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ON THE INVARIANCE EQUATION FOR HEINZ MEANS

ÁDÁM BESENYEI

Abstract. We solve the so-called invariance equation in the class of Heinz means, that is, we give
necessary and sufficient conditions for the constants 0 � p,q,r � 1 such that the identity

Hp(Hq(x,y),Hr(x,y)) = Hp(x,y) (x,y ∈ R
+)

holds true where the Heinz mean Hp is defined for 0 � p � 1 as

Hp(x,y) =
xpy1−p + x1−pyp

2
.

The Taylor expansion of the Heinz mean is used.
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