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ON THE INVARIANCE EQUATION FOR HEINZ MEANS

ÁDÁM BESENYEI

(Communicated by N. Elezović)

Abstract. We solve the so-called invariance equation in the class of Heinz means, that is, we give
necessary and sufficient conditions for the constants 0 � p,q,r � 1 such that the identity

Hp(Hq(x,y),Hr(x,y)) = Hp(x,y) (x,y ∈ R
+)

holds true where the Heinz mean Hp is defined for 0 � p � 1 as

Hp(x,y) =
xpy1−p + x1−pyp

2
.

The Taylor expansion of the Heinz mean is used.

1. Introduction

A continuous function m : R
+ ×R

+ → R
+ is called a mean if

min(x,y) � m(x,y) � max(x,y) (x,y ∈ R
+). (1)

A mean is strict if both inequalities in (1) are strict for x �= y .
Let M,N : R

+ ×R
+ → R

+ be two means and x,y ∈ R
+ . Then we can define the

iteration
x0 := x, y0 := y,

xn+1 := M(xn,yn), yn+1 := N(xn,yn)
(2)

which is called the Gaussian mean iteration. Such a recurrence was first considered
by J. L. Lagrange in 1785 who defined it by using the arithmetic and geometric means.
However, it is named after C. F. Gauss who rediscovered the recurrence in 1791 at the
age of 14 and later in 1799 uncovered its connections to elliptic integrals, see [3].

It is well-known (see [3]) that if M and N are strict means then the iteration (2)
converges for every x,y ∈ R

+ and its limit is a strict mean which is called the Gauss
compound of M and N , denoted by M ⊗N . The characterization of M ⊗N is the
following.
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THEOREM 1. (Invariance principle) Suppose that M⊗N exists. Then M⊗N is
the unique mean Φ satisfying the so-called invariance equation:

Φ(M(x,y),N(x,y)) = Φ(x,y) (x,y ∈ R
+). (3)

If the invariance equation (3) is satisfied one also says that the mean Φ is (M,N)
invariant or the mean N is complementary to M with respect to Φ , see [13, 7].

The invariance equation in general mean classes has been studied by many au-
thors. This problem was considered first for the class of quasi-arithmetic means by O.
Sutô in [14] and later by J. Matkowski [13] and it was completely solved in [8]. The
invariance problem was solved for the class of weighted quasi-arithmetic means in [12],
for the class of Greek means in [15] and for weighted Lehmer means in [6]. Recently,
a computer aided solution was given for the class of Gini means and Stolarsky means
in [4, 5]. In what follows, we consider the invariance equation in the class of Heinz
means.

2. Heinz means

The Heinz mean for 0 � p � 1 is defined in [2] as

Hp(x,y) =
xpy1−p + x1−pyp

2
.

Notice that Hp = H1−p so later we may assume 0 � p � 1/2. The Heinz means provide
an interpolation between the arithmetic and the geometric means. Indeed, H0(x,y) =
(x+ y)/2 and H1/2(x,y) =

√
xy , further, it is easily seen, by using the inequality of the

arithmetic and geometric means for the lower estimate and its weighted version for the
upper estimate, that

√
xy � Hp(x,y) � x+ y

2
. (4)

The matrix version of the inequality (4) is

2‖A1/2XB1/2‖ � ‖ApXB1−p +A1−pXBp‖ � ‖AX +XB‖. (5)

A special case of (5) was proved by E. Heinz in 1951 (see [11]), who used it to derive
several inequalities in the perturbation theory of operators, the mean is named after
him. We note that the mean Hp is called symmetric mean in [10], see also [16] for
some sharp inequalities corresponding to (4).

The next proposition summarizes some properties of the Heinz means.

PROPOSITION 2. For fixed x,y ∈ R
+ the function p �→ Hp(x,y) is convex on

[0,1] , it is strictly decreasing for 0 � p � 1/2 and strictly increasing for 1/2 � p � 1 .
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Furthermore, for |x| < 1 ,

Hp(1,1− x) = 1− 1
2
x+

p(p−1)
2

x2 +
p(p−1)

4
x3

+
p(p−1)(p(p−1)+4)

24
x4

+
p(p−1)(p(p−1)+2)

16
x5

+
p(p−1)(p(p−1)(p(p−1)+52)+72)

720
x6 +o(x6).

(6)

where the coefficients of the Taylor expansion depend only on p(p−1) .

Proof. By simple calculation we obtain

d
dp

Hp(1,x) =
1
2

logx · (xp− x1−p) =
1
2
x1−p logx · (x2p−1−1),

which is negative for 0 < p < 1/2 and positive for 1/2 < p < 1. In addition,

d2

dp2 Hp(1,x) =
1
2

log2 x · (xp + x1−p) > 0,

hence Hp(1,x) is a convex function of p . Since Hp(x,y) = xHp(1,y/x) , it also pos-
sesses the above properties. Additionally, for |x| < 1 the binomial series implies that

Hp(1,1− x) =
(1− x)p +(1− x)1−p

2

=
1
2

5

∑
n=0

(−1)n
((

p
n

)
+

(
1− p

n

))
xn +o(x6)

which, after some simple calculation, gives (6). Clearly, the coefficients an in the
Taylor expansion are polynomials of p and they are invariant under the change of p to
(1− p) . Therefore, an(p)= an(1− p) thus p = 1 and p = 0 are roots of the polynomial
an(p)− an(0) hence an(p) = p(p− 1)bn(p)+ an(0) where bn is a polynomial of p
(with degree less than an ) and it is also invariant under the change of p to (1− p) .
Whence by induction we obtain that an(p) depends only on p(p−1) . �

REMARK 3. A further interesting property of the Heinz means is an integral rep-
resentation for the logarithmic mean, namely,

L(x,y) =
x− y

logx− logy
=

∫ 1

0
xpy1−p dp =

∫ 1

0
Hp(x,y)dp.

Thus, by integrating the inequality (4) with respect to p we obtain the well-known
inequality

√
xy � L(x,y) � (x+ y)/2.
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Now let us consider the invariance equation in the class of Heinz means:

Hp(Hq(x,y),Hr(x,y)) = Hp(x,y) (x,y ∈ R
+). (7)

The main result of the paper is the following.

THEOREM 4. Let 0 � p,q,r � 1/2 . Then the invariance equation (7) is valid if
and only if p = q = r .

In view of Proposition 1 it follows that the Gauss compound of two Heinz means
is again a Heinz mean only in the trivial case, i.e., when the two means are equal.

COROLLARY 5. The Gauss compound of the Heinz means Hq and Hr is again a
Heinz mean if and only if Hq = Hr .

By taking p = 0 (or p = 1) in the invariance equation (7) we obtain as a conse-
quence of Theorem 4 the solution of the so-called Matkowski-Sutô equation in the class
of Heinz means.

COROLLARY 6. Let 0 � q,r � 1/2 . Then the Matkowski-Sutô equation

Hq(x,y)+Hr(x,y) = x+ y (x,y ∈ R
+)

is satisfied if and only if q = r = 0 .

REMARK 7. The paper [1] introduces the term unsymmetric Heinz mean for the
function (x,y) �→ xpy1−p (0 � p � 1) which is nothing but a weighted geometric mean.
In the class of unsymmetric Heinz means the invariance equation (3) is readily solved.
Indeed, it is equivalent to

(
xqy1−q)p (

xry1−r)1−p
= xpy1−p

which yields that p = r/(r+1−q) .

3. Proof of the main result

Proof. It is obvious that for p = q = r the invariance equation holds.
To prove the other part we use the Taylor expansion of the Heinz means up to order

6. It is convenient to normalize both sides of (7), i.e., we take x = 1, y = 1− x and
consider the equation

Hp(Hq(1,1− x),Hr(1,1− x)) = Hp(1,1− x) (x ∈ R
+). (8)

On the other hand, to make the formalism as simple as possible we introduce a notation.
For a number 0 � ν � 1 we denote ν̂ = ν(ν −1) . By Proposition 2 it follows that the
coefficients of the Taylor expansion of the left-hand side of (8) will depend on p̂, q̂, r̂
and the right-hand side depends on p̂ which will make the calculation less complicate.

The Taylor expansion of the right-hand side of (8) is given by (6). In order to obtain
the series expansion of the left-hand side of (8) we need the expansion of Hq(1,1− x)p

that can be calculated by applying the following lemma (see [9]).
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LEMMA 8. Suppose that f (x) = ∑∞
n=0 anxn and f (x)α = ∑∞

n=0 bnxn where α ∈ R

and f , f α are analytic functions near x = 0 (actually, also formal power series can be
considered). Then for n � 0 ,

n

∑
k=0

(k(α +1)−n)akbn−k = 0.

Now, Lemma 8 with the expansion of Hq(1,1−x) and with the fact that Hq(1,1)=
1 implies that

Hq(1,1− x)p

= 1− 1
2

px+
(

1
8

p̂+
1
2

pq̂

)
x2 +

(
1
4

pq̂− 1
4

p̂q̂− 1
48

p̂(p−2)
)

x3

+
(

1
24

pq̂(q̂+4)− 1
8

p̂q̂+
1
8

p̂q̂2 +
1
16

p̂(p−2)q̂+
1

384
p̂(p−2)(p−3)

)
x4

+
(

1
32

p̂(p−2)q̂− 1
16

p̂(p−2)q̂2 +
1
8

p̂q̂2− 1
48

p̂q̂(q̂+4)+
1
16

pq̂(q̂+2)

− 1
96

p̂(p−2)(p−3)q̂− 1
3840

p̂(p−2)(p−3)(p−4)
)

x5

+
(

1
720

pq̂(q̂(q̂+52)+72)+
1

192
p̂(p−2)q̂(q̂+4)− 1

16
p̂(p−2)q̂2

+
1
48

p̂(p−2)q̂3− 1
32

p̂q̂(q̂+2)+
1
48

p̂q̂2(q̂+4)+
1
32

p̂q̂2

− 1
192

p̂(p−2)(p−3)q̂+
1
64

p̂(p−2)(p−3)q̂2

+
1

768
p̂(p−2)(p−3)(p−4)q̂

+
1

46080
p̂(p−2)(p−3)(p−4)(p−5)

)
x6 +o(x6).

(9)

By replacing p by (1− p) and q̂ by r̂ (and keeping p̂ unchanged) from (9) we obtain
the Taylor expansion of Hr(1,1− x)1−p . We can then take the Cauchy product of
Hq(1,1− x)p and Hr(1,1− x)1−p which yields

Hq(1,1− x)pHr(1,1− x)1−p

= 1− 1
2
x+

1
2

(pq̂+(1− p)r̂)x2 +
1
4

(pq̂+(1− p)r̂)x3

+
1
24

(
pq̂(q̂+4)+ (1− p)r̂(r̂ +4)+3 p̂(q̂− r̂)2)x4

+
1
16

(
pq̂(q̂+2)+ (1− p)r̂(r̂ +2)+3 p̂(q̂− r̂)2)x5

+
1

720

(
pq̂(q̂(q̂+52)+72)+ (1− p)r̂(r̂(r̂ +52)+72)

−15 p̂(q̂− r̂)2(pq̂+(1− p)r̂−10)
)
x6 +o(x6).

(10)
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Finally, replacing p by (1− p) in (10) gives the Taylor expansion of the product
Hq(1,1− x)1−pHr(1,1− x)p which together with (10) implies that the Taylor expan-
sion of the left-hand side of (8) is

Hp(Hq(1,1− x),Hr(1,1− x))

= 1− 1
2
x+

1
4
(q̂+ r̂)x2 +

1
8
(q̂+ r̂)x3

+
1
48

(
q̂(q̂+4)+ r̂(r̂ +4)+6 p̂(q̂− r̂)2)x4

+
1
32

(
q̂(q̂+2)+ r̂(r̂ +2)+6 p̂(q̂− r̂)2)x5

+
1

1440

(
q̂(q̂(q̂+52)+72)+ r̂(r̂(r̂ +52)+72)

−15 p̂(q̂− r̂)2(q̂+ r̂−20)
)
x6 +o(x6).

Now, comparing the coefficients of the Taylor expansion of both sides of (8) it follows
that

p̂ =
1
2
(q̂+ r̂), (11)

p̂(p̂+4) =
1
2

(
q̂(q̂+4)+ r̂(r̂ +4)+6 p̂(q̂− r̂)2) , (12)

p̂(p̂(p̂+52)+72) =
1
2

(
q̂(q̂(q̂+52)+72)+ r̂(r̂(r̂ +52)+72) (13)

−15 p̂(q̂− r̂)2(q̂+ r̂−20)
)

By substituting equation (11) into (12) we obtain that

(1+6q̂+6r̂)(q̂− r̂)2 = 0.

If q̂ = r̂ then (11) yields that p̂ = q̂ = r̂ . Otherwise 2 p̂ = q̂ + r̂ = −1/6 thus after
some simplification equation (13) reduces to (q̂ + 1/12)2 = 0 hence q̂ = −1/12 so
p̂ = q̂ = r̂ again. Therefore, p̂ = q̂ = r̂ is necessary in order to the invariance equation
(8) be valid. Since the function x �→ x(x−1) is injective on [0,1/2] thus it follows that
p = q = r . �
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problem, Publ. Math. Debrecen 61, 1-2 (2002), 157–218.

[9] H. W. GOULD, Coefficient identities for powers of Taylor and Dirichlet series, Amer. Math. Monthly
81 (1974), 3–14.
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Pázmány Péter s. 1/C
Hungary

e-mail: badam@cs.elte.hu

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


