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A HARDY INEQUALITY FOR THE GRUSHIN TYPE OPERATORS

LI ZHU

(Communicated by Ivan Perić)

Abstract. We prove a Hardy inequality related to Carnot-Carathéodory distance for the Grushin
type operators like Δx + |x|2∂ 2

t . The procedure is based on a representation formula for such
operators.

1. Introduction

The Hardy inequality in R
N states that, for all f ∈C∞

0 (RN) and N � 3,

∫
RN

|∇ f |2dx � (N−2)2

4

∫
RN

f 2

|x|2 dx. (1.1)

Inequality (1.1) has been generalized to the degenerate elliptic differential operators by
several authors for many years. For details, we refer to [2, 3, 4, 5, 10].

The aim of this note is to prove a Hardy type inequalities for the Grushin type op-
erators like Δx + |x|2∂ 2

t , where non-isotropic gauge is replaced by the Carnot-Carathé-
odory distance dcc . We refer to [3, 4] for the Hardy inequality related to non-isotropic
gauge. We note that it has been proved by D’Ambrosio (see [3], Theorem 3.3) that the
following Hardy inequality holds for all f ∈C∞

0 (Rn+1)

∫
Rn+1

|∇L f |2 �
(

n−2
2

)2 ∫
Rn+1

| f |2
N(x,t)2 ,

where N(x, t) = 4
√|x|4 +4t2 and ∇L = (∇x, |x|∂t) is the gradient associated with the

operators Δx + |x|2∂ 2
t . Notice that N(x,t) and dcc are equivalent, there exists a constant

C , such that for all f ∈C∞
0 (Rn+1) ,

∫
Rn+1

|∇L f |2 � C
∫

Rn+1

| f |2
d2

cc
.

In fact, one may choose the constant

C =
(

n−2
2

)2

min
(x,t)∈Rn+1\{0}

dcc(x,t)
N(x, t)

.
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However, such constant C is not sharp. In this note, we shall give a new proof of
Hardy inequalities related to dcc . The corresponding constants is the same as the Hardy
inequalities related to N(x,t) (see [3], Theorem 3.1) and it seems that it is sharp though
we fail to prove it (see Remark 3.3).

Recall that for the Grushin type operators, the sub-Riemannian metric is given by
the vectors

X1 =
∂

∂x1
, · · · ,Xn =

∂
∂xn

, T1 = x1
∂
∂ t

, · · · ,Tn = xn
∂
∂ t

.

By Chow’s conditions, the Carnot-Carathéodory distance dcc(u,v) between any two
points u,v ∈ R

n+1 is finite. We denote by dcc(u) = dcc(o,u) , where o = (0,0) is the
origin.

Define on R
n+1 the dilation δλ as

δλ u = δλ (x,t) := (λx,λ 2t), u = (x,t) ∈ R
n+1.

For simplicity, we will write it as λu = (λx,λ 2t) . The Jacobian determinant of δλ
is λ Q , where Q = n + 2 is the homogeneous dimension. The Carnot-Carathéodory
distance dcc satisfies

dcc(λ (x,t)) = λdcc(x,t), λ > 0.

To this end we have:

THEOREM 1.1. Let 1 < p < Q−α . There holds, for all f ∈C∞
0 (Rn+1) ,∫

Rn+1

|∇L f |p
dα

cc
�
(

Q− p−α
p

)p ∫
Rn+1

| f |p
dp+α

cc
. (1.2)

2. Geodesics for the Grushin type operators

In this section we shall give a parametrization of R
n+1 using the geodesics. We

refer to [7] for the analogous parametrization of the Heisenberg group.
Recall that the Grushin operator is given by

ΔL = Δx + |x|2 ∂ 2

∂ t2
.

The associated Hamiltonian function H(x,y,ξ ,θ ) is of the form

H(x,t,ξ ,η) =
1
2
(|ξ |2 + |x|2η2).

We note all the geodesics are solutions of the Hamiltonian system (cf. [6, 11])⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(s) =
∂H
∂ξ

= ξ (s),

ξ̇ (s) = −∂H
∂x

= −xη2(s),

ṫ(s) =
∂H
∂η

= |x|2η ,

η̇(s) = −∂H
∂ t

= 0, i.e. η(s) = η(0),

(2.1)
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Taking the initial date (x(0),t(0)) = (0,0) and (ξ (0),η(0)) = (A,φ) , one can find the
solutions ⎧⎪⎪⎨

⎪⎪⎩
x(s) = A

sinφs
φ

,

t(s) = |A|2 2φs− sin2φs
4φ2 ,

where the time s is exactly the Carnot-Carathéodory distance. Letting φ → 0, one get
the Euclidean geodesics

(x(s),t(s)) = (As,0)

and hence the correct normalization is |A|2 = 1.
Set

Ω = {(A,φ ,ρ) ∈ R
n×R×R : −π � φρ � π , ρ � 0, |A|2 = 1} ⊂ R

n+2.

and define Φ : Ω → R
n+1 by Φ(A,φ ,ρ) = (x(A,φ ,ρ), t(A,φ ,ρ)) , where⎧⎪⎪⎨

⎪⎪⎩
x(A,φ ,ρ) = A

sinφρ
φ

,

t(A,φ ,ρ) =
2φρ − sin2φρ

4φ2 .

(2.2)

We note if one fixes ρ > 0, equations (2.2) with |A|= 1 and − π
ρ � φ � π

ρ parameterize
∂Bρ , where Bρ is the Carnot-Carathéodory ball centered at the origin and of radius
ρ > 0.

On the other hand, the Carnot-Carathéodory distance dcc satisfies (see [11], The-
orem 2.3)

dcc(x,t) = dcc((0,0),(x,t)) =
θ

sinθ
|x|

for x �= 0 , where θ = μ−1
(

2t
|x|2
)

, μ−1 is the inverse function of μ and

μ(θ ) =
θ

sin2 θ
− cotθ =

2θ − sin2θ
2sin2 θ

: (−π ,π) → R.

is a diffeomorphism of the interval (−π ,π) onto R . When x = 0 , dcc satisfies d2
cc(0,t)

= 2π |t| (see [11], Theorem 2.2).
By (2.2), we have

μ(θ ) =
2t
|x|2 =

2φρ − sin2φρ
2sin2 φρ

= μ(φρ).

Therefore,
θ = φρ (2.3)

since μ is a diffeomorphism.
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We finally recall the polar coordinates associated with dcc . Given any (0,0) �=
u = (x, t) ∈ R

n+1 , set x∗ = x
dcc(u) , t∗ = t

d2
cc(u) and u∗ = (x∗,t∗) . It has been proved in

[9] the following coarea formula∫
Rn+1

f (u)|∇Ldcc(u)|du =
∫ +∞

−∞

∫
{dcc(u)=λ}

f (u)dP(Eλ )dλ ,

where Eλ = {u ∈ R
n+1 : dcc(u) > λ} and P(Eλ ) is the perimeter-measure. Notice that

|∇Ldcc(u)| = 1 a.e. (cf. [9]) and it is easy to check P(Eλ ) = λ Q−1P(E1) through the
dilation (see [8], Proposition 2.2 for the case of n = 1.), we have the following polar
coordinates ∫

Rn+1
f (u)du =

∫ +∞

0

∫
Σ

f (λu∗)λ Q−1dσdλ ,

when f ∈ L1(Rn+1) , where Σ is the unit sphere associated with dcc , i.e., Σ = {u ∈
R

n+1 : dcc(u) = 1}

3. The proof

To proved the main result, we first need the following representation formula. The
idea is due to Cohn and Lu ([6], Theorem 1.2).

LEMMA 3.1. Let Z = {0}×R ⊂ R
n+1 . Set Z∩Σ = {(0,z0),(0,z1)} . For each

δ > 0 , define Σδ = {(x,t) ∈ Σ|dcc((x,t),(0,z0)) � δ ,dcc((x,t),(0,z1)) � δ} . Then for
all f ∈C(Rn+1)∩C1(Rn+1 \Z) and R2 > R1 > 0 , there holds∫

Σδ
f (R2u

∗)dσ −
∫

Σδ
f (R1u

∗)dσ =
∫ R2

R1

∫
Σδ
〈∇L f ,∇Ldcc〉dσdρ . (3.1)

Proof. Notice that for any u∗ ∈ Σδ ,

f (R2u
∗)− f (R1u

∗) =
∫ R2

R1

d
dρ

f (ρu∗)dρ

=
∫ R2

R1

(
n

∑
i=1

∂ f (u)
∂xi

· ∂xi

∂ρ
+

∂ f (u)
∂ t

· ∂ t
∂ρ

)
dρ ,

where u = (x, t) = ρu∗ . Integrating over Σδ with respect to dσ , we have

∫
Σδ

f (R2u
∗)dσ −

∫
Σδ

f (R1u
∗)dσ =

∫
Σδ

∫ R2

R1

(
n

∑
i=1

∂ f (u)
∂xi

· ∂xi

∂ρ
+

∂ f (u)
∂ t

· ∂ t
∂ρ

)
dρdσ .

On the other hand, using equation (2.2), we have

n

∑
i=1

∂ f (u)
∂xi

· ∂xi

∂ρ
+

∂ f (u)
∂ t

· ∂ t
∂ρ

=〈Acosφρ ,∇x f 〉+ sin2 φρ
φ

∂ f (u)
∂ t

=〈Acosφρ ,∇x f 〉+ sinφρ · |x|∂ f (u)
∂ t

.

(3.2)
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To finish the proof, it is enough to show

∇xdcc(u) = Acosφρ ; |x|∂t dcc(u) = sinφρ .

in R
n \{0}×R . This will be proved in the following lemma 3.2. The proof of Lemma

3.1 is therefore completed. �

LEMMA 3.2. There holds, for x �= 0 ,

∇xdcc(u) = Acosφρ ; |x|∂t dcc(u) = sinφρ .

Proof. Recall that if x �= 0 , then

dcc(u) = dcc(x,t) =
θ

sinθ
|x|,

where θ = μ−1(2t/|x|2). A simple calculation shows,

μ ′(θ ) =
2sinθ −2θ cosθ

sin3 θ
;

∇xθ =
1

μ ′(θ )
· −4tx
|x|4 ;

∂θ
∂ t

=
1

μ ′(θ )
· −2
|x|2 .

Therefore, if x �= 0 , then

∇xdcc(u) = ∇x

(
θ

sinθ
|x|
)

=
x
|x| ·

θ
sinθ

+ |x| · sinθ −θ cosθ
sin2 θ

·∇xθ

=
x
|x| ·

θ
sinθ

−|x|sinθ · −2tx
|x|4 =

x
|x| ·

θ
sinθ

− x
|x| · sinθ ·μ(θ )

= A
θ

sinθ
−Asinθ ·

(
θ

sin2 θ
− cotθ

)
= Acosθ .

On the other hand,

|x|∂t dcc(u) = |x|∂dcc(u)
∂ t

= |x| ∂
∂ t

(
θ

sinθ
|x|
)

= |x|2 · sinθ −θ cosθ
sin2 θ

· ∂θ
∂ t

= |x|2 · sinθ −θ cosθ
sin2 θ

· 1
μ ′(θ )

· −2
|x|2

= sinθ .

Therefore we obtain, by (2.3),

∇xdcc(u) = Acosθ = Acosφρ ; |x|∂t dcc(u) = sinθ = sinφρ .
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This completes the proof of Lemma 3.2. �
Proof of Theorem 1.1. Let ε > 0. Then 0 � fε := (| f |2 +ε2)p/2−ε p ∈C∞

0 (Rn+1) .
In fact, fε has the same support as f . Since dcc(x,t) ∈ C(Rn+1)∩C1(Rn+1 \Z) , we
can put fεd

Q−p−α
cc (u) in Lemma 3.1 and get, for all δ > 0,

(Q− p−α)
∫ R2

R1

∫
Σδ

fεd
Q−p−α−1
cc dσdρ −RQ−p−α

2

×
∫

Σδ
fε(R2u

∗)dσ +RQ−p−α
1

∫
Σδ

fε (R1u
∗)dσ

=− p
∫ R2

R1

∫
Σδ

(| f |2 + ε2)(p−2)/2 f 〈∇L f ,∇Ldcc〉dQ−p−α
cc dσdρ

�p
∫ R2

R1

∫
Σδ

(| f |2 + ε2)(p−2)/2| f | · |∇L f |dQ−p−α
cc dσdρ

�p
∫ R2

R1

∫
Σδ

(| f |2 + ε2)(p−1)/2|∇L f |dQ−p−α
cc dσdρ .

Let δ → 0, we obtain, since Σδ → Σ ,

(Q− p−α)
∫ R2

R1

∫
Σ

fεd
Q−p−α−1
cc dσdρ −RQ−p−α

2

×
∫

Σ
fε (R2u

∗)dσ +RQ−p−α
1

∫
Σ

fε (R1u
∗)dσ

�p
∫ R2

R1

∫
Σ
(| f |2 + ε2)(p−1)/2|∇L f |dQ−p−α

cc dσdρ .

Letting R2 → ∞ and R1 → 0+ yields, since Q− p−α > 0 and f , fε ∈C∞
0 (Rn+1) ,

(Q− p−α)
∫ ∞

0

∫
Σ

fεd
Q−p−α−1
cc dσdρ � p

∫ ∞

0

∫
Σ
(| f |2 + ε2)(p−1)/2|∇L f |dQ−p−α

cc dσdρ .

Rewriting the expression into a solid integral using the polar coordinates, we obtain

(Q− p−α)
∫

Rn+1

fε
dp+α

cc
� p

∫
Rn+1

(| f |2 + ε2)(p−1)/2 · |∇L f |
dp+α−1

cc

By dominated convergence, letting ε → 0+ , we have,

(Q− p−α)
∫

Rn+1

| f |p
dp+α

cc
� p

∫
Rn+1

| f |p+α−1 · |∇L f |
dp+α−1

cc
.

By Hölder’s inequality:

(Q− p−α)
∫

Rn+1

| f |p
dp+α

cc
� p

(∫
Rn+1

| f |p
dp+α

cc

) p−1
p
(∫

Rn+1

|∇L f |p
dα

cc

) 1
p

.

Canceling and raising both sides to the power p , we get (1.2). �
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REMARK 3.3. It seems that the constant in Theorem 1.1 is sharp. To see this, one
can follow [3] and consider the function

fε (x,t) =

{
1, dcc � 1;

d−(Q−p−α)/p−ε
cc , dcc > 1.

It is easy to check that

(
Q− p−α

p

)p

= lim
ε→0

∫
Rn+1

|∇L fε |p
dα

cc∫
Rn+1

| fε |p
dp+α

cc

.

Since we do not know whether the function fε belong to the closure of C∞
0 (Rn+1) , we

fail to prove the sharpness of the constant in Theorem 1.1. However, the constant is
sharp if the function belongs to a space which is larger than C∞

0 (Rn+1) (see [12] for the
case of Heisenberg group).
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