 0. On the other hand, we proved that (i) < (iii) so, inter-

changing in (111) the roles of r and p, by Lemma 2.1 and applying the above technique
with o = 1%’ we find

<B§A’Bg> TSI gy @)
forall p>v>0and r>0. We have I, >’ A2, I, >/ BP. Therefore, by Lemma 2.4
with A = 227 J”’“ and Lemma 2.1, we successively have

p+r

St

+r

. . o\ DTN P
Fi(p,r) =A"2 ((ATBPM) ! ) A”
+r

ptv+r r
A2

—ATE e (B§ (B5A"BY) #35) .

pHvtr

l\JI‘!
[

— A (AEB’% (B2A’B2> 7 gbA

Taking into account (4), Lemma 2.1 and the J-monotonicity of 4 i in the second
pHv+r
variable, we get
Fi(p.r) 2 A4 o (BEB'BE) = F(p+wr),
ptvtr
that is, F; (p,r) is a J-decreasing function of p > . Next, we show that F; (p,r) is a
J-decreasing function of r > 0. Since A~" >’ I, >’ BP by Proposition 2.1 we obtain

Fi(p,r) = A" BP = B, A™".
ptr p+r
Since I, >’ A", I, >’ B% ,by Lemma 2.4 with A = p +r+" ,in conjunction with Lemma
2.1, we obtain

K (pvr) = BpﬁﬂA_r

__p=t
— B} ((BQA’BQ)W> " gt

p—t
T pFrfu P
! 2

— Bt (B%A%(A%BPA%)#A%B% B

— BP% (A—% (A%BPA%)*P%A—%) .

ptrtu

Taking into account (3), Lemma 2.1 and the J-monotonicity of § ,— in the second

pt+rtu

variable, we have

Fip,r) 27 B po (ATSATMATE) = AT B = F(prtu),

prrtu prtu
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thatis, F; (p,r) is a J-decreasing function of r > 0.

(iv) = (v) From (iv), we easily get B' = F;(¢,0) >’ F;(p,r) forall p >t >0 and
r>=0.

(v) = (i) Put £ = 0 in (v).

(iv) = (vi) For any fixed r > 0 and r > 0, we observe that

Hy(p) = A”% Log (A5 Fy(p,r)a% ) a™5.

We are assuming that F;(p,r) is a J-decreasing function of p > 7. The same conclusion
holds for H; ,(p) from Lemma 2.1 since the J-chaotic order is weaker then the J-order.
(vi) = (i) If =0 in (vi), then Hy ,(0) >/ Hy (1) for r > 0. Letting r — 0", this
yields ().
(1) = (vii) Analogously to the proof of the implication (i) = (iv), we may con-
clude that

AV Y <A§B’Ag>m (5)
for p>v>0and r >0, and

B> (B%AI’B%) P (6)
for r > u >0 and p > 0. Changing the roles of A and B in the second part of the proof
of (i) = (iv), recalling (5) and (6), we conclude that G,(p,r) is a J-increasing function
ofboth p >t and r > 0.

(vii) = (viii) From (vii), we easily get G,(p,r) >’ G,(t,0) = A’ forall p >t >0
and r > 0.

(viii) = (iii) Put # = 0 in (viii).

(vii) = (ix) The proof is analogous to the proof of the implication (viii) = (vi),
observing that

Kir(p) = A" Log (436, (p,ra%) a5,

(ix) = (i) If r = 0 in (ix), then Ko ,(0) <! Ko (1) for r > 0 and letting r — 0™
we get ().

(1) < (x) Was proved in [4, Theorem 2.2].

(i) = (xi) By the implication (i) = (iii) proved above and Lemma 2.1, we get
(BgAI’Bg) i >’ B and then by the indefinite Lowner inequality with o = pr—zr we
obtain (xi).

(xi) = (1) Putg= pTH with > 0 in (xi), then use Lemma 2.1 and the implication
(i) = (). O

The next corollary yields an indefinite version of Kamei’s satellite to Furuta in-
equality [12].
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COROLLARY 2.1. If A,B € M, are J-selfadjoint matrices with positive eigenval-
ues and I, >1 A >/ B for some | > 0, then

B 41, A? 2T A ST B AT, LB

p+r p+r

forall p>1 and r>0.

Proof. Since A >’ B implies Log(A) >’ Log(B), then the result readily follows
from Theorem 2.1 (i) = (v) and (i) = (viii) in the particular case t = 1. [

3. Complete form of the Furuta inequality of indefinite type

Theorem 3.1 provides an indefinite complete form of the Furuta inequality (cf.
[19] in the case of Hilbert spaces). In fact, it will be shown in Remark 3.1 that this
theorem, in the particular case py = 1, implies Theorem 1.2, this justifying the used
terminology. Firstly, we recall the following useful lemma from [15].

LEMMA 3.1. Let A € M, be a J -selfadjoint matrix with nonnegative eigenvalues,
I, >’ A and let A,, € M,,, m € N, be J -selfadjoint matrices with positive eigenvalues
such that Ay, — A as m — +eo. Then A% — A% for 0 < a < 1, as m — oo,

THEOREM 3.1. Let A,B € M,, be J-selfadjoint with nonnegative eigenvalues such
that ul, =’ A >’ B for some u>0. If r >0, p> po >0 and s = min{p,2pg +
1,2po+r}, then

St Str

(A%BPOA%) P 5 (A%BPA%)”“, 7
str str

(B%APB%>”“ > (B%APOB%) P 8)

Proof. Without loss of generality, we may suppose that ¢ = 1. Assume that A, B
are invertible. Otherwise, replace A,B by A + %In, B+ %In and then use Lemma 3.1.

D If p<2pg+rand p<2po+1,then s=p. By Lemma 2.2 we have I, >JA5 s
I, >’ BP0 and by Lemma 2.4 we get

ptr

P pP—Po
(AfBPOA%) W _ A5 g% <BPTOA’B%Q> nF g AL 9)

Now, replace r,p respectively by po,r and let g = ’"’_—Jrg in inequality (2) of Theo-
rem 1.2. Note that g > 1, because p < 2po+ r and that (1 + pg)g > r+ po. Then

Po R0\ R0
(B 2 A"B2 ) potr >4 BPTP0 and by Lemma 2.1 we find

P—Po
ASBY (BIABT )T BT AT 2 atprAS,
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Bearing in mind (9), we obtain

ptr

(AzBPOAz) w7 (AzBPAz) P (10)

and so (7) follows because s = p. Similarly, (8) follows from inequality (1) in Theorem
1.2.

() If p=2po+r or p>=2py+1, then s =2py+m, with m, = min{l,r}.
Let n € N such that p, < p < pp+1, where p, = po+ (2" — 1)(po + m,). Note that
Pnt1 =2pn+m, = p, n € N. Replacing p by p; in (10), we have

pitr pitr
(A%BPOA%>”°“ > (A%BPIA%)”'*'. (11)
Similarly, since py = 2p1+m;, > p1, by (10) we get
potr potr
(A%BMA%> P S J <A53P2A5> bt

_ ptr

Applying the Lowner inequality of indefinite type with o tr

ity and combining the result so obtained with (11), we find

to the above inequal-

[1+ prtr

(A%BPOA%) W ST ASBPIAS ST (AzBPzAz) ¥

Repeating the above procedure for p > p, and p,4+1 =2p,+m, > p, n € N, by (10)
we obtain

ptr ptr
(A%BP”A%> pntr 2] (A%BPA%> P

pitr
pt+r?

Now, by the Lowner inequality of indefinite type with o = , we get

p1tr

(AzBPOAz)”O“ > ASBPIAS ST (A2BP2A2) P2¥

prtr p1+r
> <A§Bl’nA§>””H >/ (AZBPA2> ptr
for p, < p < pu+1, n € N, and (7) holds since s = p;. The proof of (8) follows
similarly. [

REMARK 3.1. For pg =1, applying to (7) and (8) the Lowner inequality of in-
definite type with a2 = 1+’ and s = min{p, 3,2+ r}, we obtain
r r 1+ r r m r r
AZBAS > (AzBPA )”“ and (BfAPBf) "SI BEABS,

respectively, forall r >0 and p > 1. If A >' B, then by Lemma 2.1 we get

14r 14r

ASAAS =7 ASBAS Y <A2BPA2>W and (B%APB%)”“ >’ B5AB? >’ B5BB*
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forall » >0 and p > 1. This is the essential part of the indefinite Furuta inequality.
Thus, Theorem 3.1 implies Theorem 1.2. On the other hand, we proved Theorem 3.1
using Theorem 1.2. Henceforth, these two results are equivalent.

The following corollary is a variant of Theorem 3.1.

COROLLARY 3.1. Let A,B € M,, be J -selfadjoint matrices with nonnegative eigen-
values and & > 0 fixed. If wl, >’ A% > BS for some >0, then (7) and (8) hold for
r>=0, p>po>0and s=min{p,2po+06,2po+7}.

Proof. For a fixed 8 >0, let rs =r/0, ps = p/0, pos = po/d. Since rg >0,
Ps > pos > 0 and ss = min{pgs,2pos + 1,2pos + 15}, we can apply Theorem 3.1 to
obtain

sgtrs sgtrs
<A52B6p05A62> 056 2‘] (A52B6p5A52> [}

and (7) follows. Analogously, we prove (8). [

Next, we derive an indefinite complete form of Furuta’s inequality for J -selfadjoint
matrices obeying the J-chaotic order, which can be seen as the case § — 0" of Corol-
lary 3.1, because

)

— In
I = Log(A).
so0r B ogl4)

THEOREM 3.2. Let A,B € M, be J-selfadjoint matrices with positive eigenval-
ues, such that ul, >’ A, ul, >’ B for some > 0. If Log(A) >/ Log(B), then (7) and
(8) hold for r >0, p > pp >0 and s = min{p,2po}.

Proof. Without loss of generality we may consider 4 = 1. If » > 0 and 2py > p,
then s = p. Replace in Theorem 2.1 (i) = (x) r by po, p by r and let ¢ = po“
Using Lemmas 2.2, 2.4 and 2.1 as in the proof of Theorem 3.1 (I), we obtain (7) Wlth
s = p. Analogously, from Theorem 2.1 (i) = (xi) we get (8) with s=p. If r >0
and 2py < p, then s =2pg. Let n € N be such that p, < p < p,+1 with p, =2"pg.
Then p; = s and p,+1 =2p,, n € N. Following the steps of the proof of Theorem 3.1
(II), using the inequalities deduced in (I) and the Lowner-Heinz inequality of indefinite
type, the result easily follows. [

4. Some exponential operator inequalities of indefinite type

In this section we present indefinite versions of some exponential operator in-
equalities obtained by Uchiyama [18] and Ando [1] for bounded selfadjoint opera-
tors on a Hilbert space. We remark that if A € M,, is a J-selfadjoint matrix, then
(e*) M Ay = e — A and so e s also J -selfadjoint.

The following lemma is useful for the development of this section.
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LEMMA 4.1. If A € My, is J-selfadjoint and ul, >’ A for some n € R, then
eMl, >7 el

Proof. If wl, >’ A for some u € R, then the eigenvalues of the J-selfadjoint
matrix A are real. Then there exists 7 > 0, such that y 4+ 7 > 0 and the eigenvalues of
the matrix A; = A+ 7l, are positive. We obviously have il >’ A;, where ff =y + 7.
Next, we prove by induction that (i*], >’ A%, k € N. We show that the inequality still
holds when we replace k& by k+ 1. Since the eigenvalues of A; are positive, the J-

1
selfadjoint square root of Ay is well defined. Replacing x by AZx in [x,x] > [A%x,x],
we find

e b %l 1

WIAZ x,A7x] > [A;? x,A%X]
and so [I' [A;x,x] > [Akt1x x]. Having in mind that @ > 0, we have " '[x,x] >
[I°[A;x,x] for any x € C". We have just proved that *"'I, >/ AKt1. Then it may be
easily shown that

4oo =k +oo

u J L
> 1L = Y AL
=0 k! o k! T

that is, efell, = efl, >’ eAt = eTe? and the desired result e, >’ ¢ is readily ob-
tained. O

For J-selfadjoint matrices A, B € M,,, let us consider

AV B=2AA+(1—1)B, ALB=(A" +(1-1)B )"

for A > 0, with invertibility of A, B requiredin A!; B. If A = %, these are the arith-
metic mean and the harmonic mean of A and B, respectively.

THEOREM 4.1. Let A,B € My, be J -selfadjoint matrices, such that (L1, >'A>'B
forsome L €R. Forall p >0, r=s>0 and A > 0 the following inequalities hold:

s

(a) et >/ (e%f‘epwWA)eﬁ*‘)"+ ;

(b) e >/ (eﬁAep(B!lA)eéﬂ e for invertible A,B.

Proof. (a) From the hypothesis, it is easy to see that ul, >’/ A >’ By, A for all
A > 0. Then all the eigenvalues of A and B/, A are real. Moreover, eI, >7 eh,
eI, >’/ eBViA and the J-selfadjoint matrices e, e?V24 have positive eigenvalues. If
s = 0, the result is trivially satisfied. Now, let p >0, r > s >0 and g = ”TJ” Then
q > 1 and rq > p+r. Thus (a) follows from Theorem 2.1 (i) = (x), replacing A, B by

et eBVaA | respectively.
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(b) For A > 0 by Lemma 2.3 we have AB~! >/ AA~! and it is easy to see that
(B1;A)~' >/ A='. Then ul, >’ A >’ B!; A and the proof follows analogously to
(a). O

In the following corollary, we reformulate the previous result in order to obtain an
indefinite version of an inequality obtained by Uchiyama [18].

COROLLARY 4.1. Under the assumptions of Theorem 4.1, we have
e 57 <e§Aqu+pBe§A> e (12)
forallp=0, p+q=>0andr>s>0.

Proof. If p >0, then A >’ B implies 0 >/ p(B—A), and so I, >’ e?B=4) 1f r >
s >0, by Lemma 2.1 and the Lowner inequality of indefinite type with oz = 7 € [0, 1],
we find

s
r — r r
e ST (eerp(B A)62A> "

that is, (12) when p+¢g=0.If p >0 and p+¢ >0, then for L = == > 0 we get
B/3A= 5 +q (gqA+ pB) and so (12) is obtained from Theorem 4.1 (a) W1th p replaced
by p+q. U

The following result is a converse of Theorem 4.1 when s =p=r and A =1 (cf.
[7,9D.

THEOREM 4.2. Let A,B € M,, be J-selfadjoint matrices such that ul, >T A,
ul, >’ B for some u € R. If

Nl—

A>T (e ( AetBezA> (13)
for every t >0, then A >’ B.
Proof. As X2 —1I,= (X2+1,)" (X —I,), from (13) we get
oA B LA

3 ! ebAetBeiA
n o ((eertBezA> +In) fn (14)

t

for any ¢+ > 0. Now, we observe that

5A (1B LA
eZACIBCZA In _ ez (e _In)ez etA_In

Since
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letting # — 0" in (14), we easily conclude that A >/ }(B+A), andso A >/ B. O

Next we present a slight generalization of the previous theorem in the spirit of
Uchiyama [18].

THEOREM 4.3. Let A,B € M,, be J-selfadjoint matrices such that ul, >T A,
wul, =’ B for some p € R. If there exist p,q,r,s with p >0, p+q=>0and r>s>0,
such that either

S
Y n n ptqtr
oA > (eert(qAerB)ezA) (15)
or .
n n prq+r .
(ezBet(qAerB)ezB) >/ B (16)

holds for every t >0, then A >’ B.

Proof. We assume that (15) holds. If s = p+¢+r, then p+¢=0 and r =s. From
(15) by straightforward computations we get I, >’ ¢/?(5=4) for every t > 0. Letting
t— 0" in
etp(BfA) —1,
tp
we easily conclude that A >’ B. If s < p+q+r, then,

<0

)

5
n s g+
oA ] , <62Aet(qA+pB)ezA> prqtr —1,
n
>
t 7 t

for any ¢ > 0 and standard computations yield

o(r*
r(rA+qA+pB)+ (t ),

K

t 7 ptq+
Jo(t?) n T i

where ——||—0ast—0". Henceforth, taking limits as  — 0T, we get (p+g+

r)A =’ (r4q) A+ pB and the result follows. If (16) holds, the proof is analogous. [
Theorem 4.4 includes a partial reformulation of Theorem 2.1 for exponential op-

erators and an indefinite version of a famous result due to Ando (cf [1]).

THEOREM 4.4. Let A,B € M,, be J-selfadjoint matrices, such that ul, >7 A,
ul, >’ B for some u € R. Then the following statements are mutually equivalent:

(i) A>'B;

(i) I, >’ e_’Aﬁ%e’B forall r >0;

(i) f(r)= e”Aﬁ%e’B is a J-decreasing function of r > 0;
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(iv) For any fixed t >0, f, (p,r) =e "4 i ePB is a J-decreasing function of both
p+r
p=>tandr>0;

(v) For any fixed t >0, g (p,r) =e "4 i eP4 is a J-increasing function of both
p+r
p=tandr=0.

Proof. According to the hypothesis, A, B have real eigenvalues and e*,e? are J-
selfadjoint matrices with positive eigenvalues, such that eI, >’ e4, e, >J eB.

The equivalences (i) < (iv) < (v) readily follow from the equivalences (i) < (v)
& (viii) in Theorem 2.1, replacing A, B by e, e, respectively.

(1) = (i) Let =0 and r = p in (i) = (v) and the result holds.

(iii) = (ii) Since f(r) is a J-decreasing function of r > 0, we have I, = f(0) >’
f(r) forall r > 0.

(i) = (i) Itis a consequence of Theorem 4.2 and Lemma 2.1. [

COROLLARY 4.2. Let A,B € M,, be J-selfadjoint matrices, such that (I, >
A}JBforsome HelR. Forall p>2t>0, r>0 and 0 < o < 1 the following
inequalities hold:

(a) efﬁﬁq;evauB)gledAVaB)>J mﬁd;evaam
ptr pEr

(b) e_’BtIHTrep(A!”‘B) >/ ot (AlaB) ST e_’AtIHTreP(A!”‘B) for invertible A, B.
pEr pir

Proof. (a) For 0 < oo < 1 we have ul, >’ A>' Axyy B>/ B. For p>1t >0 let
us consider the functions on r > 0 defined by
A AV B B AVaB
Fpa(r)=e " e?AVeE)and gy (r) = e P, el VP,
By Theorem 4.4 (i) = (iv), A >/ A/ B implies that f,, (r) is a J-decreasing function

of > 0. On the other hand, by Theorem (i) = (v), A</ B >’ B implies that 8ps (1)
is a J-increasing function of » > 0. Then,

gp,t(r) >J 8pua (O) AvaB fp, ( ) >J fp,t(r)a

thatis, (a) holds forall p >t >0,r>0and 0 < x < 1.
(b) The proof is similar to (a), bearing in mind that A >7 A14,B >’ B holds for
0<a<l1. O
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