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(Communicated by P. S. Bullen)

Abstract. The main aim of this paper is to give improvements of various forms of the Hermite-
Hadamard inequality, namely, that of Fejèr, Lupaş, Brenner-Alzer, Beesack-Pečarić. It is in-
teresting that these improvements also imply the Hammer-Bullen inequality which deals with a
comparison of the left-hand and the right-hand side of the Hermite-Hadamard inequality. These
improvements are given in terms of positive linear functionals. Obtained results are used in
constructing a new family of exponentially convex functions.

1. Introduction

Many important inequalities are established for the class of convex functions, but
one of the most famous is so called Hermite-Hadamard inequality. This double inequal-
ity, which was first discovered by Hermite in 1881, is stated as follows (see for example
[11, p. 137]): let f be a convex function on [a,b] ⊂ R, where a < b . Then

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
. (1.1)

This result was later incorrectly attributed to Hadamard who apparently was not aware
of Hermite’s discovery and today, when relating to (1.1) , we use both names. Maybe
it is interesting to mention that the term convex also stems from a result obtained by
Hermite in 1881.

Note that the first inequality in (1.1) is stronger than the second one: if f is
convex on [a,b] then

1
b−a

∫ b

a
f (x)dx− f

(
a+b

2

)
� f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (x)dx. (1.2)

A geometric proof of (1.2) was given in [4] and analytic one in [2] (see also [11, p.
140]). In the rest of the paper we will refer to (1.2) as the Hammer-Bullen inequality.

In 1906 Fejér, while studying trigonometric polynomials, obtained inequalities
which generalize those of Hermite. He proved that if w : [a,b] → R is a nonnega-
tive integrable function such that the curve y = w(x) is symmetric with respect to the
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straight line x = (a+b)/2 then for every convex function f : [a,b]→ R the following
inequalities hold (see [11, p. 138]):

f

(
a+b

2

)∫ b

a
w(x)dx �

∫ b

a
w(x) f (x)dx � f (a)+ f (b)

2

∫ b

a
w(x)dx. (1.3)

Obviously, for w = 1111 the inequalities in (1.3) become the Hermite-Hadamard
inequalities. Another generalization of the Hermite-Hadamard inequalities was given
in [12] and [7] (or see [11, p. 143]).

THEOREM 1. Let p,q be given positive numbers and [a,b] ⊆ I, a < b. Then the
inequalities

f

(
pa+qb
p+q

)
� 1

2y

∫ T+y

T−y
f (x)dx � p f (a)+q f (b)

p+q
(1.4)

hold for T = (pa+qb)/(p+q), y > 0 and all continuous convex functions f : I → R

if

y � b−a
p+q

min{p,q} .

It can be easily verified that for p = q = 1 and y = (b−a)/2 the inequalities in
(1.4) become the Hermite-Hadamard inequalities. Using the same technique as in the
proof of (1.2) (see [10]) it can be proved that the first inequality in (1.4) is stronger
than the second one, that is,

1
2y

∫ T+y

T−y
f (x)dx− f

(
pa+qb
p+q

)
� p f (a)+q f (b)

p+q
− 1

2y

∫ T+y

T−y
f (x)dx. (1.5)

In [1] Brenner and Alzer proved the following generalization of the Hermite-
Hadamard inequalities which is in fact a Fejér type variant of (1.4) .

THEOREM 2. Let p,q be given positive numbers and let w : [a,b] → R
+
0 be inte-

grable and symmetric with respect to the line x = (pa+qb)/(p+q) = T in the sense

that w(T + t) = w(T − t) for all t ∈
[
0, b−a

p+q min{p,q}
]
. If f : [a,b] → R is a convex

function then for all y ∈ R such that

0 < y � b−a
p+q

min{p,q} (1.6)

the following inequalities hold

f

(
pa+qb
p+q

)∫ T+y

T−y
w(x)dx �

∫ T+y

T−y
w(x) f (x)dx � p f (a)+q f (b)

p+q

∫ T+y

T−y
w(x)dx.

(1.7)

Theorem 1 was generalized for positive linear functionals in [9], but before stating
it let us first introduce some notation.

Let E be a nonempty set and L a linear class of functions f : E → R having the
properties:
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(L1) (∀ f ,g ∈ L) (∀a,b ∈ R) a f +bg ∈ L;

(L2) 1111 ∈ L (that is if (∀t ∈ E) f (t) = 1 then f ∈ L ).

In other words L is a subspace of the vector space R
E over R containing 1111.

We consider positive linear functionals A : L → R , that is, we assume:

(A1) (∀ f ,g ∈ L) (∀a,b ∈ R) A(a f +bg) = aA( f )+bA(g) (linearity)

(A2) (∀ f ∈ L) ( f � 0 −→ A( f ) � 0) (positivity).

If additionally the condition A(1111)= 1 is satisfied, we say that A is a positive normalized
linear functional.

THEOREM 3. Let L satisfy L1, L2 on a nonempty set E and let A be a positive
normalized linear functional. If f : I →R is a continuous convex function and [a,b]⊆ I,
where a < b, then for all g ∈ L such that f (g) ∈ L the inequalities

f

(
pa+qb
p+q

)
� A( f (g)) � p f (a)+q f (b)

p+q
(1.8)

hold, where p and q are any nonnegative real numbers such that

A(g) =
pa+qb
p+q

. (1.9)

REMARK 1. It can be easily verified that Theorem 2 (and therefore Theorem 1)
can be obtained as a special case of Theorem 3. Namely, for given positive numbers p
and q, T and w as in Theorem 2 and y satisfying (1.6) such that w =

∫ T+y
T−y w(x)dx �= 0

we define E = [a,b] , L = R (E) , g = idE and

A( f ) =
1
w

∫ T+y

T−y
w(x) f (x)dx.

Here R (E) denotes the subspace of all (bounded)R-integrable functions on E = [a,b] .
Observe that A is a positive normalized linear functional and

A(g) = A(idE) =
1
w

∫ T+y

T−y
w(x)xdx = T =

pa+qb
p+q

.

By Theorem 3 we immediately obtain (1.7) .

In Section 2 we give improvements of various forms of the Hermite-Hadamard
inequality given in this Introduction. Using these improvements in Section 3, we con-
struct new families of exponentially convex functions.
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2. Main results

Throughout the rest of the paper with I we denote an interval in R and with [a,b]
an interval in R such that −∞ < a < b < ∞ . We also need to equip our linear class L
from Introduction with an additional property denoted by (L3):

(L3) (∀ f ,g ∈ L) (min{ f ,g} ∈ L∧max{ f ,g} ∈ L) (lattice property).

Obviously,
(
R

E ,�
)

(with standard ordering) is a lattice. Also, it can be easily verified
that a subspace X ⊆ R

E is lattice if and only if x ∈ X implies |x| ∈ X . This is a simple
consequence of the fact that for every x ∈ X the functions |x| , x− and x+ can be
defined by

|x|(t) = |x(t)| , x+ (t) = max{0,x(t)} , x− (t) = −min{0,x(t)} , t ∈ E,

and
x+ + x− = |x| , x+ − x− = x,

min{x,y} =
1
2

(x+ y−|x− y|) , max{x,y} =
1
2

(x+ y+ |x− y|) .

Let us note here that R ([a,b]) from Remark 1 is a lattice since f ∈ R ([a,b]) implies
| f | ∈ R ([a,b]) .

A general form of the well known Jensen’s inequality for convex functions (see
[11, p. 45]) which involves positive normalized linear functionals is given in the fol-
lowing theorem.

THEOREM 4. Let L satisfy L1, L2 on a nonempty set E and let A be a positive
normalized linear functional. If φ is a continuous convex function on an interval I then
for all g ∈ L such that φ (g) ∈ L we have A(g) ∈ I and

φ(A(g)) � A(φ(g)). (2.1)

Inequality (2.1) is called Jessen’s inequality for convex functions.
We will also need the following lemma which is a special case of [8, p. 717,

Theorem 1 ] for n = 2.

LEMMA 1. Let φ be a convex function on Dφ , x,y ∈ Dφ and p,q ∈ [0,1] such
that p+q = 1. Then

min{p,q}
[

φ (x)+ φ (y)−2φ
(

x+ y
2

)]
� pφ (x)+qφ (y)−φ (px+qy) (2.2)

� max{p,q}
[

φ (x)+ φ (y)−2φ
(

x+ y
2

)]
.

As our main result we give the following improvement of Theorem 3.
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THEOREM 5. Let L satisfy (L1) ,(L2) and (L3) on a nonempty set E and let A
be a positive normalized linear functional. If f : I → R is a continuous convex function
and [a,b]⊆ I then for all g ∈ L such that g(E) ⊆ [a,b] and f (g) ∈ L we have A(g) ∈
[a,b] and

f

(
pa+qb
p+q

)
� A( f (g)) � p f (a)+q f (b)

p+q
−A(g̃)δ f , (2.3)

where p and q are any nonnegative real numbers such that

A(g) =
pa+qb
p+q

(2.4)

and g̃ , δ f are defined by

g̃ =
1
2
1111−

∣∣g− a+b
2 1111
∣∣

b−a
, δ f = f (a)+ f (b)−2 f

(
a+b

2

)
.

Proof. First observe that g(E) ⊆ [a,b] implies

a = A(a1111) � A(g) � A(b1111) = b,

hence there exist a unique nonnegative real number λ ∈ [0,1] such that A(g) = λa+
(1−λ )b. If p,q are nonnegative real numbers satisfying (2.4) then

p
p+q

= λ ,
q

p+q
= 1−λ .

From Theorem 4 we have

f

(
pa+qb
p+q

)
= f (A(g)) � A( f (g)) ,

which is the first inequality in (2.3) .
By Lemma 1 we have

f (g(x)) = f

(
b−g(x)

b−a
a+

g(x)−a
b−a

b

)

� b−g(x)
b−a

f (a)+
g(x)−a

b−a
f (b)

−min

{
b−g(x)

b−a
,
g(x)−a

b−a

}[
f (a)+ f (b)−2 f

(
a+b

2

)]
.

Applying A to the above inequality we obtain

A( f (g)) � b−A(g)
b−a

f (a)+
A(g)−a

b−a
f (b)−A(g̃)

[
f (a)+ f (b)−2 f

(
a+b

2

)]
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where g̃ is defined on E by

g̃(x) = min

{
b−g(x)

b−a
,
g(x)−a

b−a

}
=

1
2
−
∣∣g(x)− a+b

2

∣∣
b−a

and by L3 it belongs to L. By (2.4) we obtain

A( f (g)) � p f (a)+q f (b)
p+q

−A(g̃)δ f ,

which is the second inequality in (2.3) . �

REMARK 2. Theorem 5 is an improvement of Theorem 3 since under the required
assumptions we have

A(g̃)δ f = A

(
1
2
1111−

∣∣g− a+b
2 1111
∣∣

b−a

)(
f (a)+ f (b)−2 f

(
a+b

2

))
� 0.

Furthermore (this will be important later)

0 � A

(
1
2
1111−

∣∣g− a+b
2 1111
∣∣

b−a

)
� 1

2
.

The following theorem is an improvement of Theorem 3 also.

THEOREM 6. Let L satisfy (L1) ,(L2) and (L3) on a nonempty set E and let A
be a positive normalized linear functional. If f : I → R is a continuous convex function
and [a,b] ⊆ I then for all g ∈ L such that

g(E) ⊆ [a,b] and f (g) ∈ L

and for all y such that

0 < y � b−a
p+q

min{p,q} (2.5)

we have

f

(
pa+qb
p+q

)
� A( f (g)) (2.6)

� p f (a)+q f (b)
p+q

−2A(g̃)
[

p f (a)+q f (b)
p+q

− f

(
pa+qb
p+q

)]
,

where p and q are any nonnegative real numbers such that

A(g) =
pa+qb
p+q

(2.7)

and g̃ is defined by

g̃ =
1
2
1111− |g−A(g)1111|

2y
.
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Proof. First observe that from g(E) ⊆ [a,b] follows A(g) ∈ [a,b] and by (2.5)
we have

a � A(g)− y < A(g)+ y � b.

If we apply Theorem 5 on a1 = A(g)− y, b1 = A(g)+ y we have that

A(g) =
A(g)− y+A(g)+ y

2
=

a1 +b1

2
,

which implies that we can set p = q = 1 and by (2.3) we obtain

f (A(g)) � A( f (g))

and

A( f (g)) � f (A(g)− y)+ f (A(g)+ y)
2

−A(g̃) [ f (A(g)− y)+ f (A(g)+ y)−2 f (A(g))]

= (1−2A(g̃))
f (A(g)− y)+ (A(g)+ y)

2
+2A(g̃) f (A(g)) .

Since f is convex on [a,b] we know that

f (A(g)− y) � b− (A(g)− y)
b−a

f (a)+
A(g)− y−a

b−a
f (b) ,

f (A(g)+ y) � b− (A(g)+ y)
b−a

f (a)+
A(g)+ y−a

b−a
f (b) ,

hence
f (A(g)− y)+ f (A(g)+ y)

2
� b−A(g)

b−a
f (a)+

A(g)−a
b−a

f (b) .

If p and q any nonnegative numbers such that (2.7) holds (observe that they are dif-
ferent from those we started with) we obtain

f (A(g)− y)+ f (A(g)+ y)
2

� p f (a)+q f (b)
p+q

.

Considering all this and the fact that 1−2A(g̃) � 0 (see Remark 2) we deduce

A( f (g)) � (1−2A(g̃))
p f (a)+q f (b)

p+q
+2A(g̃) f (A(g))

=
p f (a)+q f (b)

p+q
−2A(g̃)

[
p f (a)+q f (b)

p+q
− f

(
pa+qb
p+q

)]
. �

From (2.6) we can easily obtain a Hammer-Bullen type inequality for positive
linear functionals.
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COROLLARY 1. Under the conditions of Theorem 6 the following inequality holds:

(1−2A(g̃))
[

p f (a)+q f (b)
p+q

−A( f (g))
]

� 2A(g̃)
[
A( f (g))− f

(
pa+qb
p+q

)]
.

In the following we show how these results can be used to obtain refinements
of the inequalities given in Introduction as well as the related Hammer-Bullen type
inequalities.

COROLLARY 2. Let p,q be given positive numbers and let w : [a,b]→ R
+
0 be an

integrable function symmetric with respect to the line x = (pa+qb)/(p+q) = T in
the sense that (

∀t ∈
[
0,

b−a
p+q

min{p,q}
])

w(T + t) = w(T − t) .

If f : [a,b] → R is a convex function then for all y ∈ R such that

0 < y � b−a
p+q

min{p,q} (2.8)

and

w =
∫ T+y

T−y
w(x)dx �= 0

the following inequalities hold

f

(
pa+qb
p+q

)
� 1

w

∫ T+y

T−y
w(x) f (x)dx � p f (a)+q f (b)

p+q
−Δwδ f , (2.9)

where

Δw =
1
2
− 1

w

∫ T+y

T−y
w(x)

∣∣x− a+b
2

∣∣
b−a

dx,

δ f = f (a)+ f (b)−2 f

(
a+b

2

)
.

Proof. This is a special case of Theorem 5. First observe that for some given
positive numbers p,q and T = (pa+qb)/(p+q) the assumptions on y imply a �
T − y < T + y � b, hence f is defined on [T − y,T + y] . If we choose E, L, A and g
as in Remark 1 all the conditions of Theorem 5 will be satisfied and (2.3) accordingly
becomes

f

(
pa+qb
p+q

)
� 1

w

∫ T+y

T−y
w(x) f (x)dx � p f (a)+q f (b)

p+q
−A(g̃)δ f

where

A(g̃) =
1
w

∫ T+y

T−y
w(x) g̃(x)dx (2.10)

=
1
2
− 1

w

∫ T+y

T−y
w(x)

∣∣x− a+b
2

∣∣
b−a

dx = Δw.
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The condition that f has to be continuous on [a,b] , which is with an arbitrary A re-
quired in Theorem 5 for the same reasons as in Jessen’s inequality, can be omitted in
this special case. �

REMARK 3. Let us emphasize here that under the conditions of Corollary 2 we
have Δwδ f > 0, hence (2.9) is a refinement of (1.7) .

If we want to simplify Δw from the previous theorem we have to consider four
cases:

1. T ∈ (a,(3a+b)/4] and y satisfying (2.8) or T ∈ ((3a+b)/4,(a+b)/2] and
0 < y � (a+b)/2−T .

For such T and y we have x− (a+b)/2 � 0 for all x ∈ [T − y,T + y] hence

Δw =
1
2

+
1
w

∫ T+y

T−y
w(x)

x− a+b
2

b−a
dx

=
1
2

+
T

b−a
− a+b

2(b−a)
=

T −a
b−a

.

Here we used the fact that symmetry of w yields

1
w

∫ T+y

T−y
w(x)xdx = T.

2. T ∈ ((3a+b)/4,(a+b)/2] and y > (a+b)/2−T but still satisfying (2.8) .

For such T and y the function defined by v = x− (a+b)/2 changes sign on
[T − y,T + y] hence we leave Δw in the form (2.10) .

3. T ∈ ((a+b)/2,(a+3b)/4, ] and y > T − (a+b)/2 but still satisfying (2.8) .

For such T and y the function v defined by v = x− (a+b)/2 changes sign on
[T − y,T + y] hence we again leave Δw in the form (2.10) .

4. T ∈ ((a+b)/2,(a+3b)/4, ] and 0 < y � T − (b+a)/2 or T ∈ [(a+3b)/4,b)
and y satisfying (2.8) .

For such T and y we have x− (a+b)/2 � 0 for all x ∈ [T − y,T + y] hence in
a similar way as in (ii) we obtain

Δw =
b−T
b−a

.

As a special case of Corollary 2 we obtain the Hammer-Bullen inequality (1.2) .

COROLLARY 3. If f : [a,b] → R is a convex function then the inequality

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx � 1

b−a

∫ b

a
f (x)dx− f

(
a+b

2

)
(2.11)

holds.
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Proof. This is a special case of Corollary 2 for w = 1111, p = q = 1, y = (b−a)/2.
In this case we have ∫ T+y

T−y
w(x)dx =

∫ b

a
dx = b−a,

so from (2.9) follows

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx (2.12)

� f (a)+ f (b)
2

−Δwδ f .

A simple calculation gives Δw = 1/4, hence

f (a)+ f (b)
2

−Δwδ f =
f (a)+ f (b)

2
− 1

4

[
f (a)+ f (b)−2 f

(
a+b

2

)]

=
1
2

f

(
a+b

2

)
+

f (a)+ f (b)
4

. (2.13)

From (2.12) and (2.13) we obtain

2 f

(
a+b

2

)
� 2

b−a

∫ b

a
f (x)dx

� f

(
a+b

2

)
+

f (a)+ f (b)
2

,

which implies

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx � 1

b−a

∫ b

a
f (x)dx− f

(
a+b

2

)
. �

In a similar way as a special case of Corollary 2 we obtain (1.5) but we skip the
proof here.

COROLLARY 4. Let p,q be given positive numbers and let w : [a,b]→ R
+
0 be an

integrable function symmetric with respect to the line x = (pa+qb)/(p+q) = T in
the sense that

(∀t ∈ [0,min{T −a,b−T}])w(T + t) = w(T − t) .

If f : [a,b] → R is a convex function then for all y such that

0 < y � b−a
p+q

min{p,q} and w =
∫ T+y

T−y
w(x)dx �= 0

the following inequalities hold

f

(
pa+qb
p+q

)
� 1

w

∫ T+y

T−y
w(x) f (x)dx (2.14)

� p f (a)+q f (b)
p+q

−Δw

(
p f (a)+q f (b)

p+q
− f

(
pa+qb
p+q

))
,
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where

Δw = 1− 1
yw

[∫ T+y

T
w(x)xdx−

∫ T

T−y
w(x)xdx

]
.

Proof. This is a special case of Theorem 6 for E, L, A and g as in Remark 1. In
this case (2.6) becomes

f

(
pa+qb
p+q

)
� 1

w

∫ T+y

T−y
w(x) f (x)dx

� p f (a)+q f (b)
p+q

−2A(g̃)
[

p f (a)+q f (b)
p+q

− f

(
pa+qb
p+q

)]
,

where

A(g̃) =
1
2
− 1

2yw

∫ T+y

T−y
w(x) |x−T |dx

=
1
2
− 1

2yw

[
T
∫ T

T−y
w(x)dx−T

∫ T+y

T
w(x)dx−

∫ T

T−y
w(x)xdx+

∫ T+y

T
w(x)xdx

]

=
1
2
− 1

2yw

[∫ T+y

T
w(x)xdx−

∫ T

T−y
w(x)xdx

]
=

1
2

Δw. �

REMARK 4. A Hammer-Bullen type inequality easily follows from (2.14) : under
the conditions of Corollary 4 the following inequality holds

(1−Δw)
[

p f (a)+q f (b)
p+q

− 1
w

∫ T+y

T−y
w(x) f (x)dx

]

� Δw

[
1
w

∫ T+y

T−y
w(x) f (x)dx− f

(
pa+qb
p+q

)]
.

In the next corollary we give a refinement of the discrete analogue of the Hermite-
Hadamard inequalities (see [11, p. 145]).

COROLLARY 5. Let x1 < x2 < · · · < xn be equidistant points in I. Then for every
convex function f : I → R the following inequalities are valid:

f

(
x1 + xn

2

)
� 1

n

n

∑
i=1

f (xi)

� f (x1)+ f (xn)
2

−Δn

(
f (x1)+ f (xn)

2
− f

(
x1 + xn

2

))
,

where

Δn =

{
1− k+1

2k+1 , n = 2k+1

1− k
2k−1 , n = 2k

, k ∈ N0.
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Proof. This is a special case of Theorem 5 for E = [a,b] = [x1,xn] , L = R
E , g =

idE and A defined by

A( f ) =
1
n

n

∑
i=1

f (xi) .

Since
(∀i ∈ {1, . . . ,n−1}) xi+1− xi = h,

we have

A(g) = A(idE) =
1
n

n

∑
i=1

xi =
nx1 + (n−1)(h+(n−1)h)

2

n

=
2x1 +(n−1)h

2
=

x1 + xn

2
,

that is, we can choose p = q = 1 and (2.3) becomes

f

(
x1 + xn

2

)
� 1

n

n

∑
i=1

f (xi) � f (x1)+ f (xn)
2

−A(g̃)δ f ,

where

δ f = 2

(
f (x1)+ f (xn)

2
− f

(
x1 + xn

2

))
and

A(g̃) =
1
2
− 1

n(xn− x1)

n

∑
i=1

∣∣∣∣xi− x1 + xn

2

∣∣∣∣
=

1
2
− 1

n(n−1)h

n

∑
i=1

∣∣∣∣x1 +(i−1)h− 2x1 +(n−1)h
2

∣∣∣∣
=

1
2
− 1

2n(n−1)

n

∑
i=1

|2i−n−1|.

Considering the parity of n we obtain

A(g̃) =

{ 1
2 − 1

2k(2k+1) ∑k
i=1 2i, n = 2k+1

1
2 − 1

2k(2k−1) ∑k
i=1 (2i−1), n = 2k

=

{ 1
2

(
1− k+1

2k+1

)
, n = 2k+1

1
2

(
1− k

2k−1

)
, n = 2k

=
1
2

Δn.

Observe that for n = 1 and n = 2 we have Δn = 0. �
To give our next result we need to add yet another property to the linear class L .
Let A be an algebra of subsets of E and let L be a class of functions f : E → R

having the properties (L1) , (L2) , (L3) and
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(L4) (∀ f ∈ L) (∀E1 ∈ A ) fCE1 ∈ L;

where CE1 is the characteristic function of E1, that is,

CE1 (t) =
{

1, t ∈ E1

0, t ∈ E \E1
.

It can be easily seen that for every E1 ∈ A the following assertions hold true:

(i) CE1 ∈ L .

(ii) If A is a positive linear functional on L such that A(CE1) > 0 and g∈ L then A1

defined by

A1 (g) =
A(gCE1)
A(CE1)

is a positive normalized linear functional.

(iii) If A is a positive linear functional on L and g ∈ L then

A(CE1)+A
(
CE\E1

)
= 1

and
A(gCE1)+A

(
gCE\E1

)
= A(g) .

THEOREM 7. Let L satisfy (L1)− (L4) on a nonempty set E and let f : I → R

be a continuous convex function while g,h ∈ L are such that f (g) , f (h) ∈ L. Let A, B
be two positive normalized linear functionals on L such that A(h) = B(g) . If E1 ∈ A
satisfies A(CE1) > 0, A

(
CE\E1

)
> 0 and

(∀t ∈ E) a � g(t) � b,

where

a = min

{
A(hCE1)
A(CE1)

,
A
(
hCE\E1

)
A
(
CE\E1

)
}

,

b = max

{
A(hCE1)
A(CE1)

,
A
(
hCE\E1

)
A
(
CE\E1

)
}

then
f (A(h)) � B( f (g)) � A( f (h))−B(g̃)δ f , (2.15)

where g̃ and δ f are defined as in Theorem 5. In the limiting case a = b, (2.15) becomes

f (A(h)) = B( f (g)) � A( f (h)) .
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Proof. By Jessen’s inequality (see (ii) above) we have

f

(
A(hCE1)
A(CE1)

)
� A( f (h)CE1)

A(CE1)

and

f

(
A
(
hCE\E1

)
A
(
CE\E1

)
)

�
A
(
f (h)CE\E1

)
A
(
CE\E1

) .

Without loss of generality we may assume

a = min

{
A(hCE1)
A(CE1)

,
A
(
hCE\E1

)
A
(
CE\E1

)
}

=
A(hCE1)
A(CE1)

,

b = max

{
A(hCE1)
A(CE1)

,
A
(
hCE\E1

)
A
(
CE\E1

)
}

=
A
(
hCE\E1

)
A
(
CE\E1

) .

If a < b and
p = A(CE1) , q = A

(
CE\E1

)
,

we have
p+q = A(CE) = A(1111) = 1,

B(g) = A(h) = A(hCE1)+A
(
hC

E\E1

)
= pa+qb,

and applying Theorem 5 to B and g by (2.3) we obtain

f (A(h)) = f (B(g)) � B( f (g)) � p f (a)+q f (b)−B(g̃)δ f

= A(CE1) f

(
A(hCE1)
A(CE1)

)
+A

(
CE\E1

)
f

(
A
(
hCE\E1

)
A
(
CE\E1

)
)
−B(g̃)δ f

� A( f (h)CE1)+A
(
f (h)CE\E1

)−B(g̃)δ f

= A( f (h))−B(g̃)δ f .

If a = b it follows that g is a constant function and the limiting case follows immedi-
ately. �

Theorem 7 is an improvement of [11, Theorem 5.14] and at the same time it gives
a refinement of Jessen’s inequality (2.1) . We also give the following improvement of
[11, Theorem 5.14].

THEOREM 8. Suppose that the assumptions of Theorem 7 hold. If a < b, then for
all y such that

0 < y � min{B(g)−a,b−B(g)} (2.16)

the following inequalities are valid:

f (A(h)) � B( f (g))

� A( f (h))−2B(g̃)
[
A(CE1) f (a)+A

(
CE\E1

)
f (b)− f (B(g))

]
,
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where

g̃ =
1
2
1111− |g−B(g)1111|

2y
.

Proof. This proof is almost identical to the proof of Theorem 7 except that we use
Theorem 6 instead of Theorem 5, hence for a < b and y satisfying (2.16) using (2.6)
we obtain

f (A(h)) � B( f (g))

� A( f (h))−2B(g̃)
[
A(CE1) f (a)+A

(
CE\E1

)
f (b)− f (B(g))

]
. �

3. n−exponential convexity and exponential convexity of Hammer-Bullen
differences, applications to Stolarsky type means

Motivated by Theorems 5 and 6, we define two functionals Φi : Lg → R, i = 1,2,
by

Φ1( f ) =
p f (a)+q f (b)

p+q
−A( f (g))−A(g̃)δ f (3.1)

where A,g, g̃, p and q are as in Theorem 5, Lg = { f : I → R : f (g) ∈ L} , [a,b]⊆ I and

Φ2( f ) =
p f (a)+q f (b)

p+q
−A( f (g))−2A(g̃)

[
p f (a)+q f (b)

p+q
− f

(
pa+qb
p+q

)]
(3.2)

where A,g, g̃, p and q are as in Theorem 6, Lg as in the above and [a,b]⊆ I. Obviously,
Φ1 and Φ2 are linear.

If f is additionally continuous and convex then Theorems 5 and 6 imply Φi( f ) �
0, i = 1,2.

In the following with f0 we denote the function defined by f0 (x)= x2 on whatever
domain we need.

Now, we give mean value theorems for the functionals Φi , i = 1,2.

THEOREM 9. Let L satisfy (L1),(L2) and (L3) on a nonempty set E and let A
be a positive normalized linear functional on L. Let g ∈ L be such that f0 ∈ Lg ,
g(E) ∈ [a,b], [a,b]⊆ I and let f ∈C2(I) be such that f ∈ Lg . If Φ1 and Φ2 are linear
functionals defined as in (3.1) and (3.2) then there exist ξi ∈ [a,b] such that

Φi( f ) =
f ′′ (ξi)

2
Φi( f0), i = 1,2.

Proof. We give a proof for the functional Φ1 . Since f ∈ C2(I) there exist real
numbers m = minx∈[a,b] f ′′(x) and M = maxx∈[a,b] f ′′(x) . It is easy to show that the
functions f1, f2 defined by

f1(x) =
M
2

x2− f (x), f2(x) = f (x)− m
2

x2
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are continuous and convex, therefore Φ1( f1) � 0,Φ1( f2) � 0. This implies

m
2

Φ1( f0) � Φ1( f ) � M
2

Φ1( f0).

If Φ1( f0) = 0, there is nothing to prove. Suppose Φ1( f0) > 0. We have

m � 2Φ1( f )
Φ1(x2)

� M.

Hence, there exists ξ1 ∈ [a,b] such that

Φ1( f ) =
f ′′(ξ1)

2
Φ1( f0). �

THEOREM 10. Let L satisfy (L1),(L2) and (L3) on a non-empty set E and let A
be a positive normalized linear functional on L. Let g∈ L be such that f0 ∈ Lg, g(E)∈
[a,b], [a,b] ⊆ I and f1, f2 ∈ C2(I) such that f1, f2 ∈ Lg . If Φ1 and Φ2 are linear
functionals defined as in (3.1) and (3.2) then there exist ξi ∈ [a,b] such that

Φi( f1)
Φi( f2)

=
f ′′1 (ξi)
f ′′2 (ξi)

, i = 1,2

provided that the denominators are non-zero.

Proof. We give a proof for the functional Φ1 . Define f3 ∈C2([a,b]) by

f3 = c1 f1 − c2 f2, where c1 = Φ1( f2), c2 = Φ1( f1).

Using Theorem 9 we get that there exists ξ1 ∈ [a,b] such that(
c1

f ′′1 (ξ1)
2

− c2
f ′′2 (ξ1)

2

)
Φ1( f0) = 0.

Since Φ1( f0) �= 0, (otherwise we have a contradiction with Φ1( f2) �= 0, by Theorem
9), we obtain

Φ1( f1)
Φ1( f2)

=
f ′′1 (ξ1)
f ′′2 (ξ1)

. �

Next we introduce some function properties which are going to be explored here
and immediately after that we give some characterizations of these properties.

DEFINITION 1. A function ψ : I → R is n−exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ jψ
(

xi + x j

2

)
� 0

holds for all choices ξi ∈ R and xi ∈ I , i = 1, . . . ,n .
A function ψ : I → R is n−exponentially convex if it is n−exponentially convex

in the Jensen sense and continuous on I .
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REMARK 5. It is clear from the definition that 1−exponentially convex functions
in the Jensen sense are in fact non-negative functions. Also, n−exponentially convex
functions in the Jensen sense are k−exponentially convex in the Jensen sense for every
k ∈ N , k � n .

By definition of positive semi-definite matrices and some basic linear algebra we
have the following proposition.

PROPOSITION 1. If ψ is an n-exponentially convex in the Jensen sense, then the

matrix

[
ψ
(

xi + x j

2

)]k

i, j=1
is a positive semi-definite matrix for all k ∈ N,k � n. Par-

ticularly, det

[
ψ
(

xi + x j

2

)]k

i, j=1
� 0 for all k ∈ N , k � n.

DEFINITION 2. A function ψ : I →R is exponentially convex in the Jensen sense
on I if it is n−exponentially convex in the Jensen sense for all n ∈ R .

A function ψ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 6. It is known (and easy to show) that ψ : I → R
+ is log-convex in the

Jensen sense if and only if

α2ψ(x)+2αβ ψ
(

x+ y
2

)
+ β 2ψ(y) � 0

holds for every α,β ∈ R and x,y ∈ I . It follows that a positive function is log-convex
in the Jensen-sense if and only if it is 2−exponentially convex in the Jensen sense.
Also, using basic convexity theory, it follows that a positive function is log-convex if
and only if it is 2−exponentially convex.

We will also need the following result (see for example [11]).

PROPOSITION 2. If Ψ is a convex function on I and if x1 � y1,x2 � y2,x1 �=
x2,y1 �= y2 then the following inequality is valid

Ψ(x2)−Ψ(x1)
x2 − x1

� Ψ(y2)−Ψ(y1)
y2− y1

. (3.3)

If Ψ is concave on I the inequality reverses.

When dealing with functions with different degree of smoothness divided differ-
ences are found to be very useful.
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DEFINITION 3. The second order devided difference of a function f : I → R at
mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi; f ] = f (yi), i = 0,1,2

[yi,yi+1; f ] =
f (yi+1)− f (yi)

yi+1− yi
, i = 0,1

[y0,y1,y2; f ] =
[y1,y2; f ]− [y0,y1; f ]

y2− y0
. (3.4)

REMARK 7. The value [y0,y1,y2; f ] is independent of the order of the points
y0,y1 and y2 . This definition may be extended to include the case in which some
or all the points coincide. Namely, taking the limit y1 → y0 in (3.4), we get

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y2; f ] =
f (y2)− f (y0)− f ′(y0)(y2 − y0)

(y2 − y0)2 ,y2 �= y0

provided f ′ exists, and furthermore, taking the limits yi → y0, i = 1,2 in (3.4), we get

lim
y2→y0

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y0; f ] =
f ′′(y0)

2

provided that f ′′ exists.

We use an idea from [5] to give an elegant method of producing an n− exponen-
tially convex functions and exponentially convex functions applying the functionals Φ1

and Φ2 on a given family with the same property.

THEOREM 11. Let Φi, i = 1,2, be linear functionals defined as in (3.1) and
(3.2). Let ϒ = { fs : s ∈ J} , where J is an interval in R , be a family of functions de-
fined on an open interval I such that ϒ ⊆ Lg and that the function s 
→ [y0,y1,y2; fs]
is n−exponentially convex in the Jensen sense on J for every three mutually differ-
ent points y0,y1,y2 ∈ I . Then s 
→ Φi( fs) is an n−exponentially convex function
in the Jensen sense on J . If the function s 
→ Φi( fs) is continuous on J then it is
n−exponentially convex on J .

Proof. For ξi ∈ R , i = 1, . . . ,n and si ∈ J , i = 1, . . . ,n , we define the function
h : I → R by

h(y) =
n

∑
i, j=1

ξiξ j f si+s j
2

(y).

Using the assumption that the function s 
→ [y0,y1,y2; fs] is n−exponentially convex
in the Jensen sense we obtain

[y0,y1,y2;h] =
n

∑
i, j=1

ξiξ j[y0,y1,y2; f si+s j
2

] � 0,
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which in turn implies that h is a convex (and continuous) function on I , therefore
Φi(h) � 0, i = 1,2. Hence

n

∑
i, j=1

ξiξ jΦi( f si+s j
2

) � 0.

We conclude that the function s 
→ Φi( fs) is n−exponentially convex on J in the
Jensen sense. If the function s 
→ Φi( fs) is also continuous on J , then s 
→ Φi( fs)
is n−exponentially convex by definition. �

The following corollary is an immediate consequence of the above theorem.

COROLLARY 6. Let Φi, i = 1,2, be linear functionals defined as in (3.1) and
(3.2). Let ϒ = { fs : s ∈ J} , where J is an interval in R , be a family of functions defined
on an open interval I such that ϒ ⊆ Lg and that the function s 
→ [y0,y1,y2; fs] is
exponentially convex in the Jensen sense on J for every three mutually different points
y0,y1,y2 ∈ I . Then s 
→ Φi( fs) is an exponentially convex function in the Jensen sense
on J . If the function s 
→ Φi( fs) is continuous on J then it is exponentially convex on
J .

COROLLARY 7. Let Φi, i = 1,2, be linear functionals defined as in (3.1) and
(3.2). Let Ω = { fs : s ∈ J} , where J is an interval in R , be a family of functions
defined on an open interval I such that Ω ⊆ Lg and that the function s 
→ [y0,y1,y2; fs]
is 2−exponentially convex in the Jensen sense on J for every three mutually different
points y0,y1,y2 ∈ I . Then the following statements hold:

(i) If the function s 
→ Φi( fs) is continuous on J then it is 2−exponentially convex
function on J . If s 
→ Φi( fs) is additionally strictly positive than it is also log-
convex on J .

(ii) If the function s 
→ Φi( fs) is strictly positive and differentiable on J then for
every s,q,u,v ∈ J , such that s � u and q � v, we have

μs,q(Φi,Ω) � μu,v(Φi,Ω), i = 1,2, (3.5)

where

μs,q(Φi,Ω) =

⎧⎪⎪⎨
⎪⎪⎩
(

Φi( fs)
Φi( fq)

) 1
s−q

, s �= q,

exp

(
d
ds Φi( fs)
Φi( fs)

)
, s = q.

(3.6)

for fs, fq ∈ Ω .

Proof. (i) This is an immediate consequence of Theorem 11 and Remark 6.
(ii) Since by (i) the function s 
→ Φi( fs) is log-convex on J , that is, the function

s 
→ logΦi( fs) is convex on J . Applying Proposition 2 we get

logΦi( fs)− logΦi( fq)
s−q

� logΦi( fu)− logΦi( fv)
u− v

(3.7)
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for s � u,q � v,s �= q,u �= v , and therefrom conclude that

μs,q(Φi,Ω) � μu,v(Φi,Ω), i = 1,2.

Cases s = q and u = v follow from (3.7) as limit cases. �

REMARK 8. Note that the results from Theorem 11, Corollary 6, Corollary 7 still
hold when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0 , for a family of dif-
ferentiable functions fs such that the function s 
→ [y0,y1,y2; fs] is n−exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and furthermore, they still hold when all three points coincide for a fam-
ily of twice differentiable functions with the same property. The proofs are obtained by
recalling Remark 7 and suitable characterization of convexity.

Now, we present several families of functions which fulfil the conditions of The-
orem 11, Corollary 6 and Corollary 7 (and Remark 8). This enable us to construct a
large families of functions which are exponentially convex. For a discussion related to
this problem see [3].

In the rest of the section we consider only Φ1 and Φ2 defined as in (3.1) and (3.2)
with A which is continuous and g such that compositions with any function from the
chosen familly Ωi as well as with other functions which appear as arguments of Φ1

and Φ2 remain in L .

EXAMPLE 1. Consider a family of functions

Ω1 = {gs : R → [0,∞) : s ∈ R}

defined by

gs(x) =

{
1
s2

esx, s �= 0,

1
2 x2, s = 0.

We have d2gs
dx2 (x) = esx > 0 which shows that gs is convex on R for every s ∈ R

and s 
→ d2gs
dx2 (x) is exponentially convex by definition. Using analogous arguing as in

the proof of Theorem 11 we also have that s 
→ [y0,y1,y2;gs] is exponentially convex
(and so exponentially convex in the Jensen sense). Using Theorem 6 we conclude that
s 
→ Φi(gs) , i = 1,2, are exponentially convex in the Jensen sense. It is easy to verify
that these mappings are continuous (although mapping s 
→ gs is not continuous for
s = 0), so they are exponentially convex.

For this family of functions, μs,q(Φi,Ω1) , i = 1,2, from (3.6) become

μs,q(Φi,Ω1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Φi(gs)
Φi(gq)

) 1
s−q

, s �= q,

exp
(

Φi(id·gs)
Φi(gs)

− 2
s

)
, s = q �= 0,

exp
(

Φi(id·g0)
3Φi(g0)

)
, s = q = 0,
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and using (3.5) they are monotonous functions in parameters s and q .
Using Theorem 10 it follows that for i = 1,2

Ms,q(Φi,Ω1) = logμs,q(Φi,Ω1)

satisfy a � Ms,q(Φi,Ω1) � b , which shows that Ms,q(Φi,Ω1) are means (of a function
g ). Notice that by (3.5) they are monotonous.

EXAMPLE 2. Consider a family of functions

Ω2 = { fs : (0,∞) → R : s ∈ R}

defined by

fs(x) =

⎧⎪⎪⎨
⎪⎪⎩

xs

s(s−1) , s �= 0,1,

− logx, s = 0,

x logx, s = 1.

Here, d2 fs
dx2 (x) = xs−2 = e(s−2) lnx > 0 which shows that fs is convex for x > 0 and

s 
→ d2 fs
dx2 (x) is exponentially convex by definition. Arguing as in Example 1 we get that

the mappings s 
→ Φi(gs), i = 1,2 are exponentially convex. Functions (3.6) in this
case are equal to:

μs,q(Φi,Ω2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Φi( fs)
Φi( fq)

) 1
s−q

, s �= q,

exp
(

1−2s
s(s−1) − Φi( fs f0)

Φi( fs)

)
, s = q �= 0,1,

exp
(
1− Φi( f 2

0 )
2Φi( f0)

)
, s = q = 0,

exp
(
−1− Φi( f0 f1)

2Φi( f1)

)
, s = q = 1.

If Φi is positive, then Theorem 10 applied for f = fs ∈ Ω2 and g = fq ∈ Ω2 yields that
there exists ξ ∈ [a,b] such that

ξ s−q =
Φi( fs)
Φi( fq)

.

Since the function ξ 
→ ξ s−q is invertible for s �= q , we then have

a �
(

Φi( fs)
Φi( fq)

) 1
s−q

� b, (3.8)

which together with the fact that μs,q(Φi,Ω2) is continuous, symmetric and monotonous
(by (3.5)), shows that μs,q(Φi,Ω2) is a mean (of a function h ).
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EXAMPLE 3. Consider a family of functions

Ω3 = {hs : (0,∞) → (0,∞) : s ∈ (0,∞)}
defined by

hs(x) =

⎧⎨
⎩

s−x

ln2 s
, s �= 1,

x2

2 , s = 1.

Since s 
→ d2hs
dx2 (x) = s−x is the Laplace transform of a non-negative function (see [13])

it is exponentially convex. Obviously hs are convex functions for every s > 0.
For this family of functions, μs,q(Φi,Ω3) , from (3.6) becomes

μs,q(Φi,Ω3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Φi(hs)
Φi(hq)

) 1
s−q

, s �= q,

exp
(
−Φi(id·hs)

sΦi(hs)
− 2

s lns

)
, s = q �= 1,

exp
(
− 2Φi(id·h1)

3Φi(h1)

)
, s = q = 1,

and it is monotonous in parameters s and q by (3.5).
Using Theorem 10, it follows that

Ms,q (Φi,Ω3) = −L(s,q) logμs,q(Φi,Ω3),

satisfies a � Ms,q(Φi,Ω3) � b , which shows that Ms,q(Φi,Ω3) is a mean (of a function
h ). L(s,q) is the logarithmic mean defined by L(s,q) = s−q

log s−logq , s �= q , L(s,s) = s .

EXAMPLE 4. Consider a family of functions

Ω4 = {ks : (0,∞) → (0,∞) : s ∈ (0,∞)}
defined by

ks(x) =
e−x

√
s

s

Since s 
→ d2ks
dx2 (x) = e−x

√
s is the Laplace transform of a non-negative function (see

[13]) it is exponentially convex. Obviously ks are convex functions for every s > 0.
For this family of functions, Φi,Ω4) from (3.6) becomes

μs,q(Φi,Ω4) =

⎧⎪⎨
⎪⎩
(

Φi(ks)
Φi(kq)

) 1
s−q

, s �= q,

exp
(
− Φi(id·ks)

2
√

sΦi(ks)
− 1

s

)
, s = q,

and it is monotonous function in parameters s and q by (3.5).
Using Theorem 10, it follows that

Ms,q(Φi,Ω4) = −(√s+
√

q
)
logμs,q(Φi,Ω4)

satisfies a � Ms,q(Φi,Ω4) � b , which shows that Ms,q(Φi,Ω4) is a mean (of a function
h ).
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