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OPERATOR INEQUALITIES FOR J–CONTRACTIONS
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(Communicated by T. Ando)

Abstract. A selfadjoint involutive matrix J endows Cn with an indefinite inner product [·, ·]
given by [x,y] = 〈Jx,y〉 , x,y ∈ C

n. Characterizations of the J -chaotic order Log(A) �J Log(B)
are presented for J -selfadjoint matrices A,B with positive eigenvalues, in terms of operator
functions involving the α -power mean and the J -relative entropy. An indefinite complete form
of the Furuta inequality and some exponential operator inequalities for J -selfadjoint matrices are
also obtained. The parallelism between the inequalities in Hilbert spaces and the corresponding
indefinite versions in Krein spaces is pointed out.

1. Introduction

Let Mn denote the algebra of n× n complex matrices. For a selfadjoint involu-
tion J ∈ Mn , that is, J = J∗ and J2 = In, we consider C

n with a Krein space structure
induced by the indefinite inner product [x,y] = 〈Jx,y〉 , x,y ∈ Cn, where 〈·, ·〉 denotes
the standard inner product in Cn . For A ∈ Mn , the J -adjoint of A is the matrix A[∗]
defined by [Ax,y] = [x,A[∗] y] , x,y ∈ Cn , or equivalently, A[∗] = JA∗J , and A is said
to be J -selfadjoint if A = A[∗] . These matrices appear in several problems of relativis-
tic quantum mechanics and quantum physics, and recently inequalities involving them
deserved the attention of researchers [2, 4, 5, 15, 16]. The theory of inequalities for
selfadjoint matrices has a long and rich history. In contrast with selfadjoint matrices,
the eigenvalues of J -selfadjoint matrices may not be real [14], and so attention should
focus on classes of these matrices with real spectra.

As usual, A � 0 means that the selfadjoint matrix A is positive semidefinite. For
J -selfadjoint matrices A,B∈Mn , we define A �J B by [Ax,x] � [Bx,x] , x∈Cn , which
means that J(A−B) � 0. If A∈ Mn is J -selfadjoint and In �J A , then all the eigenval-
ues of A are real, because In−A is the product of the selfadjoint involution J and a pos-
itive semidefinite matrix. A matrix A∈Mn is called a J -contraction if [x,x] � [Ax,Ax] ,
for all x ∈ C

n , that is, In �J A[∗]A , and in this case all the eigenvalues of A[∗]A are non-
negative [3]. Analogously, A ∈ Mn is a J -expansion if A[∗]A �J In . We observe that
the results throughout this note stated for J -contractions have analogous counterparts
for J -expansions.
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Let f be a real valued function defined on an open (finite or infinite) interval
I ⊆ R . Such a continuous function f is said to be operator monotone if A � B
implies f (A) � f (B) for any A,B ∈ Mn with spectra in I , n ∈ N . If f is analytic on
I and A is a J -selfadjoint matrix with real eigenvalues on I , then f (A) is defined
by the Dunford-Riesz integral

f (A) =
1

2π i

∫
Γ

f (ξ )(ξ In −A)−1dξ ,

where Γ is a closed rectifiable contour in the domain of analytic continuation of f ,
surrounding positively the spectrum of A , Further, f (A) is J -selfadjoint.

Ando [2] obtained the following result concerning operator monotone functions.

THEOREM 1.1. Let A,B ∈ Mn be J -selfadjoint matrices with eigenvalues in an
open real interval I . Then A �J B implies f (A) �J f (B) for any operator monotone
function f defined on I .

Let 0 � α � 1. The Löwner-Heinz inequality [11, 13] for selfadjoint operators on
a Hilbert space states that A � B � 0 implies Aα � Bα and it has a famous extension:
the Furuta inequality [8, 10]. Since f (t) = tα is an operator monotone function on
(0,+∞) , it follows by Theorem 1.1 that A �J B implies Aα �J Bα , whenever A,B ∈
Mn are J -selfadjoint matrices with positive eigenvalues. The same result holds if the
eigenvalues of A,B are nonnegative under the additional assumption In �J A �J B .
In this case, the J -selfadjoint powers Aα ,Bα are well defined and In �J Aα �J Bα

[15]. This is the Löwner inequality of indefinite type, at first obtained by Ando [1] for
α = 1

2 . Motivated by these results, the Furuta inequality of indefinite type [4, 15] was
established as follows:

THEOREM 1.2. Let A,B∈Mn be J -selfadjoint with nonnegative eigenvalues and
μ In �J A �J B for some μ > 0 . For each r � 0 , the following inequalities hold

(
A

r
2 ApA

r
2

) 1
q �J

(
A

r
2 BpA

r
2

) 1
q
, (1)

(
B

r
2 ApB

r
2

) 1
q �J

(
B

r
2 BpB

r
2

) 1
q
, (2)

for all p � 0 and q � 1 with (1+ r)q � p+ r .

The Löwner inequality of indefinite type is recovered by Theorem 1.2 in the par-
ticular case r = 0. If q = p+r

1+r and p > 1 in Theorem 1.2, we obtain the so-called es-
sential part of the indefinite Furuta inequality, because the indefinite Löwner inequality
implies the remaining cases q > p+r

1+r and 0 � p � 1. The optimal domain on p,q,r
for the validity of the Furuta inequality of indefinite type is an open problem (for the
definite case see [17]). For J -selfadjoint matrices A,B ∈ Mn with positive eigenvalues,
the J -chaotic order is defined by Log(A) �J Log(B) , where Log denotes the princi-
pal branch of the logarithm function. Since Log(t) is an operator monotone function
on (0,+∞) , we conclude by Theorem 1.1 that the J -chaotic order Log(A) �J Log(B)
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is weaker than the usual J -order A �J B . Sano [16] obtained the following useful
characterization of the J -chaotic order.

THEOREM 1.3. Let A,B ∈ Mn be J -selfadjoint matrices with positive eigenval-
ues such that In �J A and In �J B. Then Log(A) �J Log(B) if and only if Ar �J(
A

r
2 BpA

r
2
) r

p+r for all p > 0 and r > 0 .

The aim of this note is to present a survey of indefinite versions of well-known
inequalities in the context of Hilbert spaces. In Section 2, some operator functions as-
sociated with the Furuta inequality of indefinite type are considered and additional char-
acterizations of the J -chaotic order are presented. In Section 3, an indefinite complete
form of the Furuta inequality is obtained. In Section 4, exponential operator inequalities
are derived, being some of them indefinite variants of results obtained by Ando [1] and
Uchiyama [18]. The proofs combine techniques established in the Hilbert space set-
ting and are included for the sake of completeness. The specificities inherent to Krein
spaces are emphasized.

2. Operator functions related to the indefinite Furuta inequality

Let A,B ∈ Mn be J -selfadjoint matrices, such that A �J B . If A,B have non-
negative eigenvalues and A is invertible, then B

1
2 A− 1

2 is a J -contraction, because
In �J A− 1

2 BA− 1
2 . Then all the eigenvalues of A− 1

2 BA− 1
2 are nonnegative and the J -

selfadjoint power
(
A− 1

2 BA− 1
2
)α

is well defined for 0 � α � 1. Under these assump-
tions, the α -power mean of A and B is defined by

A�αB = A
1
2

(
A− 1

2 BA− 1
2

)α
A

1
2 ,

and A �J A�αB holds. If AB = BA , then A�αB = A1−αBα . We remark that �α is
positively homogeneous, that is, (μA)�α(μB) = μ (A�αB) for any μ > 0 and if B is
also invertible, then (A�αB)−1 = A−1�αB−1 . If A,B have positive eigenvalues, the
J -relative entropy of A and B is defined by

S(A|B) = A
1
2 Log

(
A− 1

2 BA− 1
2

)
A

1
2 .

Since In �J A− 1
2 BA− 1

2 , it is easy to see that 0 �J S(A|B) . Moreover, S(A|B) = 0 if and
only if A = B . This concept introduced in [4] extends the concept of relative operator
entropy for positive definite operators due to Fujii and Kamei [6].

The following lemmas will be used throughout this section.

LEMMA 2.1. [4] Let A,B ∈ Mn be J -selfadjoint matrices. Then X [∗]AX �J

X [∗]BX for all X ∈ Mn if and only if A �J B .

LEMMA 2.2. [15] If A∈Mn is a J -selfadjoint matrix with nonnegative eigenval-
ues and In �J A, then Aλ is well defined and In �J Aλ for all λ > 0 .
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From Theorem 1.1 and the fact that f (t) = − 1
t is an operator monotone function

on (0,+∞) , the following result holds (see [15] for another proof).

LEMMA 2.3. If A,B ∈ Mn are J -selfadjoint with positive eigenvalues and A �J

B, then B−1 �J A−1 .

LEMMA 2.4. [15] Let A,B ∈ Mn be J -selfadjoint matrices with positive eigen-
values and In �J A, In �J B. Then

(ABA)λ = AB
1
2

(
B

1
2 A2B

1
2

)λ−1
B

1
2 A, λ ∈ R.

The next proposition provides additional properties of the α -power mean, namely
the effect of interchanging A and B , and the J -monotonicity in the second variable.

PROPOSITION 2.1. Let A,B,C∈Mn be J -selfadjoint matrices with positive eigen-
values and 0 � α � 1 .

(i) If A �J μIn �J B for some μ > 0 , then A�αB = B�1−αA.

(ii) If A �J B and A �J C , then B �J C implies A�αB �J A�αC.

Proof. (i) Without loss of generality, let μ = 1. Otherwise, replace A, B respec-
tively by 1

μ A , 1
μ B. By Lemmas 2.2 and 2.3, we have In �J A− 1

2 . Applying Lemma 2.4

to the J -selfadjoint matrices A− 1
2 ,B , we find

(
A− 1

2 BA− 1
2

)α
= A− 1

2 B
1
2

(
B

1
2 A−1B

1
2

)α−1
B

1
2 A− 1

2 = A− 1
2

(
B�1−αA

)
A− 1

2 ,

which is equivalent to A�αB = B�1−αA .
(ii) The result follows from Lemma 2.1 and the Löwner inequality of indefinite

type. �

The essential part of the indefinite Furuta inequality can be formulated in terms of
the α-power mean as follows. If A,B∈Mn are J -selfadjoint with positive eigenvalues,
such that μIn �J A �J B for some μ > 0, then

A �J A−r� 1+r
p+r

Bp and B−r� 1+r
p+r

Ap �J B

for all p � 1 and r � 0. A real valued continuous function f defined on a real interval
I is said to be J -increasing if f (r) �J f (s) whenever r � s . Analogously, f is
said to be J -decreasing if f (r) �J f (s) whenever r � s . The characterizations of the
J -chaotic order in the next theorem have been stated in the context of Hilbert spaces
[9, 10].

THEOREM 2.1. Let A,B ∈ Mn be J -selfadjoint matrices with positive eigenval-
ues, such that μIn �J A, μIn �J B for some μ > 0 . Then the following statements are
mutually equivalent:
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(i) Log(A) �J Log(B);

(ii) In �J A−r� r
p+r

Bp for all p � 0 and r � 0 ;

(iii) B−r� r
p+r

Ap �J In for all p � 0 and r � 0 ;

(iv) For any fixed t � 0 , Ft (p,r) = A−r� t+r
p+r

Bp is a J -decreasing function of both

p � t and r � 0 ;

(v) Bt �J A−r� t+r
p+r

Bp for all p � t � 0 and r � 0 ;

(vi) For any fixed t � 0 and r � 0 , Ht,r(p) = t+r
p+r S (A−r|Bp) is a J -decreasing func-

tion of p � t ;

(vii) For any fixed t � 0 , Gt (p,r) = B−r� t+r
p+r

Ap is a J -increasing function of both

p � t and r � 0 ;

(viii) B−r� t+r
p+r

Ap �J At for all p � t � 0 and r � 0 ;

(ix) For any fixed t � 0 and r � 0 , Kt,r(p) = t+r
p+r S (B−r|Ap) is a J -increasing func-

tion of p � t ;

(x)
(
A

r
2 ApA

r
2

) 1
q �J

(
A

r
2 BpA

r
2

) 1
q

for all p � 0 , r � 0 and q � 1 with rq � p+ r ;

(xi)
(
B

r
2 ApB

r
2

) 1
q �J

(
B

r
2 BpB

r
2

) 1
q

for all p � 0 , r � 0 and q � 1 with rq � p+ r .

Proof. Without loss of generality, consider μ = 1. Otherwise, replace A,B re-
spectively by Aμ = 1

μ A , Bμ = 1
μ B and observe that Log(A) �J Log(B) if and only if

Log(Aμ) �J Log(Bμ) . Further, the following relations are satisfied:

Ft(p,r) = μ t
(
A−r

μ � t+r
p+r

Bp
μ

)
,

Gt(p,r) = μ t
(
B−r

μ � t+r
p+r

Ap
μ

)
,

Ht,r(p) =
1

μ r

t + r
p+ r

S
(
A−r

μ |Bp
μ
)
+ log

(
μ t+r)A−r,

Kt,r(p) =
1

μ r

t + r
p+ r

S
(
B−r

μ |Ap
μ
)
+ log

(
μ t+r)B−r.

(i) ⇔ (ii) It is a consequence of the application of Lemma 2.1 to a rewriting of
Theorem 1.3.

(ii) ⇔ (iii) From Lemmas 2.2 and 2.3, we have A−p �J In �J Br for p � 0, r � 0.
Interchanging the roles of r and p in (ii) and bearing in mind Proposition 2.1, we get
In �J A−p� p

p+r
Br = Br� r

p+r
A−p . By Lemma 2.3, this is equivalent to B−r� r

p+r
Ap �J In

for all p � 0 and r � 0.
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(i) ⇒ (iv) By Theorem 1.3, the assumption (i) implies Ar �J (A
r
2 BpA

r
2 )

r
p+r for

r > 0 and p � 0. By the Löwner inequality of indefinite type with α = u
r and Lemma

2.3, we get (
A

r
2 BpA

r
2

)− u
p+r �J A−u (3)

for all r � u � 0 and p � 0. On the other hand, we proved that (i) ⇔ (iii) so, inter-
changing in (iii) the roles of r and p , by Lemma 2.1 and applying the above technique
with α = v

p , we find (
B

p
2 ArB

p
2

) v
p+r �J Bv (4)

for all p � v � 0 and r � 0. We have In �J A
r
2 , In �J Bp . Therefore, by Lemma 2.4

with λ = p+v+r
p+r and Lemma 2.1, we successively have

Ft (p,r) = A− r
2

((
A

r
2 BpA

r
2

) p+v+r
p+r

) t+r
p+v+r

A− r
2

= A− r
2

(
A

r
2 B

p
2

(
B

p
2 ArB

p
2

) v
p+r

B
p
2 A

r
2

) t+r
p+v+r

A− r
2

= A−r� t+r
p+v+r

(
B

p
2
(
B

p
2 ArB

p
2
) v

p+r B
p
2

)
.

Taking into account (4), Lemma 2.1 and the J -monotonicity of � t+r
p+v+r

in the second

variable, we get

Ft(p,r) �J A−r� t+r
p+v+r

(
B

p
2 BvB

p
2
)

= Ft (p+ v,r) ,

that is, Ft (p,r) is a J -decreasing function of p � t . Next, we show that Ft (p,r) is a
J -decreasing function of r > 0. Since A−r �J In �J Bp by Proposition 2.1 we obtain

Ft(p,r) = A−r� t+r
p+r

Bp = Bp� p−t
p+r

A−r.

Since In �J Ar , In �J B
p
2 , by Lemma 2.4 with λ = p+r+u

p+r , in conjunction with Lemma
2.1, we obtain

Ft (p,r) = Bp� p−t
p+r

A−r

= B
p
2

((
B

p
2 ArB

p
2
) p+r+u

p+r

)− p−t
p+r+u

B
p
2

= B
p
2

(
B

p
2 A

r
2
(
A

r
2 BpA

r
2
) u

p+r A
r
2 B

p
2

)− p−t
p+r+u

B
p
2

= Bp� p−t
p+r+u

(
A− r

2
(
A

r
2 BpA

r
2
)− u

p+r A− r
2

)
.

Taking into account (3), Lemma 2.1 and the J -monotonicity of � p−t
p+r+u

in the second

variable, we have

Ft(p,r) �J Bp� p−t
p+r+u

(
A− r

2 A−uA− r
2

)
= A−r−u� t+r+u

p+r+u
Bp = Ft(p,r+u),
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that is, Ft (p,r) is a J -decreasing function of r > 0.
(iv) ⇒ (v) From (iv), we easily get Bt = Ft(t,0) �J Ft(p,r) for all p � t � 0 and

r � 0.
(v) ⇒ (ii) Put t = 0 in (v).
(iv) ⇒ (vi) For any fixed t � 0 and r � 0, we observe that

Ht,r(p) = A− r
2 Log

(
A

r
2 Ft(p,r)A

r
2

)
A− r

2 .

We are assuming that Ft(p,r) is a J -decreasing function of p � t . The same conclusion
holds for Ht,r(p) from Lemma 2.1 since the J -chaotic order is weaker then the J -order.

(vi) ⇒ (i) If t = 0 in (vi), then H0,r(0) �J H0,r(1) for r > 0. Letting r → 0+ , this
yields (i).

(i) ⇒ (vii) Analogously to the proof of the implication (i) ⇒ (iv), we may con-
clude that

Av �J
(
A

p
2 BrA

p
2

) v
p+r

(5)

for p � v � 0 and r � 0, and

B−u �J
(
B

r
2 ApB

r
2

)− u
p+r

(6)

for r � u � 0 and p � 0. Changing the roles of A and B in the second part of the proof
of (i) ⇒ (iv), recalling (5) and (6), we conclude that Gt(p,r) is a J -increasing function
of both p � t and r � 0.

(vii) ⇒ (viii) From (vii), we easily get Gt(p,r) �J Gt(t,0) = At for all p � t � 0
and r � 0.

(viii) ⇒ (iii) Put t = 0 in (viii).
(vii) ⇒ (ix) The proof is analogous to the proof of the implication (viii) ⇒ (vi),

observing that

Kt,r(p) = A− r
2 Log

(
A

r
2 Gt(p,r)A

r
2

)
A− r

2 .

(ix) ⇒ (i) If t = 0 in (ix), then K0,r(0) �J K0,r(1) for r > 0 and letting r → 0+

we get (i).
(i) ⇔ (x) Was proved in [4, Theorem 2.2].
(i) ⇒ (xi) By the implication (i) ⇒ (iii) proved above and Lemma 2.1, we get(

B
r
2 ApB

r
2
) r

p+r �J Br and then by the indefinite Löwner inequality with α = p+r
rq we

obtain (xi).
(xi) ⇒ (i) Put q = p+r

r with r > 0 in (xi), then use Lemma 2.1 and the implication
(iii) ⇒ (i). �

The next corollary yields an indefinite version of Kamei’s satellite to Furuta in-
equality [12].
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COROLLARY 2.1. If A,B ∈Mn are J -selfadjoint matrices with positive eigenval-
ues and μIn �J A �J B for some μ > 0 , then

B−r� 1+r
p+r

Ap �J A �J B �J A−r� 1+r
p+r

Bp

for all p � 1 and r � 0 .

Proof. Since A �J B implies Log(A) �J Log(B) , then the result readily follows
from Theorem 2.1 (i) ⇒ (v) and (i) ⇒ (viii) in the particular case t = 1. �

3. Complete form of the Furuta inequality of indefinite type

Theorem 3.1 provides an indefinite complete form of the Furuta inequality (cf.
[19] in the case of Hilbert spaces). In fact, it will be shown in Remark 3.1 that this
theorem, in the particular case p0 = 1, implies Theorem 1.2, this justifying the used
terminology. Firstly, we recall the following useful lemma from [15].

LEMMA 3.1. Let A∈Mn be a J -selfadjoint matrix with nonnegative eigenvalues,
In �J A and let Am ∈ Mn , m ∈ N , be J -selfadjoint matrices with positive eigenvalues
such that Am → A as m → +∞ . Then Aα

m → Aα for 0 � α � 1 , as m → +∞ .

THEOREM 3.1. Let A,B∈Mn be J -selfadjoint with nonnegative eigenvalues such
that μ In �J A �J B for some μ > 0 . If r � 0 , p > p0 > 0 and s = min{p,2p0 +
1,2p0 + r} , then (

A
r
2 Bp0A

r
2

) s+r
p0+r �J

(
A

r
2 BpA

r
2

) s+r
p+r

, (7)

(
B

r
2 ApB

r
2

) s+r
p+r �J

(
B

r
2 Ap0B

r
2

) s+r
p0+r

. (8)

Proof. Without loss of generality, we may suppose that μ = 1. Assume that A , B
are invertible. Otherwise, replace A,B by A+ 1

mIn , B+ 1
mIn and then use Lemma 3.1.

(I) If p � 2p0 +r and p � 2p0 +1, then s = p . By Lemma 2.2 we have In �J A
r
2 ,

In �J Bp0 , and by Lemma 2.4 we get

(
A

r
2 Bp0A

r
2

) p+r
p0+r = A

r
2 B

p0
2

(
B

p0
2 ArB

p0
2

) p−p0
p0+r

B
p0
2 A

r
2 . (9)

Now, replace r, p respectively by p0,r and let q = p0+r
p−p0

in inequality (2) of Theo-
rem 1.2. Note that q � 1, because p � 2p0 + r and that (1 + p0)q � r + p0 . Then(
B

p0
2 ArB

p0
2
) p−p0

p0+r �J Bp−p0 and by Lemma 2.1 we find

A
r
2 B

p0
2

(
B

p0
2 ArB

p0
2

) p−p0
p0+r

B
p0
2 A

r
2 �J A

r
2 BpA

r
2 .
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Bearing in mind (9), we obtain

(
A

r
2 Bp0A

r
2

) p+r
p0+r �J

(
A

r
2 BpA

r
2

) p+r
p+r

, (10)

and so (7) follows because s = p . Similarly, (8) follows from inequality (1) in Theorem
1.2.

(II) If p � 2p0 + r or p � 2p0 + 1, then s = 2p0 + mr with mr = min{1,r} .
Let n ∈ N such that pn < p � pn+1 , where pn = p0 + (2n − 1)(p0 + mr) . Note that
pn+1 = 2pn +mr � p , n ∈ N . Replacing p by p1 in (10), we have

(
A

r
2 Bp0A

r
2

) p1+r
p0+r �J

(
A

r
2 Bp1A

r
2

) p1+r
p1+r

. (11)

Similarly, since p2 = 2p1 +mr � p1, by (10) we get

(
A

r
2 Bp1A

r
2

) p2+r
p1+r �J

(
A

r
2 Bp2A

r
2

) p2+r
p2+r

.

Applying the Löwner inequality of indefinite type with α = p1+r
p2+r to the above inequal-

ity and combining the result so obtained with (11), we find

(
A

r
2 Bp0A

r
2

) p1+r
p0+r �J A

r
2 Bp1A

r
2 �J

(
A

r
2 Bp2A

r
2

) p1+r
p2+r

.

Repeating the above procedure for p > pn and pn+1 = 2pn +mr � p , n ∈ N , by (10)
we obtain (

A
r
2 BpnA

r
2

) p+r
pn+r �J

(
A

r
2 BpA

r
2

) p+r
p+r

.

Now, by the Löwner inequality of indefinite type with α = p1+r
p+r , we get

(
A

r
2 Bp0A

r
2

) p1+r
p0+r �J A

r
2 Bp1A

r
2 �J

(
A

r
2 Bp2A

r
2

) p1+r
p2+r

�J · · · �J
(
A

r
2 BpnA

r
2

) p1+r
pn+r �J

(
A

r
2 BpA

r
2

) p1+r
p+r

for pn < p � pn+1 , n ∈ N , and (7) holds since s = p1 . The proof of (8) follows
similarly. �

REMARK 3.1. For p0 = 1, applying to (7) and (8) the Löwner inequality of in-
definite type with α = 1+r

s+r and s = min{p,3,2+ r} , we obtain

A
r
2 BA

r
2 �J

(
A

r
2 BpA

r
2

) 1+r
p+r

and
(
B

r
2 ApB

r
2

) 1+r
p+r �J B

r
2 AB

r
2 ,

respectively, for all r � 0 and p > 1. If A �J B , then by Lemma 2.1 we get

A
r
2 AA

r
2 �J A

r
2 BA

r
2 �J

(
A

r
2 BpA

r
2

) 1+r
p+r

and
(
B

r
2 ApB

r
2

) 1+r
p+r �J B

r
2 AB

r
2 �J B

r
2 BB

r
2
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for all r � 0 and p > 1. This is the essential part of the indefinite Furuta inequality.
Thus, Theorem 3.1 implies Theorem 1.2. On the other hand, we proved Theorem 3.1
using Theorem 1.2. Henceforth, these two results are equivalent.

The following corollary is a variant of Theorem 3.1.

COROLLARY 3.1. Let A,B∈Mn be J -selfadjoint matrices with nonnegative eigen-
values and δ > 0 fixed. If μ In �J Aδ �J Bδ for some μ > 0 , then (7) and (8) hold for
r � 0 , p > p0 > 0 and s = min{p,2p0 + δ ,2p0 + r} .

Proof. For a fixed δ > 0, let rδ = r/δ , pδ = p/δ , p0δ = p0/δ . Since rδ � 0,
pδ > p0δ > 0 and sδ = min{pδ ,2p0δ + 1,2p0δ + rδ} , we can apply Theorem 3.1 to
obtain (

Aδ rδ
2 Bδ p0δ Aδ rδ

2

) sδ +rδ
p0δ +rδ �J

(
Aδ rδ

2 Bδ pδ Aδ rδ
2

) sδ +rδ
pδ +rδ

and (7) follows. Analogously, we prove (8). �

Next, we derive an indefinite complete form of Furuta’s inequality for J -selfadjoint
matrices obeying the J -chaotic order, which can be seen as the case δ → 0+ of Corol-
lary 3.1, because

lim
δ→0+

Aδ − In
δ

= Log(A).

THEOREM 3.2. Let A,B ∈ Mn be J -selfadjoint matrices with positive eigenval-
ues, such that μIn �J A, μIn �J B for some μ > 0 . If Log(A) �J Log(B) , then (7) and
(8) hold for r � 0, p > p0 > 0 and s = min{p,2p0} .

Proof. Without loss of generality we may consider μ = 1. If r � 0 and 2p0 � p ,
then s = p . Replace in Theorem 2.1 (i) ⇒ (x) r by p0 , p by r and let q = p0+r

p−p0
.

Using Lemmas 2.2, 2.4 and 2.1 as in the proof of Theorem 3.1 (I), we obtain (7) with
s = p . Analogously, from Theorem 2.1 (i) ⇒ (xi) we get (8) with s = p . If r � 0
and 2p0 < p , then s = 2p0 . Let n ∈ N be such that pn < p � pn+1 with pn = 2np0 .
Then p1 = s and pn+1 = 2pn , n ∈ N . Following the steps of the proof of Theorem 3.1
(II), using the inequalities deduced in (I) and the Löwner-Heinz inequality of indefinite
type, the result easily follows. �

4. Some exponential operator inequalities of indefinite type

In this section we present indefinite versions of some exponential operator in-
equalities obtained by Uchiyama [18] and Ando [1] for bounded selfadjoint opera-
tors on a Hilbert space. We remark that if A ∈ Mn is a J -selfadjoint matrix, then(
eA

)[∗] = J eA∗
J = eJA∗J = eA , and so eA is also J -selfadjoint.

The following lemma is useful for the development of this section.
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LEMMA 4.1. If A ∈ Mn is J -selfadjoint and μ In �J A for some μ ∈ R , then
eμ In �J eA.

Proof. If μ In �J A for some μ ∈ R , then the eigenvalues of the J -selfadjoint
matrix A are real. Then there exists τ > 0, such that μ + τ > 0 and the eigenvalues of
the matrix Aτ = A+τIn are positive. We obviously have μIn �J Aτ , where μ = μ +τ .
Next, we prove by induction that μkIn �J Ak

τ , k ∈ N. We show that the inequality still
holds when we replace k by k + 1. Since the eigenvalues of Aτ are positive, the J -

selfadjoint square root of Aτ is well defined. Replacing x by A
1
2
τ x in μk[x,x] � [Ak

τ x,x] ,
we find

μk[A
1
2
τ x,A

1
2
τ x] � [A

2k+1
2

τ x,A
1
2
τ x]

and so μk [Aτ x,x] � [Ak+1
τ x,x] . Having in mind that μ > 0, we have μk+1[x,x] �

μk[Aτ x,x] for any x ∈ Cn . We have just proved that μk+1In �J Ak+1
τ . Then it may be

easily shown that
+∞

∑
k=0

μk

k!
In �J

+∞

∑
k=0

1
k!

Ak
τ ,

that is, eτeμ In = eμ In �J eAτ = eτeA and the desired result eμ In �J eA is readily ob-
tained. �

For J -selfadjoint matrices A,B ∈ Mn , let us consider

A
λ B = λA+(1−λ )B, A !λ B =
(
λA−1 +(1−λ )B−1)−1

for λ � 0, with invertibility of A,B required in A !λ B . If λ = 1
2 , these are the arith-

metic mean and the harmonic mean of A and B , respectively.

THEOREM 4.1. Let A,B∈Mn be J -selfadjoint matrices, such that μ In �J A �J B
for some μ ∈ R . For all p � 0 , r � s � 0 and λ � 0 the following inequalities hold:

(a) esA �J
(
e

r
2 Ae p (B
λA)e

r
2 A

) s
p+r

;

(b) esA �J
(
e

r
2 Ae p (B !λ A)e

r
2 A

) s
p+r

for invertible A,B.

Proof. (a) From the hypothesis, it is easy to see that μ In �J A �J B
λ A for all
λ � 0. Then all the eigenvalues of A and B
λ A are real. Moreover, eμ In �J eA ,
eμ In �J eB
λ A and the J -selfadjoint matrices eA , eB
λ A have positive eigenvalues. If
s = 0, the result is trivially satisfied. Now, let p � 0, r � s > 0 and q = p+r

s . Then
q � 1 and rq � p+ r . Thus (a) follows from Theorem 2.1 (i) ⇒ (x), replacing A,B by
eA,eB
λ A , respectively.
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(b) For λ � 0 by Lemma 2.3 we have λB−1 �J λA−1 and it is easy to see that
(B !λ A)−1 �J A−1 . Then μIn �J A �J B !λ A and the proof follows analogously to
(a). �

In the following corollary, we reformulate the previous result in order to obtain an
indefinite version of an inequality obtained by Uchiyama [18].

COROLLARY 4.1. Under the assumptions of Theorem 4.1, we have

esA �J
(
e

r
2 AeqA+pBe

r
2 A

) s
p+q+r

(12)

for all p � 0, p+q � 0 and r � s � 0 .

Proof. If p � 0, then A �J B implies 0 �J p(B−A) , and so In �J ep(B−A) . If r �
s � 0, by Lemma 2.1 and the Löwner inequality of indefinite type with α = s

r ∈ [0,1] ,
we find

esA �J
(
e

r
2 Aep(B−A)e

r
2 A

) s
r
,

that is, (12) when p+ q = 0. If p � 0 and p+ q > 0, then for λ = p
p+q � 0 we get

B
λ A = 1
p+q(qA+ pB) and so (12) is obtained from Theorem 4.1 (a) with p replaced

by p+q. �

The following result is a converse of Theorem 4.1 when s = p = r and λ = 1 (cf.
[7, 9]).

THEOREM 4.2. Let A,B ∈ Mn be J -selfadjoint matrices such that μIn �J A,
μIn �J B for some μ ∈ R . If

etA �J
(
e

t
2 AetBe

t
2 A

) 1
2

(13)

for every t > 0, then A �J B.

Proof. As X
1
2 − In =

(
X

1
2 + In

)−1(X − In) , from (13) we get

etA − In
t

�J
((

e
t
2 AetBe

t
2 A

) 1
2 + In

)−1
e

t
2 AetBe

t
2 A − In

t
(14)

for any t > 0. Now, we observe that

e
t
2 AetBe

t
2 A − In

t
=

e
t
2 A

(
etB − In

)
e

t
2 A

t
+

etA − In
t

.

Since

lim
t→0+

etA − In
t

= A,
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letting t → 0+ in (14), we easily conclude that A �J 1
2(B+A), and so A �J B . �

Next we present a slight generalization of the previous theorem in the spirit of
Uchiyama [18].

THEOREM 4.3. Let A,B ∈ Mn be J -selfadjoint matrices such that μIn �J A,
μIn �J B for some μ ∈ R . If there exist p,q,r,s with p > 0 , p+q � 0 and r � s > 0,
such that either

estA �J
(
e

rt
2 Aet(qA+pB)e

rt
2 A

) s
p+q+r

(15)

or (
e

rt
2 Bet(qA+pB)e

rt
2 B

) s
p+q+r �J estB (16)

holds for every t > 0, then A �J B.

Proof. We assume that (15) holds. If s = p+q+r, then p+q= 0 and r = s. From
(15) by straightforward computations we get In �J et p(B−A) for every t > 0. Letting
t → 0+ in

et p(B−A)− In
t p

�J 0,

we easily conclude that A �J B . If s < p+q+ r , then,

estA − In
t

�J

(
e

rt
2 Aet(qA+pB)e

rt
2 A

) s
p+q+r − In

t

for any t > 0 and standard computations yield

sA+
O(t2)

t
�J s

p+q+ r
(rA+qA+ pB)+

O(t2)
t

,

where
∣∣∣
∣∣∣ JO(t2)

t

∣∣∣
∣∣∣ → 0 as t → 0+. Henceforth, taking limits as t → 0+ , we get (p+q+

r)A �J (r+q)A+ pB and the result follows. If (16) holds, the proof is analogous. �

Theorem 4.4 includes a partial reformulation of Theorem 2.1 for exponential op-
erators and an indefinite version of a famous result due to Ando (cf [1]).

THEOREM 4.4. Let A,B ∈ Mn be J -selfadjoint matrices, such that μIn �J A,
μIn �J B for some μ ∈ R . Then the following statements are mutually equivalent:

(i) A �J B;

(ii) In �J e−rA� 1
2
erB for all r � 0 ;

(iii) f (r) = e−rA� 1
2
erB is a J -decreasing function of r � 0 ;
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(iv) For any fixed t � 0 , ft (p,r) = e−rA� t+r
p+r

epB is a J -decreasing function of both

p � t and r � 0 ;

(v) For any fixed t � 0 , gt (p,r) = e−rB� t+r
p+r

epA is a J -increasing function of both

p � t and r � 0 .

Proof. According to the hypothesis, A,B have real eigenvalues and eA,eB are J -
selfadjoint matrices with positive eigenvalues, such that eμ In �J eA , eμ In �J eB .

The equivalences (i) ⇔ (iv) ⇔ (v) readily follow from the equivalences (i) ⇔ (v)
⇔ (viii) in Theorem 2.1, replacing A, B by eA , eB , respectively.

(i) ⇒ (iii) Let t = 0 and r = p in (i) ⇒ (v) and the result holds.
(iii) ⇒ (ii) Since f (r) is a J -decreasing function of r � 0, we have In = f (0) �J

f (r) for all r � 0.
(ii) ⇒ (i) It is a consequence of Theorem 4.2 and Lemma 2.1. �

COROLLARY 4.2. Let A,B ∈ Mn be J -selfadjoint matrices, such that μ In �J

A �J B for some μ ∈ R . For all p � t � 0 , r � 0 and 0 � α � 1 the following
inequalities hold:

(a) e−rB� t+r
p+r

ep (A
αB) �J et (A
αB) �J e−rA� t+r
p+r

ep (A
αB);

(b) e−rB� t+r
p+r

ep (A !αB) �J et (A !α B) �J e−rA� t+r
p+r

ep (A !αB) for invertible A,B.

Proof. (a) For 0 � α � 1 we have μIn �J A �J A
α B �J B . For p � t � 0 let
us consider the functions on r � 0 defined by

f̃ p,t (r) = e−rA� t+r
p+r

ep (A
αB) and g̃p,t (r) = e−rB� t+r
p+r

ep (A
αB).

By Theorem 4.4 (i) ⇒ (iv), A �J A
α B implies that f̃ p,t (r) is a J -decreasing function
of r � 0. On the other hand, by Theorem (i) ⇒ (v), A
α B �J B implies that g̃p,t (r)
is a J -increasing function of r � 0. Then,

g̃p,t(r) �J g̃p,t (0) = et (A
αB) = f̃ p,t (0) �J f̃p,t(r),

that is, (a) holds for all p � t � 0, r � 0 and 0 � α � 1.
(b) The proof is similar to (a), bearing in mind that A �J A !αB �J B holds for

0 � α � 1. �
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