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Abstract. Let H(B) denote the space of all holomorphic functions on the unit ball B of Cn . Let
α > 0 , f ∈ H(B) with homogeneous expansion f = ∑∞

k=0 fk . The fractional derivative Dα f is
defined as

Dα f (z) =
∞

∑
k=0

(k+1)α fk(z).

Let ϕ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0 . In this paper we
consider the following integral-type operator

Dα
ϕ,g f (z) =

∫ 1

0
Dα f (ϕ(tz))g(tz)

dt
t

, f ∈ H(B).

The boundedness of the operator Dα
ϕ,g from the Bloch space to the spaces Qp and Qp,0 are

investigated. In particular, the boundedness and compactness of the operator D1
ϕ,g on the Bloch

spaces are completely characterized.

1. Introduction

Let B denote the unit ball and ∂B the unit sphere in C
n . Let H(B) be the space

of all holomorphic functions on B . Let ℜ f stands for the radial derivative of f , that
is, ℜ f (z) = ∑n

j=1 z j
∂ f
∂ z j

(z), z = (z1,z2, · · ·,zn) ∈ B. Let ϕa(z) be the holomorphic in-

volution exchanging 0 and a . For f ∈ C1(B) , the invariant gradient ∇̃ f is defined
by

(∇̃ f )(z) = ∇( f ◦ϕz)(0),

where ∇ f (z) = (∂ f/∂ z1, . . . ,∂ f/∂ zn) is the complex gradient of f .
A function f ∈H(B) is said to belong to the Bloch space, denoted by B = B(B) ,

if

b( f ) = sup
z∈B

(1−|z|2) |ℜ f (z)| < ∞.
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It is well-known that B is a Banach space with the norm ‖ f‖B = | f (0)|+ b( f ) . Let
B0 , called the little Bloch space, denote the subspace of B consisting of those f ∈ B
for which

lim
|z|→1

(1−|z|2)|ℜ f (z)| = 0.

Recall that the Bergman space A1 is the space of all f ∈ H(B) such that∫
B
| f (z)|dv(z) < ∞,

where dv(z) is the normalized volume measure on B. From [23], we know that (B0)∗ =
A1 and (A1)∗ = B.

Let f ∈ H(B) with homogeneous expansion f = ∑∞
k=0 fk and α > 0. The frac-

tional derivative Dα f is defined as follows:

Dα f (z) =
∞

∑
k=0

(k+1)α fk(z).

Note that ℜ f = ∑∞
k=0 k fk if f has homogeneous expansion f = ∑∞

k=0 fk . Hence D1 f =
ℜ f + f . For simplicity of notation, we denote D1 by D . From [1] we known that
f ∈ B if and only if

sup
z∈B

(1−|z|2)α |Dα f (z)| < ∞.

f ∈ B0 if and only if lim|z|→1(1−|z|2)α |Dα f (z)| = 0. Moreover,

‖ f‖B � sup
z∈B

(1−|z|2)α |Dα f (z)| . (1)

See [23] and the references therein for more characterizations of the Bloch space in the
unit ball.

In recent years a special class of Möbius invariant function space in the unit disk,
the so-called Qp space, has attracted a lot of attention. See [20, 21] for a summary of
recent research about the Qp space in the unit disk. The Qp space was generalized to
the unit ball in [11]. For 0 < p < ∞ , recall that an f ∈ H(B) is said to belong to the
space Qp if (see [11])

sup
a∈B

∫
B
|∇̃ f (z)|2Gp(z,a)dλ (z) < ∞.

Here dλ (z) = (1−|z|2)−n−1dv(z) , G(z,a) = g(ϕa(z)) ,

g(z) =
n+1
2n

∫ 1

|z|
(1− t2)n−1t−2n+1dt.

Let Qp,0 denote the subspace of Qp for which

lim
|a|→1

∫
B
|∇̃ f (z)|2Gp(z,a)dλ (z) = 0.
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By [11], we know that Qp = B (the Bloch space) when 1 < p < n
n−1 ; Q1 = BMOA ;

and Qp contains only the constant functions when 0 < p � n−1
n or p � n

n−1 .
For ξ ∈ ∂B , δ > 0, let

S(ξ ,δ ) = {z ∈ B : |1−〈z,ξ 〉|< δ}.
A positive Borel measure μ on B ia called a β−Carleson measure if there exists a
constant C > 0 such that μ(S(ξ ,δ )) � Cδ nβ for all ξ ∈ ∂B and δ > 0. If

lim
δ→0

μ(S(ξ ,δ ))
δ nβ = 0,

uniformly for ξ ∈ ∂B , we call μ a vanishing β−Carleson measure.
Let ϕ be a holomorphic self-map of the unit ball. Define a linear operator Cϕ on

H(B) , called the composition operator, by

(Cϕ f )(z) = ( f ◦ϕ)(z), f ∈ H(B).

It is interesting to provide a function theoretic characterizationwhen ϕ induce a bounded
or compact composition operator on various spaces. The book [2] contains much infor-
mation on this topic.

Let ϕ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. The
generalized composition operator

Cg
ϕ f (z) =

∫ 1

0
ℜ f (ϕ(tz))g(tz)

dt
t

, f ∈ H(B), (2)

was recently introduced in [14] and [24] respectively, motivated by [9]. See, for ex-
ample, [4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26] for the study of
the operator Cg

ϕ . Note that the generalized composition operator is induced by radial
derivative. Now we introduce the integral-type operator induced by fractional derivative
as follows:

Dα
ϕ,g f (z) =

∫ 1

0
Dα f (ϕ(tz))g(tz)

dt
t

, f ∈ H(B). (3)

In this paper we study the boundedness of the integral-type operator Dα
ϕ,g from

the Bloch space to the spaces Qp and Qp,0 . In particular, the boundedness and com-
pactness of the operator D1

ϕ,g on the Bloch spaces are completely characterized. To the
best of our knowledge, the operator Dα

ϕ,g is studied in the present paper for the first
time.

Throughout this paper, constants are denoted by C , they are positive and may
differ from one occurrence to the other. The notation A � B means that there is a
positive constant C such that C−1B � A � CB .

2. Main results and proofs

In this section we will give our main results and proofs. First we state several
auxiliary results which we will use in the proofs of main results. The proof of the next
lemma was essentially proved, for example, in [8] or [14].
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LEMMA 1. Let ϕ be a holomorphic self-map of B, g ∈H(B) such that g(0) = 0 .
Then

ℜ[Dα
ϕ,g( f )](z) = Dα f (ϕ(z))g(z), f ∈ H(B).

The following lemma can be found in [1].

LEMMA 2. There exists a positive integer M = M(n) with the following property:
there exist functions fi ∈ B(1 � i � M) such that

M

∑
i=1

|Dα fi(z)| � 1
(1−|z|)α , z ∈ B.

LEMMA 3. [8] A closed set K in B is compact if and only if it is bounded and
satisfies

lim
|z|→1

sup
f∈K

(1−|z|2)|ℜ f (z)| = 0.

The following criterion for compactness follows from standard arguments similar
to those outlined in Proposition 3.11 of [2].

LEMMA 4. Let ϕ be a holomorphic self-map of B, g ∈H(B) such that g(0) = 0 .
Then Dα

ϕ,g : B(or B0)→B is compact if and only if Dα
ϕ,g : B(or B0)→B is bounded

and for any bounded sequence ( fk)k∈N in B(or B0) which converges to zero uniformly
on compact subset of B as k → ∞ , we have ‖Dα

ϕ,g fk‖B → 0 as k → ∞.

Now, we are in a position to formulate and prove the main results of this paper.

THEOREM 1. Let ϕ be a holomorphic self-map of B, n−1
n < p < n

n−1 , g ∈ H(B)
such that g(0) = 0 . Then Dα

ϕ,g : B → Qp is bounded if and only if

sup
a∈B

∫
B

(1−|z|2)2|g(z)|2
(1−|ϕ(z)|2)2α (1−|ϕa(z)|2)npdλ (z) < ∞. (4)

Proof. Assume that (4) holds. From [5] we know that f ∈ Qp if and only if

sup
a∈B

∫
B
|ℜ f (z)|2(1−|z|2)2(1−|ϕa(z)|2)npdλ (z) < ∞. (5)

For any f ∈ B , using (1) and (5) we get

sup
a∈B

∫
B
|ℜ(Dα

ϕ,g f )(z)|2(1−|z|2)2(1−|ϕa(z)|2)npdλ (z)

= sup
a∈B

∫
B
|g(z)|2|Dα f (ϕ(z))|2(1−|z|2)2(1−|ϕa(z)|2)npdλ (z)

� C‖ f‖2
B sup

a∈B

∫
B

(1−|z|2)2|g(z)|2
(1−|ϕ(z)|2)2α (1−|ϕa(z)|2)npdλ (z) < ∞, (6)

i.e. Dα
ϕ,g f ∈ Qp , hence Dα

ϕ,g : B → Qp is bounded.
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Conversely, assume that Dα
ϕ,g : B → Qp is bounded. By Lemma 2, there exists a

positive integer M and there exist functions fi ∈ B(1 � i � M) such that

M

∑
i=1

|Dα fi(z)| � 1
(1−|z|)α , z ∈ B. (7)

By the assumption, we have Dα
ϕ,g fi ∈ Qp(1 � i � M) , i.e.

sup
a∈B

∫
B
|ℜ(Dα

ϕ,g fi)(z)|2(1−|z|2)2(1−|ϕa(z)|2)npdλ (z) < ∞, i = 1, · · · ,M. (8)

Since

1
(1−|ϕ(z)|)2α �

( M

∑
i=1

|Dα fi(ϕ(z))|
)2

� C
M

∑
i=1

|Dα fi(ϕ(z))|2, z ∈ B, (9)

we obtain

sup
a∈B

∫
B

(1−|z|2)2|g(z)|2
(1−|ϕ(z)|)2α (1−|ϕa(z)|2)npdλ (z)

� C sup
a∈B

∫
B

M

∑
i=1

|Dα fi(ϕ(z))|2|g(z)|2(1−|z|2)2(1−|ϕa(z)|2)npdλ (z)

= C
M

∑
i=1

sup
a∈B

∫
B
|ℜ(Dα

ϕ,g fi)(z)|2(1−|z|2)2(1−|ϕa(z)|2)npdλ (z) < ∞. (10)

Then (4) follows from (10). �

REMARK 1. From [5] we know that f ∈ Qp if and only if

|ℜ f (z)|2(1−|z|2)np−n+1dv(z) (11)

is a p−Carleson measure. Using this characterization of Qp and similarly to the above
proof we see that Dα

ϕ,g : B → Qp is bounded if and only if

sup
1

δ np

∫
S(ξ ,δ )

(1−|z|2)np−n+1|g(z)|2
(1−|ϕ(z)|2)2α dv(z) < ∞ (12)

where sup is taken over all S(ξ ,δ ) .

THEOREM 2. Let ϕ be a holomorphic self-map of B, n−1
n < p < n

n−1 , g ∈ H(B)
such that g(0) = 0 . Then Dα

ϕ,g : B → Qp,0 is bounded if and only if

lim
|a|→1

∫
B

(1−|z|2)2|g(z)|2
(1−|ϕ(z)|2)2α (1−|ϕa(z)|2)npdλ (z) = 0. (13)

Proof. Assume that (13) holds. Similar to the proof of Theorem 4 of [7] or Lemma
2.6 in [16], we have

sup
a∈B

∫
B

(1−|z|2)2|g(z)|2
(1−|ϕ(z)|2)2α (1−|ϕa(z)|2)npdλ (z) < ∞.
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By Theorem 1, we know that Dα
ϕ,g : B → Qp is bounded. We need only to prove that

Dα
ϕ,g f ∈ Qp,0 for each f ∈ B , and this follows from the inequality∫

B
|ℜ(Dα

ϕ,g f )(z)|2(1−|z|2)2(1−|ϕa(z)|2)npdλ (z)

� C‖ f‖2
B

∫
B

(1−|z|2)2|g(z)|2
(1−|ϕ(z)|2)2α (1−|ϕa(z)|2)npdλ (z).

Conversely, assume that Dα
ϕ,g : B → Qp,0 is bounded. Using a way similar to the

proof of Theorem 1, we choose functions fi ∈ B(1 � i � M) such that

M

∑
i=1

|Dα fi(z)| � 1
(1−|z|)α , z ∈ B. (14)

Then Dα
ϕ,g fi ∈ Qp,0(1 � i � M) . Therefore

lim
|a|→1

∫
B

(1−|z|2)2|g(z)|2
(1−|ϕ(z)|)2α (1−|ϕa(z)|2)npdλ (z)

� C
M

∑
i=1

lim
|a|→1

∫
B
|ℜ(Dα

ϕ,g fi)(z)|2(1−|z|2)2(1−|ϕa(z)|2)npdλ (z) = 0,

which shows that (13) holds. �

REMARK 2. From [5] we know that f ∈ Qp,0 if and only if

|ℜ f (z)|2(1−|z|2)np−n+1dv(z) (15)

is a vanishing p−Carleson measure. Using this characterization of Qp,0 and similarly
to the proof of Theorem 2 we see that Dα

ϕ,g : B → Qp,0 is bounded if and only if

lim
δ→0

1
δ np

∫
S(ξ ,δ )

(1−|z|2)np−n+1|g(z)|2
(1−|ϕ(z)|2)2α dv(z) = 0 (16)

uniformly for ξ ∈ ∂B .
By [11], we see that Qp = B and Qp,0 = B0 when 1 < p < n

n−1 . Now we
consider the special case of 1 < p < n

n−1 .

THEOREM 3. Let ϕ be a holomorphic self-map of B, g ∈H(B) such that g(0) =
0 . Then the following statements are equivalent.

(i) The operator Dα
ϕ,g : B → B is bounded;

(ii)

M1 := sup
z∈B

(1−|z|2)|g(z)|(1−|ϕ(z)|2)−α < ∞. (17)

Proof. (i) ⇒ (ii) . From Lemma 2, there exists a positive integer M and there
exist functions fi ∈ B(1 � i � M) such that

M

∑
i=1

|Dα fi(z)| � 1
(1−|z|)α , z ∈ B. (18)
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Setting z = ϕ(w) , we get

M

∑
i=1

|Dα fi(ϕ(w))| � 1
(1−|ϕ(w)|)α , w ∈ B. (19)

Hence

(1−|z|2)|g(z)|
(1−|ϕ(z)|)α �

M

∑
i=1

(1−|z|2)|g(z)||Dα fi(ϕ(z))|

=
M

∑
i=1

(1−|z|2)|ℜ(Dα
ϕ,g fi)(z)|. (20)

By the boundedness of Dα
ϕ,g : B → B , we see that Dα

ϕ,g fi ∈ B(i = 1, · · · ,M) . There-
fore the superemum over z ∈ B of the right-hand side of (20) is finite, this implies that
(17) holds.

(ii) ⇒ (i) . Suppose that (17) holds. Then for arbitrary z ∈ B and f ∈ B , by
Lemma 1 and (1) we have

(1−|z|2)|ℜ(Dα
ϕ,g f )(z)| = (1−|z|2)|Dα f (ϕ(z))g(z)|

= (1−|ϕ(z)|2)α |Dα f (ϕ(z))| (1−|z|2)|g(z)|
(1−|ϕ(z)|2)α

� C‖ f‖B
(1−|z|2)|g(z)|
(1−|ϕ(z)|2)α . (21)

By the assumption we see that (Dα
ϕ,g f )(0) = 0. On account of the condition (17), the

boundedness of the operator Dα
ϕ,g : B →B follows from (21) by taking the supremum

over B . This completes the proof of Theorem 3. �

THEOREM 4. Let ϕ be a holomorphic self-map of B, g ∈H(B) such that g(0) =
0 . Then the following statements are equivalent.

(i) The operator Dα
ϕ,g : B → B0 is bounded;

(ii)

lim
|z|→1

(1−|z|2)|g(z)|(1−|ϕ(z)|2)−α = 0. (22)

Proof. (i) ⇒ (ii) . From Lemma 2, there exists a positive integer M and there
exist functions fi ∈ B(1 � i � M) such that

M

∑
i=1

|Dα fi(z)| � 1
(1−|z|)α , z ∈ B. (23)

From the proof of Theorem 1,

(1−|z|2)|g(z)|
(1−|ϕ(z)|)α �

M

∑
i=1

(1−|z|2)|ℜ(Dα
ϕ,g fi)(z)|. (24)
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By the boundedness of Dα
ϕ,g : B →B0 , we see that Dα

ϕ,g fi ∈B0(i = 1, · · · ,M) . There-
fore the right-hand side of (24) tends to zero as |z| → 1. Hence (22) is satisfied.

(ii)⇒ (i) . Suppose that (22) holds. Then for arbitrary z ∈ B and f ∈B , from the
proof of Theorem 3 we have

(1−|z|2)|ℜ(Dα
ϕ,g f )(z)| = (1−|ϕ(z)|2)α |Dα f (ϕ(z))| (1−|z|2)|g(z)|

(1−|ϕ(z)|2)α

� C‖ f‖B
(1−|z|2)|g(z)|
(1−|ϕ(z)|2)α → 0 (25)

as |z| → 1, that is Dα
ϕ,g f ∈ B0 . From the assumption and Theorem 3 we see that

Dα
ϕ,g : B → B is bounded. Therefore Dα

ϕ,g : B → B0 is bounded. This completes the
proof of Theorem 4. �

Finally, we consider the case α = 1. In this case, we completely characterize the
boundedness and compactness of the operator D1

ϕ,g on the Bloch space in the unit ball.

THEOREM 5. Let ϕ be a holomorphic self-map of B, g ∈H(B) such that g(0) =
0 . Then the following statements are equivalent.

(i) The operator D1
ϕ,g : B0 → B is bounded;

(ii)

M1 := sup
z∈B

(1−|z|2)|g(z)|(1−|ϕ(z)|2)−1 < ∞. (26)

Proof. (ii) ⇒ (i) . Assume that (26) holds. By Theorem 3, we see that D1
ϕ,g :

B → B is bounded. Hence D1
ϕ,g : B0 → B is bounded.

(i) ⇒ (ii) . Suppose that D1
ϕ,g : B0 → B is bounded. Taking f (z) = 1, then by

the boundedness of the operator D1
ϕ,g : B0 → B we get

L1 := sup
z∈B

(1−|z|2)|g(z)| < ∞. (27)

For a ∈ B, set

fa(z) = ln
e

1−〈z,a〉 . (28)

It is easy to check that supa∈B ‖ fa‖B � 2 and fa ∈ B0 for each a ∈ B. Therefore we
have

2‖D1
ϕ,g‖B→B � ‖D1

ϕ,g fϕ(b)‖B = |(D1
ϕ,g fϕ(b))(0)|+ sup

z∈B
(1−|z|2)|ℜ(D1

ϕ,g fϕ(b))(z)|

� (1−|b|2)|g(b)||ϕ(b)|2
1−|ϕ(b)|2 − (1−|b|2)|g(b)| ln e

1−|ϕ(b)|2 (29)

for any b ∈ B . Here we used the fact |(D1
ϕ,g fϕ(b))(0)| = 0.
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For a ∈ B, set

ha(z) = ln
e

1−〈z,a〉 −
1−|a|2
1−〈z,a〉 .

It is easy to check that supa∈B ‖ha‖B � 4 and ha ∈ B0 for each a ∈ B. Moreover

ℜha(z) =
〈z,a〉

1−〈z,a〉 −
(1−|a|2)〈z,a〉
(1−〈z,a〉)2 .

Therefore we have

4‖D1
ϕ,g‖B→B � ‖D1

ϕ,ghϕ(d)‖B = sup
z∈B

(1−|z|2)|ℜ(D1
ϕ,ghϕ(d))(z)|

� (1−|d|2)|g(d)||hϕ(d)(ϕ(d))|− (1−|d|2)|g(d)||ℜhϕ(d)(ϕ(d))|
= (1−|d|2)|g(d)|( ln

e
1−|ϕ(d)|2 −1

)
, (30)

for any d ∈ B . From (30), we get

sup
z∈B

(1−|z|2)|g(z)|( ln
e

1−|ϕ(z)|2 −1
)
< ∞, (31)

which together with (27) imply

sup
z∈B

(1−|z|2)|g(z)| ln e
1−|ϕ(z)|2 < ∞. (32)

From (29) and (32), we obtain

sup
z∈B

(1−|z|2)|g(z)| |ϕ(z)|2
1−|ϕ(z)|2 < ∞, (33)

which implies

sup
{z∈B,|ϕ(z)|>1/2}

(1−|z|2)|g(z)|
1−|ϕ(z)|2 � 1

4
sup

{z∈B,|ϕ(z)|>1/2}
(1−|z|2)|g(z)| |ϕ(z)|2

1−|ϕ(z)|2
< ∞. (34)

From (27) we get

sup
{z∈B,|ϕ(z)|�1/2}

(1−|z|2)|g(z)|
1−|ϕ(z)|2 � 4

3
sup
z∈B

(1−|z|2)|g(z)| < ∞. (35)

Combining (34) with (35) we get (26). This completes the proof of this theorem. �
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THEOREM 6. Let ϕ be a holomorphic self-map of B, g ∈H(B) such that g(0) =
0 . Then the following statements are equivalent.

(i) The operator D1
ϕ,g : B0 → B0 is bounded;

(ii) The operator D1
ϕ,g : B0 → B is bounded and

lim
|z|→1

(1−|z|2)|g(z)| = 0. (36)

Proof. (i) ⇒ (ii) . Suppose that D1
ϕ,g : B0 → B0 is bounded, then it is clear

that D1
ϕ,g : B0 → B is bounded. Taking the function f (z) = 1, and employing the

boundedness of D1
ϕ,g : B0 → B0 , we obtain that (36) holds.

(ii)⇒ (i) . Assume that D1
ϕ,g : B0 →B is bounded and (36) holds. Then for each

polynomial p(z) , we have

(1−|z|2)|ℜ(D1
ϕ,g p)(z)| = (1−|z|2)|D p(ϕ(z))||g(z)|

= (1−|z|2)|p(ϕ(z))+ ℜp(ϕ(z))||g(z)|
� (‖p‖∞ +‖ℜp‖∞)(1−|z|2)|g(z)|.

From (36), it follows that for each polynomial p, D1
ϕ,g(p) ∈B0. The set of all polyno-

mials is dense in B0, thus for every f ∈B0 there is a sequence of polynomials (pk)k∈N

such that ‖pk − f‖B → 0 as k → ∞ . From the boundedness of D1
ϕ,g : B0 → B , we

have that

‖D1
ϕ,gpk −D1

ϕ,g f‖B � ‖D1
ϕ,g‖B0→B ‖pk − f‖B → 0, as k → ∞.

From this and since B0 is a closed subset of B , we obtain D1
ϕ,g f = limk→∞ D1

ϕ,gpk ∈
B0. Therefore D1

ϕ,g : B0 → B0 is bounded. The proof is completed. �

THEOREM 7. Let ϕ be a holomorphic self-map of B, g ∈H(B) such that g(0) =
0 . Suppose that D1

ϕ,g : B → B is bounded, then the following statements are equiva-
lent.

(i) The operator D1
ϕ,g : B → B is compact;

(ii) The operator D1
ϕ,g : B0 → B is compact;

(iii)

lim
|ϕ(z)|→1

(1−|z|2)|g(z)|(1−|ϕ(z)|2)−1 = 0. (37)

Proof. (i) ⇒ (ii) . It is obvious.
(ii) ⇒ (iii) . Suppose that D1

ϕ,g : B0 → B is compact. Let (zk)k∈N be a sequence
in B such that |ϕ(zk)| → 1 as k → ∞ . Set

fk(z) =
(

ln
e

1−|ϕ(zk)|2
)−1(

ln
e

1−〈z,ϕ(zk)〉
)2

, k ∈ N.
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From the proof of Theorem 5 we see that fk ∈ B0 and supk∈N ‖ fk‖B � C . Moreover,
fk converges to zero uniformly on compact subsets of B . By Lemma 4,

∣∣∣2(1−|zk|2)|g(zk)||ϕ(zk)|2
1−|ϕ(zk)|2 − (1−|zk|2)|g(zk)| ln e

1−|ϕ(zk)|2
∣∣∣

� sup
z∈B

(1−|z|2)|ℜ(D1
ϕ,g fk)(z)|

= ‖D1
ϕ,g fk‖B → 0, (38)

as k → ∞ , this implies

lim
k→∞

2(1−|zk|2)|g(zk)||ϕ(zk)|2
1−|ϕ(zk)|2 = lim

k→∞
(1−|zk|2)|g(zk)| ln e

1−|ϕ(zk)|2 , (39)

if any one of the limits exists.
Let (zk)k∈N be a sequence in B such that |ϕ(zk)| → 1 as k → ∞ . Set

hk(z) =
(

ln
e

1−|ϕ(zk)|2
)−1(

ln
e

1−〈z,ϕ(zk)〉
)2−2

1−|ϕ(zk)|2
1−〈z,ϕ(zk)〉 . (40)

Analogous to the proof of Theorem 5 we see that hk ∈ B0 and supk∈N ‖hk‖B � C .
Moreover, hk converges to zero uniformly on compact subsets of B . By Lemma 4,

(1−|zk|2)|g(zk)|
(

ln
e

1−|ϕ(zk)|2 −2
)

� sup
z∈B

(1−|z|2)|ℜ(D1
ϕ,ghk)(z)|

= ‖D1
ϕ,ghk‖B → 0,

as k → ∞ , from which we get

lim
|ϕ(zk)|→1

(1−|zk|2)|g(zk)|
(

ln
e

1−|ϕ(zk)|2 −2
)

= 0,

which implies

lim
|ϕ(zk)|→1

(1−|zk|2)|g(zk)| ln e
1−|ϕ(zk)|2 = 0. (41)

By (39) and (41), we get

lim
|ϕ(zk)|→1

2(1−|zk|2)|g(zk)|
1−|ϕ(zk)|2 = lim

|ϕ(zk)|→1

2(1−|zk|2)|g(zk)||ϕ(zk)|2
1−|ϕ(zk)|2 = 0. (42)

(37) follows from the last equality.
(iii) ⇒ (i) . Assume that the condition (37) holds. Let ( fk)k∈N be a sequence in

B with supk∈N ‖ fk‖B � K and fk → 0 uniformly on compact subsets of B as k → ∞.
From the assumption that D1

ϕ,g : B → B is bounded and the proof of Theorem 5 we
see that (27) holds. By (37) we have that for every ε > 0, there is a δ ∈ (0,1) , such
that

(1−|z|2)|g(z)|(1−|ϕ(z)|2)−1 < ε (43)
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when δ < |ϕ(z)| < 1. Let Ω = {w ∈ B : |w| � δ} . From (27) and (43), we have

‖D1
ϕ,g fk‖B = sup

z∈B
(1−|z|2)|ℜ(D1

ϕ,g fk)(z)| = sup
z∈B

(1−|z|2)|D fk(ϕ(z))g(z)|

�
(

sup
{z∈B: |ϕ(z)|�δ}

+ sup
{z∈B :δ<|ϕ(z)|<1}

)
(1−|z|2)|g(z)||D fk(ϕ(z))|

� L1 sup
w∈Ω

|D fk(w)|+C‖ fk‖B sup
{z∈B :δ<|ϕ(z)|<1}

(1−|z|2)|g(z)|
1−|ϕ(z)|2

� L1 sup
w∈Ω

(| fk(w)|+ |ℜ fk(w)|)+CKε.

By the Cauchy’s estimate and the assumption we see that the sequences fk and ℜ fk
converge to zero on compact subsets of B as k → ∞ . Since Ω is compact, we get
that limk→∞ supw∈Ω | fk(w)| = 0 and limk→∞ supw∈Ω |ℜ fk(w)| = 0. Using this fact and
letting k → ∞ in the last inequality, we obtain that

limsup
k→∞

‖D1
ϕ,g fk‖B � CKε.

Since ε is an arbitrary positive number it follows that limsupk→∞ ‖D1
ϕ,g fk‖B = 0.

It follows from Lemma 4 that the result follows. The proof of this theorem is com-
pleted. �

Let L : X →Y be a linear operator, where X and Y are Banach spaces. Recall that
L is weakly compact if for every bounded sequence (xn)n∈N in X , (L(xn))n∈N has a
weakly convergent subsequence (see [3]).

THEOREM 8. Let ϕ be a holomorphic self-map of B, g ∈H(B) such that g(0) =
0 . Then the following statements are equivalent.

(i) The operator D1
ϕ,g : B → B0 is compact;

(ii) The operator D1
ϕ,g : B0 → B0 is compact;

(iii) The operator D1
ϕ,g : B0 → B0 is weakly compact;

(iv)

lim
|z|→1

(1−|z|2)|g(z)|(1−|ϕ(z)|2)−1 = 0. (44)

Proof. (i) ⇒ (ii) . It is obvious.
(ii) ⇒ (iii) . Since every compact operator is weakly compact, the result follows.
(iii) ⇒ (iv) . Assume that D1

ϕ,g : B0 → B0 is weakly compact. Now we adopt
the method of the proof of Theorem 2 in [8]. Since D1

ϕ,g : B0 → B0 is bounded and
(B0)∗ = A1 (see [23]), then we see that (D1

ϕ,g)
∗ : A1 → A1 is bounded. Hence every

linear operator L on B0 can be identified by a function g∈A1, so that for every f ∈B0

and g ∈ A1,

〈D1
ϕ,g( f ),g〉 = 〈 f ,(D1

ϕ,g)
∗(g)〉. (45)
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On the other hand, since (A1)∗ = B, we see that (D1
ϕ,g)

∗∗ : B →B is bounded. Hence
every f ∈ B0 can be viewed as an element of the space (A1)∗ and

〈 f ,(D1
ϕ,g)

∗(g)〉 = 〈(D1
ϕ,g)

∗∗( f ),g〉.
From these two formulas we get

〈D1
ϕ,g( f ),g〉 = 〈(D1

ϕ,g)
∗∗( f ),g〉,

for every g ∈ A1. By a well known consequence of Hann-Banach theorem we obtain
(D1

ϕ,g)∗∗( f ) = D1
ϕ,g( f ) for every f ∈ B0. Since B0 is w∗ dense in B, it follows that

(D1
ϕ,g)∗∗( f ) = D1

ϕ,g( f ) for every f ∈ B.
Let X and Y be Banach spaces. Using Gantmacher’s theorem (see [3]), we

have that L : X → Y is weakly compact if and only if L∗∗(X∗∗) ⊆ Y , where L∗∗ is
the second adjoint of L . Hence D1

ϕ,g : B0 → B0 is weakly compact if and only if
(D1

ϕ,g)
∗∗((B0)∗∗) ⊆ B0 . From the fact that (D1

ϕ,g)
∗∗( f ) = D1

ϕ,g( f ) for every f ∈ B

and (B0)∗∗ ∼= B ([23]), we see that D1
ϕ,g : B0 → B0 is weakly compact if and only if

D1
ϕ,g(B) ⊆ B0 . Then the result follows from Theorem 4.

(iv) ⇒ (i) . Suppose that (44) holds. By (21) we have

(1−|z|2)|ℜ(D1
ϕ,g f )(z)| � C‖ f‖B(1−|z|2)|g(z)|(1−|ϕ(z)|2)−1. (46)

Taking the supremum in (46) over the unit ball of the space B, then letting |z| → 1,
we obtain

lim
|z|→1

sup
‖ f‖B�1

(1−|z|2)|ℜ(D1
ϕ,g f )(z)| = 0. (47)

From Lemma 3 and (47), we see that D1
ϕ,g : B → B0 is compact. The proof is com-

pleted. �
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