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Abstract. A matrix A∈Mn(C) is said to be accretive-dissipative if, in its Toeplitz decomposition

A = B+ iC , B = B∗ , C = C∗ , both matrices B and C are positive definite. Let A =
[
A11 A12
A21 A22

]

be an accretive-dissipative matrix, k and l be the orders of A11 and A22 , respectively, and let
m = min{k, l} . It is proved

|detA|� (4κ)m

(1+κ)2m |detA11||detA22|,

where κ is the maximum of the condition numbers of B and C .

1. Introduction and the main result

Let Mn(C) be the space of complex matrices of size n×n . A matrix A∈Mn(C) is
said to be accretive-dissipative if, in its Toeplitz decomposition (sometimes also called
the Hermitian decomposition)

A = B+ iC, B = B∗, C = C∗, (1.1)

both matrices B and C are Hermitian positive definite. Comformably partition A,B,C
as [

A11 A12

A21 A22

]
=

[
B11 B12

B∗
12 B22

]
+ i

[
C11 C12

C∗
12 C22

]
(1.2)

such that all diagonal blocks are square. Say k and l (k, l > 0 and k+ l = n ) the order
of A11 and A22 , respectively, and let m = min{k, l} .

An accretive-dissipative matrix A ∈ Mn(C) is said to be a Buckley matrix if, in
representation (1.1), B = In (the identity matrix of order n ).

Let A =
[
A11 A12

A21 A22

]
∈ Mn(C) . If A22 is invertible, then the Schur complement

of A22 in A is denoted by A/A22 := A11 −A12A
−1
22 A21 . For nonsingular matrix A , its

condition number is denoted by κ(A) :=
√

λmax(A∗A)
λmin(A∗A) , the ratio of largest and smallest
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singular value of A . For Hermitian matrices B,C ∈ Mn(C) , we write B > (�)C to
mean that B−C is Hermitian positive (semi)definite.

In [3], the following determinantal inequality of Fischer type (see, e.g. [4]) is
obtained for accretive-dissipative matrices.

THEOREM 1.1. Let A =
[
A11 A12

A21 A22

]
be an accretive-dissipative matrix, k and l

be the orders of A11 and A22 , respectively, and let m = min{k, l} . Then

|detA| � 3m|detA11||detA22|. (1.3)

The purpose of this paper is to show a reversed inequality of (1.3), our main result
can be stated as:

THEOREM 1.2. Under the same condition of Theorem 1.1, we have

|detA| � (4κ)m

(1+ κ)2m |detA11||detA22|, (1.4)

where κ is the maximum of the condition numbers of B and C appearing in (1.1). The
inequality (1.4) is sharp.

If A is a Buckley matrix, then κ = κ(C) . The proof of Theorem 1.2 is given in
the next section.

2. Auxiliary result and the proof

LEMMA 2.1. Let B =
[
B11 B12

B∗
12 B22

]
be Hermitian positive definite, then

B/B22 � 4κ(B)
(1+ κ(B))2 B11. (2.1)

Proof. We know
(

1−κ(B)
1+κ(B)

)2
B11 � B12B

−1
22 B∗

12 (see, e.g. [5, (6)]), so

B11−B12B
−1
22 B∗

12 � 4κ(B)
(1+ κ(B))2 B11,

i.e., (2.1) holds. �
Formula (2.2) below for the Schur complement of a complex matrix and the Schur

complement of its real and imaginary part should be of interest in its own right. The
formula for difference of two Schur complements can be found in [1].

LEMMA 2.2. Let A = B + iC , B = B∗,C = C∗ , be partitioned as in (1.2). If
B22,C22 are invertible, then

A/A22 = B/B22 + i(C/C22)+X(B−1
22 − iC−1

22 )−1X∗, (2.2)

where X = B12B
−1
22 −C12C

−1
22 .
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Proof. Firstly, observe that A22 is invertible. Since B22,C22 are invertible Her-
mitian matrices, so B2

22 and C2
22 are positive definite. For any nonzero vector x , we

have
x∗A∗

22A22x = x∗(B22− iC22)(B22 + iC22)x = x∗B2
22x+ x∗C2

22x > 0,

thus A∗
22A22 is positive definite, in particular, A22 is invertible.

The proof of (2.2) is then by direct verification.

X(B−1
22 − iC−1

22 )−1X∗

= (B12B
−1
22 −C12C

−1
22 )iC22(B22 + iC22)−1B22(B−1

22 B∗
12−C−1

22 C∗
12)

= (B12B
−1
22 iC22− iC12)(B22 +C22)−1(B∗

12−B22C
−1
22 C∗

12)

= (B12B
−1
22 iC22 +B12−B12− iC12)(B22 + iC22)−1(B∗

12−B22C
−1
22 C∗

12)

= (B12B
−1
22 iC22 +B12)(B22 + iC22)−1(B∗

12−B22C
−1
22 C∗

12)

−(B12 + iC12)(B22 + iC22)−1(B∗
12−B22C

−1
22 C∗

12)

= B12B
−1
22 (B∗

12−B22C
−1
22 C∗

12)

−(B12 + iC12)(B22 + iC22)−1(B∗
12 + iC∗

12− iC∗
12−B22C

−1
22 C∗

12)

= B12B
−1
22 B∗

12−B12C
−1
22 C∗

12 − (B12 + iC12)(B22 + iC22)−1(B∗
12 + iC∗

12)

+(B12 + iC12)(B22 + iC22)−1(iC∗
12 +B22C

−1
22 C∗

12)

= B12B
−1
22 B∗

12−B12C
−1
22 C∗

12 − (B12 + iC12)(B22 + iC22)−1(B∗
12 + iC∗

12)

+(B12 + iC12)C−1
22 C∗

12

= B12B
−1
22 B∗

12 + iC12C
−1
22 C∗

12− (B12 + iC12)(B22 + iC22)−1(B∗
12 + iC∗

12)

The identity (2.2) becomes clear after expanding A/A22,B/B22, i(C/C22) . �

COROLLARY 2.3. Let A = B+ iC , B = B∗,C = C∗ , be accretive-dissipative and
be partitioned as in (1.2). If A/A22 = R+ iS is its Toeplitz decomposition, then

R � B/B22 and S � C/C22. (2.3)

Proof. It is known that A/A22 is accretive-dissipative [2, Property 6]. Moreover,
(B−1

22 − iC−1
22 )−1 is also accretive-dissipative [2, Property 1], so is X(B−1

22 − iC−1
22 )−1X∗

[2, Property 3]). The conclusion follows due to (2.2). �

LEMMA 2.4. [3] Let A1,A2 ∈ Mn(C) and let A1 = B1 + iC1 , A2 = B2 + iC2 be
the Toeplitz decompositions of these matrices. If B1 � B2,C1 � C2 , then

|detA1| � |detA2|.
We are now in a position to give the proof of our main result.

Proof of Theorem1.2. Without loss of generality, we assume m = k . Since |detA|=
|detA22||det(A/A22)| , so it suffices to show

|det(A/A22)| � (4κ)m

(1+ κ)2m |detA11|, (2.4)
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where κ = max{κ(B),κ(C)} . Note that f (x) = 4x
(1+x)2 is decreasing in x ∈ [1,∞) . By

Lemma 2.4, (2.3), and Lemma 2.1, we have

|det(A/A22)| � |det(B/B22 + iC/C22)|
�

∣∣∣∣det

(
4κ(B)

(1+ κ(B))2 B11 + i
4κ(C)

(1+ κ(C))2C11

)∣∣∣∣
�

∣∣∣∣det

(
4κ

(1+ κ)2B11 + i
4κ

(1+ κ)2C11

)∣∣∣∣
=

(4κ)m

(1+ κ)2m |det(B11 + iC11)|

=
(4κ)m

(1+ κ)2m |detA11|.

The inequality (1.4) is sharp. For example, let A =
[
Ik + iIk 0

0 Il + iIl

]
. Then the equality

in (1.4) holds. This completes the proof. �
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