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A HARDY INEQUALITY FOR THE GRUSHIN TYPE OPERATORS

L1 ZHU

(Communicated by Ivan Peric¢)

Abstract. We prove a Hardy inequality related to Carnot-Carathéodory distance for the Grushin
. 2 2 . . ~ ~

type operators like Ay + |x|*d;". The procedure is based on a representation formula for such

operators.

1. Introduction
The Hardy inequality in RV states that, for all f € Cj(R") and N >3,

2 (N-2)? f?
/RN\Vﬂ dx > 2 /]RN FE X. (1.1)
Inequality (1.1) has been generalized to the degenerate elliptic differential operators by
several authors for many years. For details, we refer to [2, 3, 4, 5, 10].

The aim of this note is to prove a Hardy type inequalities for the Grushin type op-
erators like A, + |x|>9?, where non-isotropic gauge is replaced by the Carnot-Carathé-
odory distance d... We refer to [3, 4] for the Hardy inequality related to non-isotropic
gauge. We note that it has been proved by D’ Ambrosio (see [3], Theorem 3.3) that the

following Hardy inequality holds for all f € C(R"*)

-2\’ s
2 (= / _W
‘/IR}'!‘FI ‘VLf‘ = < ) ) Rt N(X7Z)2’

where N(x,t) = v/|x|* +4¢2 and V| = (V,,|x|d;) is the gradient associated with the
operators A, -+ |x|?9? . Notice that N(x,¢) and d_. are equivalent, there exists a constant
C, such that for all f € CJ(R"™!),

2
2> / ﬂ
/l‘%)l‘*’l |VLf| i C R+l dgc

In fact, one may choose the constant

2
co (n—2) | o dcc(xJ).

mi
2 xr)eRm {0} N(x,1)
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However, such constant C is not sharp. In this note, we shall give a new proof of
Hardy inequalities related to d,.. The corresponding constants is the same as the Hardy
inequalities related to N(x,7) (see [3], Theorem 3.1) and it seems that it is sharp though
we fail to prove it (see Remark 3.3).
Recall that for the Grushin type operators, the sub-Riemannian metric is given by
the vectors
d d d d

:—7---,X :—,T = —7-",T = _ .
ox " ox, LT MY, "=

By Chow’s conditions, the Carnot-Carathéodory distance d..(u,v) between any two
points u,v € R*"! is finite. We denote by d..(u) = d..(0,u), where o = (0,0) is the
origin.
Define on R"*! the dilation §; as
Spu= 38 (x,1) := (Ax,A%), u=(x,1) € R"",

For simplicity, we will write it as Au = (Ax,A%¢). The Jacobian determinant of &
is A9, where Q = n+2 is the homogeneous dimension. The Carnot-Carathéodory
distance d.. satisfies

X1

dee(A(x,1)) = Adee(x,), A > 0.

To this end we have:

THEOREM 1.1. Let 1 < p < Q— a. There holds, for all f € Cy(R*™1),

/ Vufl?  (Q—p—« ”/ /17 (12)
Rn+l dé)é = p Rnt1 dg:ra ’ ’

2. Geodesics for the Grushin type operators

In this section we shall give a parametrization of R"*! using the geodesics. We
refer to [7] for the analogous parametrization of the Heisenberg group.
Recall that the Grushin operator is given by
32
357
The associated Hamiltonian function H(x,y,&,0) is of the form

Ap = A+ |x)?

H(x, &) = 587+ n?).

We note all the geodesics are solutions of the Hamiltonian system (cf. [6, 11])

i(s) = 55 = €6,
t) == (),
- a_H_ , (2.1)
(S) an - ‘X‘ Tl;
()=~ _0, i n(s)=(0).
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Taking the initial date (x(0),7(0)) = (0,0) and (£(0),n(0)) = (A, ¢), one can find the
solutions

x(s)=A Sil:p¢s7
1(s) = [a]p 220205 ;;ﬂ“zq’s,

where the time s is exactly the Carnot-Carathéodory distance. Letting ¢ — 0, one get
the Euclidean geodesics

(x(s),2(s)) = (45,0)

and hence the correct normalization is |A|> = 1.
Set

Q={(A,0,p) ER"XRxR: —r<¢p <m, p=>0,]A>=1} c R

and define @ : Q — R"*! by ®(A,¢,p) = (x(A,0,p),1(A,d,p)), where

*(4,6,p) =ASi“¢¢”,
2¢p —sin2¢p (2.2)
((4.6.p) = PP,

We note if one fixes p > 0, equations (2.2) with |A| =1 and —% <o < g parameterize

dB,, where B, is the Carnot-Carathéodory ball centered at the origin and of radius
p>0.

On the other hand, the Carnot-Carathéodory distance d,. satisfies (see [11], The-
orem 2.3)

decl) = el (0,0), (60)) = =2 o

for x # 0, where 6 = u~! (A> , ™! is the inverse function of u and

x|2

is a diffeomorphism of the interval (—7, ) onto R. When x =0, d,. satisfies d2.(0,¢)
=2m|t| (see [11], Theorem 2.2).
By (2.2), we have
2t 2¢0p —sin2¢p
u(e) = RET 2smep w(op).
Therefore,
0 =9¢p (2.3)

since U is a diffeomorphism.
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We finally recall the polar coordinates associated with d... Given any (0,0) #
u=(x,t) € R"™! set x* = o = dzt—(u) and u* = (x*,r*). It has been proved in
[9] the following coarea formula

o0
) Videetwldu= [ [ fwdP(E)d,
Rr+1 —oo Mdee(u)=2}
where E; = {u € R""! : d..(u) > A} and P(E,) is the perimeter-measure. Notice that
|Video(u)| =1 a.e. (cf. [9]) and it is easy to check P(E;) = A2~'P(E;) through the
dilation (see [8], Proposition 2.2 for the case of n = 1.), we have the following polar
coordinates

F(w)du = /O - /Z FuAC  dod.,

when f € L'(R"™1), where ¥ is the unit sphere associated with d., i.e., £ = {u €
R dyo () = 1)

Rn+1

3. The proof

To proved the main result, we first need the following representation formula. The
idea is due to Cohn and Lu ([6], Theorem 1.2).

LEMMA 3.1. Let Z = {0} x R C R, Ser ZNZ = {(0,29),(0,21)}. For each
0 >0, define s = {(x,1) € Z|dcc((x,1),(0,20)) = 8,dcc((x,1),(0,21)) = 6}. Then for
all f € C(R"™)YNCYR"™ 1\ Z) and Ry > Ry > 0, there holds

Ry
F(Rou)do — / F(Ryu)do = / (Vif.Vide)dodp.  (.1)
5 s Ry 5

Proof. Notice that for any u* € X,

Ry d
f(Ryu™) — f(Ryu™) = A d—f(pu*)dp

1

) Rz(naf(u).8x,-+af() a:)dp
R \i=1

dx; dp dr  dp

where u = (x,1) = pu*. Integrating over X5 with respect to do, we have

(w) dx; df(u) ot
/fRzu )do — /leu )do = // (1_1 3t s, .%>dpd6.

On the other hand, using equation (2.2), we have

L df(u) dx Qf(u) Jat sin? ¢p 0 f(u)

Z . % o 9 =(Acos¢p,V,.f) + s o

= 3.2)
9f(u)

=({Acos@p, Vif) +singp - x| =5 =
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To finish the proof, it is enough to show
Videe(u) =Acosdp; |x|drdec(u) =singp.

in R"\ {0} x R. This will be proved in the following lemma 3.2. The proof of Lemma
3.1 is therefore completed. [J

LEMMA 3.2. There holds, for x # 0,

Videe(u) = Acosdp; |x|drdec(u) =singp.
Proof. Recall that if x # 0, then
declt) = dee (1) = 2
cc\U) = lcc(X, —Sinex7

where 8 = u~!(2¢/[x|?). A simple calculation shows,

2sin@ — 260 cos O
/ 6 — ;
(o) sin’ 6
1 —4tx 00 1 -2
Vib=— - —;, — = —— . —.
o) |x*’ adr  w(6) [x?

Therefore, if x # 0, then

9 X 0 sin@ — 6 cos O
cc(u) X(sin9|x|) |x| Sin9+|x| sin® 6 '
« 0 . —2tx x O X
— m.—sine —\x\sme.W_ m.m—m-sme'#(e)
:A_L —Asin® - ( . 92 _00t9>
sin 6 sin” 0
=Acos0.
On the other hand,
dd..(u d 4
|X|atdcc(u) = |X| gct( ) = ‘X‘E (sin@ |X|)
_ |x|2 M 8_9
- sin” 0 at
P sin@ —0cos@ 1 —2

sin® @ w'(e) [«
=sin6.

Therefore we obtain, by (2.3),

Videe(u) =Acos @ =Acosdp; |x|ddec(u) =sin@ =sindp.
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This completes the proof of Lemma 3.2. [

Proof of Theorem 1.1. Let € >0. Then 0 < f := (| f|>+&2)P/? —eP € C(R"H1).
In fact, f; has the same support as f. Since de.(x,t) € C(R"™)NCH R\ Z), we
can put fe CQ[pfa(u) in Lemma 3.1 and get, for all 6 >0,

Ry
(Q—p—0a) / / fed2 7% Ydedp — RSP
R Jzs
< [, felRouydo +RE | gy
Zs s
Ry
——p [ [P+ DL Video)dd T dodp
R Jxs
Ry
<p/ / (‘f‘2 +32)(p_2)/2‘f‘"VLf|dC%_p_adep
R Jxs
Ry
<p [ [ (sP+ed) e RV flag - edodp.
R Jxs
Let 6 — 0, we obtain, since £5 — X,
fo —p—o—1 O—p—o
(Q—p—a)/ /fsdc% r=elgodp —RS™"
R Jx
< [ SelRowydo +RE P [ fe(Ria)do
z s
Ry
<p [ [UrP e+ R, flag 7 edoap.
R Jx
Letting R, — o0 and Ry — 0+ yields, since 0 —p—a >0 and f, f; € C5(R"1),

©-p-a) [ [ fed2 o dodp<p [ [(fF+e) VL1 dodp.
0 Jx 0 Jx
Rewriting the expression into a solid integral using the polar coordinates, we obtain

Lee<n (7P + )P D2 VL]
R+l

pt+o—1
d(; C

©-p-a) [

R+l df;rOC =
By dominated convergence, letting € — 0+, we have,

(Q—p— OC)/ ‘f‘p < p |f|p+a_1 ) |VLf‘
Rr+1 d£+a = R+l dcl?c+a_1 :

By Holder’s inequality:
p—1 1
|fIP IfIP N7 IVLfIP\?
Q@-p-a) /Rn+1 ante sP /Rnﬂ ante /Rn+l de. '

Canceling and raising both sides to the power p, we get (1.2). [
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REMARK 3.3. It seems that the constant in Theorem 1.1 is sharp. To see this, one
can follow [3] and consider the function

L, dee < 1;

Je(x,1) =
£ dC*C(Q*P*a)/I’*S’ dcc > 1.

It is easy to check that

/ |VLf£‘p
(L) - e
P =0 | fe|?
Rn+ldf:"a

Since we do not know whether the function f; belong to the closure of C(R"1), we
fail to prove the sharpness of the constant in Theorem 1.1. However, the constant is
sharp if the function belongs to a space which is larger than C (R™1) (see [12] for the
case of Heisenberg group).
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