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Abstract. In this paper, we establish some functional inequalities for the generalized Hersch-
Pfluger distortion function ϕK(a,r) , and prove a submultiplicative property for the generalized
Agard distortion function ηK(a,x) .

1. Introduction

For real numbers a , b and c with c �= 0,−1,−2, · · · , the Gaussian hypergeometric
function is defined by

F(a,b;c;x) = 2F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
, for |x| < 1. (1.1)

Here, (a,0) = 1 for a �= 0 and (a,n) denotes the shifted factorial function

(a,n) = a(a+1)(a+2)(a+3) · · ·(a+n−1)

for n = 1,2, · · · . For a survey of these functions, see [1, 8].
For r ∈ (0,1) , a∈ (0,1) and r′ =

√
1− r2 , the generalized elliptic integrals of the

first and second kind [4, 19] are defined by⎧⎪⎪⎨
⎪⎪⎩

Ka = Ka(r) = π
2 F(a,1−a;1;r2),

Ka
′ = Ka

′(r) = Ka(r′),
Ka(0) = π/2, Ka(1) = ∞

(1.2)

and ⎧⎪⎪⎨
⎪⎪⎩

Ea = Ea(r) = π
2 F(a−1,1−a;1;r2),

Ea
′ = E ′

a(r) = Ea(r′),
Ea(0) = π/2, Ea(1) = sin(πa)/[2(1−a)],

(1.3)
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respectively. In particular, when a = 1/2, the functions Ka(r) and Ea(r) reduce to
K (r) and E (r) , respectively, which are the complete elliptic integrals of the first and
second kind [1, 3, 7–10, 12, 13, 19]. By symmetry of (1.2), we assume that a∈ (0,1/2]
in the sequel.

Ramanujan’s generalized modular equation [11] with signature 1/a and degree p
is given by

F(a,1−a;1;1− s2)
F(a,1−a;1;s2)

= p
F(a,1−a;1;1− r2)

F(a,1−a;1;r2)
, (1.4)

where a∈ (0,1/2] , r ∈ (0,1) and p > 0. To rewrite (1.4) in a slightly shorter form, we
use the decreasing homeomorphism μa : (0,1) → (0,∞) defined by

μa(r) =
π

2sinπa
Ka

′(r)
Ka(r)

,

for a ∈ (0,1/2] . We can now write (1.4) as

μa(s) = pμa(r), 0 < r < 1. (1.5)

The solution of (1.5) is given by

s = ϕK(a,r) = μa
−1(μa(r)/K), K = 1/p. (1.6)

We call ϕK(a,r) the generalized modular function with signature 1/a and degree p =
1/K or generalized Hersch-Pflguer distortion function.

For x,K ∈ (0,∞) , the generalized Agard distortion function is defined by

ηK(a,x) =
[

ϕK(a,r)
ϕ1/K(a,r′)

]2

,r =
√

x
x+1

. (1.7)

If a = 1/2, then the functions defined in (1.6) and (1.7) reduce to the Hersch-
Pfluger distortion function ϕK(r) and Agard distortion function ηK(x) , respectively,
which play a crucial role in quasiconformal mappings, quasiregular mappings, qua-
sisymmetric functions and some related fields [2, 7, 14, 20, 21]. In particular, some
remarkable properties and inequalities for them can be found in the literature [5, 6,
15–18, 22, 23].

For a ∈ (0,1/2] , the so-called Ramanujan constant R(a) is defined by

R(a) = −2γ −ψ(a)−ψ(1−a)

with R(1/2) = log16, where γ = 0.577215 · · · is the Euler-Mascheroni constant, and
ψ is the classical psi function.

The main purpose of this paper is to establish some interesting functional inequal-
ities for the generalized distortion function ϕK(a,r) , and to prove a submultiplicative
property for the generalized Agard distortion function ηK(a,x) . Our main results are
the following Theorems 1.1–1.3.
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THEOREM 1.1. For r ∈ (0,1) and K ∈ (0,∞) , define the function F on [2,∞) by

F(x) = 2[1−ϕ1/K(a,r)x]/[xϕK(a,
√

2(1− rx)/x)2].

Then F(x) = 1 if K = 1 , and F(x) is strictly decreasing from [2,∞) onto (0,1] if
K ∈ (1,∞) , and strictly increasing from [2,∞) onto [1,∞) if K ∈ (0,1) . In particular,
if r ∈ (0,1) and K,b ∈ [1,∞) , then

ϕK(a,r)2b +bϕ1/K

(
a,
√

(1− r2b)/b
)2

� 1, (1.8)

ϕ1/K(a,r)2b +bϕK

(
a,
√

(1− r2b)/b
)2

� 1, (1.9)

with equality in either case if and only if b = 1 or K = 1 .

THEOREM 1.2. Let K, p ∈ (0,∞) and r ∈ (0,1) , then

(1) g(r) = ϕK(a,r)p/ϕK(a,rp) is strictly decreasing from (0,1) onto
(1,eR(a)(1−1/K)(p−1)/2) if p,K ∈ (1,∞) or p,K ∈ (0,1) , and strictly increasing from
(0,1) onto (eR(a)(1−1/K)(p−1)/2,1) if 1/p,K ∈ (0,1) or 1/p,K ∈ (1,∞) . In particular,
one has ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕK(a,r)p ∈ (ϕK(a,rp),eR(a)(1−1/K)(p−1)/2ϕK(a,rp)),

if p,K ∈ (1,∞) or K, p ∈ (0,1);

ϕK(a,r)p = ϕK(a,rp),

if K = 1 or p = 1;

ϕK(a,r)p ∈ (eR(a)(1−1/K)(p−1)/2ϕK(a,rp),ϕK(a,rp)),

if 1/p,K ∈ (0,1) or 1/p,K ∈ (1,∞).

(1.10)

(2) G(K) = ϕK(a,r)p/ϕKp(a,r) is strictly decreasing if 1/p,K ∈ (1,∞) or
1/p,K ∈ (0,1) , and strictly increasing if p,K ∈ (1,∞) or p,K ∈ (0,1) . In particu-
lar, one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕK(a,r)p ∈ (rp−1ϕKp(a,r),rp/K), if 1/p,K ∈ (0,1);

ϕK(a,r)p ∈ (ϕKp(a,r),rp−1ϕKp(a,r)), if 1/p,K ∈ (1,∞);

ϕK(a,r)p = ϕKp(a,r), if p = 1;

ϕK(a,r)p = rp−1ϕKp(a,r), if K = 1;

ϕK(a,r)p ∈ (rp−1ϕKp(a,r),ϕKp(a,r)), if K, p ∈ (1,∞);

ϕK(a,r)p ∈ (rp/KepR(a)(1−1/K)/2,rp−1ϕKp(a,r)), if K, p ∈ (0,1).

(1.11)

(3) Inequality
ϕK(a,r1/p)

p � ϕKp(a,r) (1.12)

holds for p,K ∈ [1,∞) or p,K ∈ (0,1) , with equality if and only if K = 1 or p = 1 .
The inequality is reversed if 1/p,K ∈ (1,∞) or 1/p,K ∈ (0,1) .
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THEOREM 1.3. If K � 1 and x,y ∈ (0,∞) , then

[min{xK ,x1/K}min{yK ,y1/K}ηK(a,x)ηK(a,y)]1/2 � ηK(a,xy)

� eR(a)(1/K−1)ηK(a,x)ηK(a,y). (1.13)

The first equality holds if and only if K = 1 or x = y = 1 , and the second equality holds
if and only if K = 1 . The coefficient eR(a)(1/K−1) of the upper bound cannot be replaced
by a smaller one depending only on K .

2. Properties of ϕK(a,r)

In this section, we introduce several monotonicity properties of some functions
defined in terms of ϕK(a,r) , and prove Theorems 1.1 and 1.2.

First, let us recall the following formulas:

lim
r→o

μa(r)+ logr =
R(a)

2
, (2.1)

ϕK(a,r)2 + ϕ1/K(a,r′)2 = 1, (2.2)

∂ϕK(a,r)
∂ r

=
1
K

ss′2Ka(s)2

rr′2Ka(r)2 = K
ss′2K ′

a (s)2

rr′2K ′
a (r)2 , (2.3)

∂ϕK(a,r)
∂K

=
2

πK sin(πa)
ss′2Ka(s)K ′

a (s). (2.4)

where s = ϕK(a,r) , r ∈ (0,1) and K ∈ (0,∞) .
The following Lemma 2.1 can be found in [4, Theorem 6.7].

LEMMA 2.1. For each a ∈ (0,1/2] and K ∈ (1,∞) , let f , g be defined on (0,1]
by

f (r) = r−1/KϕK(a,r) and g(r) = r−Kϕ1/K(a,r).

Then f is strictly decreasing and g is strictly increasing, with f ((0,1])= [1,eR(a)(1−1/K)/2)
and g((0,1]) = (eR(a)(1−K)/2,1] .

The following Lemma 2.2 can be found in [4, Lemma 6.2(1), (2), (4) and (5), and
Lemma 5.4(1)].

LEMMA 2.2. For each a ∈ (0,1/2] , K ∈ (1,∞) , r ∈ (0,1) , let s = ϕK(a,r) and
t = ϕ1/K(a,r) . Then the function

(1) h1(r) = Ka(s)/Ka(r) is strictly increasing from (0,1) onto (1,K);

(2) h2(r) = s′Ka(s)2/[r′Ka(r)2] is strictly decreasing from (0,1) onto (0,1);

(3) h3(r) = Ka(t)/Ka(r) is strictly decreasing from (0,1) onto (1/K,1);

(4) h4(r) = t ′Ka(t)
2/[r′Ka(r)

2] is strictly increasing from (0,1) onto (1,∞);
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(5) h5(r) = r′cKa(r) is strictly decreasing if and only if c � 2a(1−a) , in which
case r′cKa(r) is strictly decreasing from (0,1) onto (0,π/2) .

Proof of theorem 1.1. Clearly, F(2) = 1. Then making use of Lemma 2.1 we get

lim
x→∞

F(x) = lim
x→∞

2

xϕK(a,
√

2(1− rx)/x)2

=2 lim
x→∞

[
(
√

2(1− rx)/x)1/K

ϕK(a,
√

2(1− rx)/x)

]2

·
(√

x
2(1− rx)

)2/K

· 1
x

=21−1/K · eR(a)(1/K−1) · lim
x→∞

x1/K−1

(1− rx)1/K

=

{
0, if K ∈ (1,∞),

∞, if K ∈ (0,1).
(2.5)

Let t =
√

2(1− rx)/x,s = ϕK(a,t) and u = ϕ1/K(a,r) . Then by logarithmic dif-
ferentiation and (2.3), we have

xF ′(x)
F(x)

=
s′2Ka(s)K ′

a (s)
t ′2Ka(t)K ′

a (t)
[F1(rx)+1]− [F1(ux)+1], (2.6)

where F1(x) = (x logx)/(1− x) , which is strictly decreasing from (0,1) onto (−1,0) .
By Lemma 2.2(5), the function s′2Ka(s)K ′

a (s) is strictly decreasing in K on (0,∞) .
Hence, from (2.6) we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xF ′(x)
F(x)

> F1(rx)−F1(ux), if K ∈ (0,1),

xF ′(x)
F(x)

< F1(rx)−F1(ux), if K ∈ (1,∞).

(2.7)

Since {
u > r ⇒ ux > rx ⇒ F1(rx) > F1(ux), if K ∈ (0,1),

u < r ⇒ ux < rx ⇒ F1(rx) < F1(ux), if K ∈ (1,∞),
(2.8)

from (2.7) and (2.8) one has⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xF ′(x)
F(x)

> 0, if K ∈ (0,1),

xF ′(x)
F(x)

< 0, if K ∈ (1,∞).

(2.9)

Therefore, the monotonicity of F follows from (2.9). Moreover, taking x = 2b in
Theorem 1.1, inequalities (1.8) and (1.9) are clear. �

REMARK 2.3. If b = 1, then inequalities (1.8) and (1.9) reduce to equation (2.2).
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Proof of theorem 1.2. For part (1), clearly g(1−) = 1, and making use of Lemma
2.1 we get g(0+) = eR(a)(1−1/K)(p−1)/2 . Let x = rp , s = ϕK(a,r) and u = ϕK(a,x) ,
then g(r) = sp/u and

Kr
p

g′(r)
g(r)

=
s′2Ka(s)2

r′2Ka(r)2 −
u′2Ka(u)2

x′2Ka(x)2 = g1(r)−g1(x), (2.10)

where g1(r) = s′2Ka(s)
2/[r′2Ka(r)

2] . From Lemma 2.2 (1)–(4) we know that g1(r)
is strictly decreasing if K > 1, and strictly increasing if 0 < K < 1.

Next, we divide the proof of part (1) into two cases.
Case 1.1. p,K ∈ (1,∞) or p,K ∈ (0,1) . Then g1(r) < g1(x) , and g(r) is strictly

decreasing in (0,1) by (2.10).
Case 1.2. 1/p,K ∈ (1,∞) or 1/p,K ∈ (0,1) . Then g1(r) > g1(x) , and g(r) is

strictly increasing in (0,1) follows from (2.10).
For part (2), clearly G(1)− rp−1 = G(∞)−1 = 0. Let T = Kp , s = ϕK(a,r) and

v = ϕT (a,r) , then G(K) = sp/v . By (2.1) we have

lim
K→0

logG(K)

=p lim
K→0

[μa(s)+ logs]− lim
K→0

[μa(v)+ logv]+ lim
K→0

[μa(v)− pμa(s)]

=
R(a)(p−1)

2
+ lim

K→0

[
1− pKp−1

Kp

]
μa(r)

=
{

∞, 1/p,K ∈ (0,1),
−∞, p,K ∈ (0,1).

Logarithmic differentiation of G(K) gives

πK sin(πa)
2p

G′(K)
G(K)

= G1(s)−G1(v), (2.11)

where G1(r) = r′2Ka(r)K ′
a (r) , which is decreasing follows from Lemma 2.2(5).

Next we divide the proof of part (2) into two cases.
Case 2.1. 1/p,K ∈ (1,∞) or 1/p,K ∈ (0,1) . Then s > v and G1(s) < G1(v) .

Thus from (2.11) we know that G(K) is strictly decreasing.
Case 2.2. p,K ∈ (1,∞) or p,K ∈ (0,1) . Then s < v and G1(s) > G1(v) . Thus

from (2.11) we know that G(K) is strictly increasing.
Therefore, (2.11) follows from the monotonicity and limiting values of G(K) to-

gether with Lemma 2.1.
For part (3), define f (r,K) = ϕK(a,r1/p)p/ϕKp(a,r)(p �= 1) for (r,K) ∈ D =

(0,1)× (0,∞) . Let t = r1/p , w = ϕK(a,t) and v = ϕKp(a,r) , then equations (2.3)
and (2.4) lead to

r
f (r,K)

∂ f (r,K)
∂ r

=
w′2Ka(w)K ′

a (w)
t ′2Ka(t)K ′

a (t)
− v′2Ka(v)K ′

a (v)
r′2Ka(r)K ′

a (r)
(2.12)
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and
πK sin(πa)
2p f (r,K)

∂ f (r,K)
∂K

= w′2Ka(w)K ′
a (w)− v′2Ka(v)K ′

a (v), (2.13)

respectively. Let ∂ f (r,K)/∂ r = ∂ f (r,K)/∂K = 0, then from (2.12) and (2.13) we
conclude that r = t and w = v , which implies that p = 1 and leads to a contradiction
with p �= 1. Hence, f has no extreme points in D , and

⎧⎪⎨
⎪⎩

sup
(r,t)∈D

f (r,K) = sup
(r,t)∈∂D

f (r,K),

inf
(r,t)∈D

f (r,K) = inf
(r,t)∈∂D

f (r,K).
(2.14)

Next we divide the proof of part (3) into three cases.
Case 3.1. K, p ∈ (1,∞) or K, p ∈ (0,1) . Then

f (r,K) =
wp

v
=
( w

t1/K

)p · r
1/Kp

v
· r[1−K(1−p)]/K , (2.15)

f (0+,K) = f (1,K)−1 = f (r,1)−1 = lim
K→∞

f (r,K)−1 = 0 (2.16)

and

f (r,0+) = lim
K→0

exp

{
p[μa(w)+ logw]− [μa(v)+ logv]+

K1−pμa(r)− pμa(t)
K

}
=0. (2.17)

It follows from (2.15)–(2.17) that f (r,K) � 1 for all (r,K) ∈D with K, p∈ (1,∞)
or K, p ∈ (0,1) , where D is the closure of D . Thus inequality (1.12) and its equality
case follow.

Case 3.2. 1/p,K ∈ (0,1) . Then from Case 3.1 one has

r = ϕ1/K(a,ϕK(a,r1/p))p � ϕ1/Kp(a,ϕK(a,r1/p)p),

ϕKp(a,r) � ϕK(a,r1/p)p. (2.18)

Case 3.3. 1/p,K ∈ (1,∞) . Then (2.15) and Lemma 2.1 yield

f (0+,K) = ∞, f (1,K) = f (r,1) = lim
K→∞

f (r,K) = 1. (2.19)

Equations (2.14) and (2.19) lead to the conclusion that f (r,K) � 1 for all (r,K) ∈
D and inequality (2.18) holds again. �
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3. Properties of ηK(a,x)

In this section, we study some properties of ηK(a,x) , and complete the proof of
Theorem 1.3.

LEMMA 3.1. If K > 1 , then the function J1(x) = ηK(a,x)/xK is strictly decreas-
ing from (0,∞) onto (eR(a)(K−1),∞) , and the function J2(x) = ηK(a,x)/x1/K is strictly
increasing from (0,∞) onto (eR(a)(1−1/K),∞) .

Proof. Let r =
√

x/(1+ x) and s = ϕK(a,r) , then

J1(x) = H1(r) =
( s

s′
)2
(

r′

r

)2K

and

J2(x) = H2(r) =
( s

s′
)2
(

r′

r

)2/K

.

Then logarithmic differentiations give

H1
′(r)

H1(r)
=

2K

rr′2

(
Ka(s)

2

K2Ka(r)
2 −1

)
,

H2
′(r)

H2(r)
=

2

rr′2K

(
Ka(s)2

Ka(r)2 −1

)
.

Therefore, the monotonicity properties of H1(r) and H2(r) follow from Lemma
2.2(1), and the limiting value follows from Lemma 2.1. �

LEMMA 3.2. As a function of r , gK(r) = (ϕK(a,r)/ϕ1/K(a,r′))(r′/r)K is strictly

decreasing from (0,1) onto (eR(a)(K−1)/2,∞) for K ∈ (1,∞) , and strictly increasing
from (0,1) onto (0,eR(a)(K−1)/2) for K ∈ (0,1) . In particular, for r ∈ (0,1) and K ∈
[1,∞) ,

ϕK(a,r) � max{h1(r,K),h2(r,K)}, (3.1)

and
ϕ1/K(a,r) � min{h1(r,1/K),h2(r,1/K)}, (3.2)

where
h1(r,K) = eR(a)(K−1)/2rK/(r′2K + e(K−1)R(a)r2K)1/2,

h2(r,K) = eR(a)(1−1/K)/2r1/K/(r′2/K + e(1−1/K)R(a)r2/K)1/2,

with the equalities holding if and only if K = 1 .

Proof. Let t = (r/r′)2 . Then

gK(r) = (ηK(a,t)/tK)1/2,
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and
g1/K(r) = [(1/t)1/K/ηK(a,1/t)]1/2,

and hence the monotonicity of gK follows from Lemma 3.1.
By the monotonicity of gK ,

gK(r) = (s/s′)(r′/r)K � eR(a)(K−1)/2,

where s = ϕK(a,r) , and K ∈ [1,∞) , and it follows that

s � rKeR(a)(K−1)/2

[r′2K + r2Ke(K−1)R(a)]1/2
= h1(r,K), K � 1.

Likewise

g1/K(r′) =
(

s′

s

)( r
r′
)1/K

� eR(a)(1/K−1)/2, K � 1,

implies that

s � r1/KeR(a)(1−1/K)/2

[r′2/K + r2/KeR(a)(1−1/K)]1/2
= h2(r,K).

Hence (3.1) holds.
The proof of (3.2) is similar.
The equality case is clear. �

COROLLARY 3.3. If r ∈ (0,1) and K ∈ (1,∞) , then

ϕ1/K(a,r) <min{rK ,eR(a)(1−K)/2ϕK(a,r′)(r/r′)K ,

eR(a)(1/K−1)/2ϕK(a,r′)(r/r′)1/K}.

Proof. The first bound follows from Lemma 2.1, and the second and third bounds
follow from Lemma 3.2. �

Proof of theorem 1.3. Firstly, by Lemma 3.1 we get

ηK(a,xy)
xKηK(a,y)

=
ηK(a,xy)

(xy)K

yK

ηK(a,y)

{
� 1, if x � 1,

� 1, if x � 1

and
ηK(a,xy)

x1/KηK(a,y)
=

ηK(a,xy)
(xy)1/K

y1/K

ηK(a,y)

{
� 1, if x � 1,

� 1, if x � 1,

with equalities if and only if K = 1 or x = 1. Hence

min{xK ,x1/K}ηK(a,y) � ηK(a,xy) � max{xK ,x1/K}ηK(a,y) (3.3)
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for K ∈ [1,∞) and x,y ∈ (0,∞) , with equality in each case if and only if K = 1 or
x = 1. By symmetry,

min{yK,y1/K}ηK(a,x) � ηK(a,xy) � max{yK ,y1/K}ηK(a,x) (3.4)

for K ∈ [1,∞) and x,y ∈ (0,∞) , with equality in each case if and only if K = 1 or
y = 1. Hence the first inequality in (1.13) and its equality case follow from (3.3) and
(3.4).

To prove the second inequality in (1.13), set D = (0,∞)× (0,∞) , and define the
function f on D by

f (x,y) = ηK(a,xy)/{ηK(a,x)ηK(a,y)}.
Our goal is to show that

sup
(x,y)∈D

f (x,y) = eR(a)(1/K−1).

Let r =
√

xy/(1+ xy), s =
√

x/(1+ x), t =
√

y/(1+ y), u = ϕK(a,r) , v =
ϕK(a,s) and w = ϕK(a,t) . Then

ηK(a,x) = (v/v′)2, ηK(a,y) = (w/w′)2, ηK(a,xy) = (u/u′)2,

∂ r
∂x

=
rr′2

2x
,

∂ r
∂y

=
rr′2

2y
, (3.5)

ds
dx

=
ss′2

2x
,

dt
dy

=
tt ′2

2y
, (3.6)

f (x,y) =
(

u
u′

v′

v
w′

w

)2

. (3.7)

Clearly, f ∈C∞(D) .
Now we divide the proof into four steps.
Step (i) . We first find sup

(x,y)∈∂D
f (x,y) .

It follows from (3.7) that

f (x,y) =

(
u

r1/K

s1/K

v
v′w′

u′w

)2

·
[
y(1+ x)
1+ xy

]1/K

.

Hence, by Lemma 2.1,

f (0+,y) = y1/K(w′/w)2 = y1/K/ηK(a,y). (3.8)

Similarly,
f (x,0+) = x1/K/ηK(a,x). (3.9)

Clearly, f (x,y) can be rewritten as

f (x,y) =

(
u

r1/K
· s1/K

v
· t

1/K

w
· v′w′

u′

)2 [
(1+ x)(1+ y)

1+ xy

]1/K

,
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from which it follows that

lim
x→0+
y→0+

f (x,y) = eR(a)(1/K−1) (3.10)

by Lemma 2.1.
From (3.8)–(3.10) together with Lemmas 3.1 and 3.2 we get

sup
(x,y)∈∂D

f (x,y) = eR(a)(1/K−1) (3.11)

and
lim
y→∞

f (0+,y) = lim
x→∞

f (x,0+) = 0. (3.12)

Step (ii) . We want to find lim
x2+y2→∞

f (x,y) .

For this purpose, we rewrite f (x,y) as

f (x,y) =
( u

vw

)2
(

r′K

u′
v′

s′K
w′

t ′K

)2 [ 1+ xy
(1+ x)(1+ y)

]K

,

from which and Lemma 2.1 we get

f (x,∞) = lim
y→∞

f (x,y) = xK/ηK(a,x), (3.13)

f (∞,y) = lim
x→∞

f (x,y) = yK/ηK(a,y), (3.14)

lim
x→∞
y→∞

f (x,y) = eR(a)(1−K). (3.15)

Step (iii) . We want to estimate sup
(x,y)∈CM

f (x,y) for sufficiently large M , where

CM = {(x,y) ∈ D;x2 + y2 = M2} , 0 < M < ∞ .
By Lemma 3.2, it follows from (3.13)–(3.15) that

lim
M→∞

sup
(x,y)∈CM

f (x,y) = f (∞,∞) = eR(a)(1−K). (3.16)

It follows from [4, (3.6)] that R(a) � log16 for all a ∈ (0,1/2] . Thus, for each
K ∈ (1,∞) one can take ε > 0 so small that

eR(a)(1−K) + ε < eR(a)(1/K−1). (3.17)

For such ε , by (3.16), there must be an M0 >
√

2 such that

eR(a)(1−K)− ε < sup
(x,y)∈CM

f (x,y) < eR(a)(1−K) + ε (3.18)

for all M � M0 .
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Step (iv) . We now find sup
(x,y)∈D(M)

f (x,y) , where

D(M) = {(x,y) ∈ D;x2 + y2 < M2}, M � M0.

By (2.3), (3.5) and (3.6), we have

Kx
f (x,y)

d f (x,y)
dx

=
Ka(u)2

Ka(r)2 − Ka(v)2

Ka(s)2 (3.19)

and
Ky

f (x,y)
d f (x,y)

dy
=

Ka(u)2

Ka(r)2 − Ka(w)2

Ka(t)2 (3.20)

for (x,y) ∈ D . Then from (3.19) and (3.20) together with Lemma 2.2(1) we know
that if (x0,y0) ∈ D(M) is an extreme point of f , then r0 = s0 = t0 , where r0 =√

x0y0/(1+ x0y0) , s0 =
√

x0/(1+ x0) , and t0 =
√

y0/(1+ y0) . It follows that x0 =
y0 = 1, and

f (x0,y0) = 1/ηK(a,1). (3.21)

By Lemma 3.2, we clearly see that

ηK(a,1) � eR(a)(K−1), 1 � K � ∞,

with equality if and only if K = 1. Hence it follows from (3.21) that

f (x0,y0) � eR(a)(1−K) � eR(a)(1/K−1). (3.22)

Therefore, by (3.11), (3.17), (3.18) and (3.22),

max
(x,y)∈D(M)

f (x,y) =max

{
eR(a)(1/K−1), sup

(x,y)∈CM

f (x,y), f (x0,y0)

}

=eR(a)(1/K−1), (3.23)

where D(M) is the closure of D(M) .
Now, the second inequality in (1.13), its equality case and the sharpness of the

constant eR(a)(1/K−1) follow from (3.11), (3.17), (3.18) and (3.23). Moreover, f takes
its supremum eR(a)(1/K−1) only at the origin (0,0) . �

COROLLARY 3.4. If K � 1,x,y ∈ (0,∞) , then

eR(a)(1−1/K)η1/K(a,x)η1/K(a,y) � η1/K(a,xy)

�
[
max{xK ,x1/K}max{yK ,y1/K}η1/K(a,x)η1/K(a,y)

]1/2
.

The first (second) equality holds if and only if K = 1 (K = 1 or x = y = 1) . The
coefficient eR(a)(1−1/K) of the lower bound is the best possible.

Proof. The result follows immediately from Theorem 1.3,

ηK(a,t)η1/K(a,1/t) = 1
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and
min{t−K,t−1/K}max{tK ,t1/K} = 1. �

REMARK 3.5. If a = 1/2, then Theorem 1.3, Lemmas 3.1 and 3.2, Corollary 3.3
and Corollary 3.4 reduce to Theorem 1.6, Theorem 3.49, Lemma 2.21, Corollary 2.26
and Corollary 3.47 in [18], respectively.
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