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INEQUALITIES FOR WEIGHTED SUMS

OF POWERS AND THEIR APPLICATIONS
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(Communicated by Hari M. Srivastava)

Abstract. Two inequalities for weighted sums of powers are established. Applications to Ja-
cobian elliptic functions and Legendre’s elliptic integrals of the first kind are presented. Some
known and new inequalities for circular and hyperbolic functions are obtained. Applications
to certain iterative means including Gauss’ arithmetic-geometric mean and Schwab-Borchardt
mean are included.

1. Introduction

In recent years several researchers have obtained new inequalities for the trigono-
metric and hyperbolic functions. See [5], [6], [10], [16], [17] and the references therein.
Also, there is an interest in the study of inequalities involving other classes of elemen-
tary functions and the the higher transcendental functions as well. In this paper we
demonstrate that some inequalities involving Jacobian elliptic functions, Legendre’s
elliptic integrals of the first kind, circular and hyperbolic functions, Gauss’ arithmetic-
geometric mean and Schwab-Borchardt mean all follow from two inequalities proven
in this paper.

This paper is a continuation of the author’s earlier investigations reported in [5,
6, 7, 10], and is organized as follows. Assumptions and lemmas are given in Section
2. Two inequalities (3.1) and (3.8) for weighted sums of powers of two numbers are
established in Section 3. Applications of these results to inequalities for functions and
means mentioned in the previous paragraph are given in Section 4.

Research presented in this paper was partially inspired by the following result of
S.-H. Wu and H.M. Srivastava [16]:

THEOREM 1.1. Let 0 < x <
π
2

,λ > 0,μ > 0 and p � 2qμ
λ

. Then for q > 0 or

q � min

{
−λ

μ
,−1

}
, the following inequality

1 <
λ

μ + λ

(
sinx
x

)p

+
μ

μ + λ

(
tanx

x

)q

holds true.
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2. Preliminaries

In what follows the letters u and v will stand for two positive numbers which
satisfy the following conditions

min(u,v) < 1 < max(u,v), (2.1)

1 < uαvβ , (2.2)

and

1 <
α

α + β
1
u

+
β

α + β
1
v
, (2.3)

where the last two inequalities must be satisfied for some positive numbers α and β .
With w1 = α/(α + β ) and w2 = β/(α + β ) one can easily verify that the condi-

tions (2.2) and (2.3) can be combined and written as a two-sided inequality

H(w1,w2;u,v) < 1 < G(w1,w2;u,v),

where H and G are the weighted harmonic and geometric means, respectively, of u
and v .

For later use let us record two results.

LEMMA 2.1. ([10]) Let r and s be positive unequal numbers. If 1 < rs, then

1
r

+
1
s

< r+ s.

LEMMA 2.2. ([6]) Let r and s be the same as in Lemma 2.1 and let the positive
number γ and δ satisfy γ + δ = 1 . If

1 < γ
1
r

+ δ
1
s

< γr+ δ s, (2.4)

then for p � 1

1 < γ
1
rp + δ

1
sp < γrp + δ sp. (2.5)

The second inequality in (2.5) holds true if p > 0 .

3. Inequalities for Weighted Sums of Powers

The goal of this section is to establish two inequalities which involve two positive
numbers u and v . In what follows we will assume that they satisfy conditions (2.1)–
(2.3).

Our first result reads as follows.

THEOREM 3.1. Let λ > 0 and μ > 0 . If u < 1 < v, then

1 <
λ

λ + μ
up +

μ
λ + μ

vq (3.1)
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if either

q > 0 and p � q
αμ
β λ

(3.2)

or if
p � q � −1 and β λ � αμ . (3.3)

If v < 1 < u, then the inequality (3.1) holds true if either

p > 0 and q � p
β λ
αμ

(3.4)

or if
q � p � −1 and αμ � β λ . (3.5)

Proof. We shall establish (3.1) only when u < 1 < v . Let

d =
λ

λ + μ
up +

μ
λ + μ

vq.

Application of the inequality of weighted arithmetic and geometric means gives

dλ+μ � upλvqμ . (3.6)

It follows from (2.2) that v > u−α/β . Assume that q > 0. Then vqμ > u−qμα/β .
This and (3.6) give

dλ+μ > upλu−qαμ/β = upλ−qαμ/β � 1,

where the last inequality follows from 0 < u < 1 and the second condition in (3.2).
We shall establish now the inequality (3.1) when conditions (3.3) are satisfied.

Since 0 < u < 1 and p � q < 0, up � uq . Again, let d stand for the right side of (3.1).
Then

d � λ
λ + μ

uq +
μ

λ + μ
vq.

Let us write this inequality in the form

d � λ
λ + μ

(
1
u

)−q

+
μ

λ + μ

(
1
v

)−q

. (3.7)

It follows from (2.3) that

1
u

> 1+
β
α

(
1− 1

v

)
= 1+

β
α

(1−a),

where a = 1/v . Thus 0 < a < 1. Since −q > 0,

(
1
u

)−q

>

(
1+

β
α

(1−a)
)−q

.
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This in conjunction with (3.7) yields

d >
λ

λ + μ

(
1+

β
α

(1−a)
)−q

+
μ

λ + μ
a−q =: f (a).

Differentiation of f (a) gives

f ′(a) =
qμ

λ + μ

(
1+

β
α

(1−a)
)−q−1

a−q−1

[
β λ
αμ

aq+1−
(

1+
β
α

(1−a)
)q+1

]
� 0,

where the last inequality follows from

β λ
αμ

aq+1 � 1 �
(

1+
β
α

(1−a)
)q+1

.

Thus the function f (a) is decreasing on the interval (0,1) . This in conjunction with
lim

a→1−
f (a) = 1 yields d > 1. This completes the proof when u < 1 < v . The assertion

when v < 1 < u can be established in a similar way. We omit further details. The proof
is complete. �

We shall now prove the following.

THEOREM 3.2. Let α � 1 and β � 1 . Then for p � 1

2 <

(
1
u

)α p

+
(

1
v

)β p

< uα p + vβ p. (3.8)

The second inequality in (3.8) holds true for p > 0 .

Proof. First we shall prove (3.8) when p = 1. Assume that v < 1 < u . Then (2.3)
can be written as

1
v

> 1+
α
β

(
1− 1

u

)
.

This in turn implies that

(
1
u

)α
+

(
1
v

)β
>

(
1
u

)α
+

(
1+

α
β

(1−a)
)β

= aα +
(

1+
α
β

(1−a)
)β

=: f (a),

where a = 1/u . Thus 0 < a < 1. We shall demonstrate now that f (a) > 2 holds for all
a ∈ (0,1) . Differentiation of f (a) with respect to a gives

f ′(a) = α

[
aα−1−

(
1+

α
β

(1−a)
)β−1

]
.
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Since 0 < a < 1 < 1+(α/β )(1−a) and α,β � 1, f ′(a) < 0 for 0 < a < 1. Taking
into account that lim

a→1−
f (a) = 2, we conclude that f (a) > 2. This completes the proof

of the first inequality in (3.8). In order to establish the second one we apply Lemma 2.1
with r = uα and s = vβ . In order to establish (3.8) for values of p as stated in Theorem
3.2 we apply Lemma 2.2 with γ = δ = 1/2 and r and s as defined at the end of the
proof when p = 1. The case u < 1 < v can be established in an analogous manner.
This completes the proof. �

4. Applications

In this section we present several applications of two theorems established in the
previous section. We begin with

4.1. Applications to Jacobian elliptic functions

Let 0 < k < 1 be the modulus of Legendre’s complete elliptic integral of the first
kind

K =
∫ 1

0

dw√
(1−w2)(1− k2w2)

. (4.1)

In what follows we will assume that the variable x satisfies 0 < |x| � K . The Jacobian
version of Legendre’s incomplete elliptic integral of the first kind is

x =
∫ sn(x)

0

dw√
(1−w2)(1− k2w2)

, (4.2)

where sn(x) ≡ sn(x,k) ≡ sn is one of the twelve Jacobian elliptic functions (see, e.g.,
[11], [4], [14]). Other Jacobian elliptic functions used in this paper are

sc =
sn
cn

, sd =
sn
dn

,

where cn and dn are subordinate functions of sn and they satisfy fundamental identi-
ties

sn2 + cn2 = 1, k2sn2 +dn2 = 1 (4.3)

(see, e.g., [11, Ch. 22]).
For later use we define

u =
sn(x)

x
, v =

sc(x)
xdn(x)

. (4.4)

It is known that 0 < u < 1 < v .
We need the following.

PROPOSITION 4.1. Let u and v be defined in (4.4). Then

1 < u2v (4.5)
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and

1 <
2
3

1
u

+
1
3

1
v

. (4.6)

Proof. Inequality (4.5) is established in [5, (3.12)]. For the proof of (4.6) it suffices
to show that the second inequality in

3 <
x

sn(x)
+

x
sc(x)

+
x

sd(x)
< 2

x
sn(x)

+
xdn(x)
sc(x)

(4.7)

holds true where the first one is established in [5, (3.11)]. The second inequality in (4.7)
can be written as

x
sn(x)

(1+ cn(x)+dn(x)) <
x

sn(x)
(2+ cn(x)dn(x)). (4.8)

Thus in order to obtain the second inequality in (4.7) we have to show that

cn(x)+dn(x) < 1+ cn(x)dn(x). (4.9)

Using (4.3) we obtain

(cn(x)+dn(x))2 = 2− (1+ k2)sn2(x)+2cn(x)dn(x)

and also that

(1+ cn(x)dn(x))2 = 2− (1+ k2)sn2(x)+2cn(x)dn(x)+ k2sn4(x).

Comparing the right sides of the last two expressions we see that

(cn(x)+dn(x))2 < (1+ cn(x)dn(x))2 .

Since cn(x)+dn(x) > 0 and 1+ cn(x)dn(x) > 0 for 0 � |x| � K , the inequality (4.9)
follows. This in turn implies the validity of the inequality (4.8). Hence the assertion
follows. The proof is complete. �

With u and v as defined in (4.4) we see, using Proposition 4.1, Theorem 3.1 and
Theorem 3.2, that the following results are valid.

COROLLARY 4.2. Let λ > 0 and μ > 0 . If either q > 0 and p � 2q
μ
λ

or if

p � q � −1 and λ � 2μ , then

1 <
λ

λ + μ

(
sn(x)

x

)p

+
μ

λ + μ

(
sc(x)

xdn(x)

)q

. (4.10)

If p � 1 , then

2 <

(
x

sn(x)

)2p

+
(

xdn(x)
sc(x)

)p

<

(
sn(x)

x

)2p

+
(

sc(x)
xdn(x)

)p

, (4.11)

where the second inequality in (4.11) is valid provided p > 0 .

The second inequality in (4.11) has been established in [5, Theorem 3.3].
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4.2. Applications to Legendre’s elliptic integral F

Let 0 < φ < π/2 and let 0 < k < 1. Legendre’s incomplete elliptic integral of the
first kind is defined by

F(φ ,k) =
∫ sinφ

0

dw√
(1−w2)(1− k2w2)

.

It is well known that with x = F(φ ,k) one has sn(x) = sinφ , cn(x) = cosφ , dn(x) =√
1− k2sin2φ =: Δ , sc(x) = tanφ and sd(x) = sinφ

Δ .
Writing for brevity F ≡ F(φ ,k) we obtain the following using (4.10) and (4.11).

COROLLARY 4.3. With the assumptions for p,q,λ and μ as in Corollary 4.2 the
following inequalities

1 <
λ

λ + μ

(
sinφ
F

)p

+
μ

λ + μ

(
tanφ
ΔF

)q

(4.12)

and

2 <

(
F

sinφ

)2p

+
(

ΔF
tanφ

)p

<

(
sinφ
F

)2p

+
(

tanφ
ΔF

)p

(4.13)

are valid.

4.3. Applications to circular and hyperbolic functions

Some known inequalities involving either circular or hyperbolic functions can be
obtained from (4.10) and (4.11). Letting k → 0+ we have sn → sin , sc→ tan , dn → 1
and K → π/2. This yields the following.

COROLLARY 4.4. With the assumptions for p,q,λ and μ as in Corollary 4.2 one
has

1 <
λ

λ + μ

(
sinx
x

)p

+
μ

λ + μ

(
tanx

x

)q

(4.14)

and

2 <
( x

sinx

)2p
+

( x
tanx

)p
<

(
sinx
x

)2p

+
(

tanx
x

)p

(4.15)

(0 < |x| � π/2 ).

Letting in (4.14) p = 2, q = 1, λ = μ = 1 we obtain Wilker’s inequality [15]. The
same inequality becomes Huygen’s inequality [3] when p = q = 1, λ = 2 and μ = 1.
Inequalities (4.15) appear in [5], [10], [17]. For related results the interested reader is
referred to [16], [6] and the references therein.

The counterparts of inequalities (4.14) and (4.15) for the hyperbolic functions also
follow from (4.10) and (4.11). Taking into account that k → 1− , implies sn → tanh,
sc → sinh, dn → sech (see, e.g., [11, Ch. 22] we obtain the desired results. We omit
further details.

The remaining two subsections of this section deal with bivariate iterative means
of two positive numbers x and y (x �= y).
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4.4. Applications to Gauss’ arithmetic-geometric mean

Throughout the sequel Gauss’ arithmetic-geometric mean of x and y will be de-
noted by AGM(x,y) or for brevity, by AGM . It is an iterative mean, i.e.,

AGM = lim
n→∞

xn = lim
n→∞

yn,

where
x0 = x, y0 = y, xn+1 =

xn + yn

2
, yn+1 =

√
xnyn

(n � 0). See, e.g., [1], [2]. It is symmetric and homogeneousof degree 1 in its variables.
It is well-known that

(xy)1/2 < AGM <
x+ y

2
.

Assume that y < x . Letting u = AGM/x and v = AGM/y we see that u < 1 < v .
Moreover, numbers u and v satisfy conditions (2.2) and (2.3) with α = β = 1. The
following result is an immediate consequence of Theorem 3.1 and Theorem 3.2.

COROLLARY 4.5. Assume that λ > 0 and μ > 0 and let y < x . If either q > 0
and p � qμ/λ or if p � q � −1 and λ � μ , then

1 <
λ

λ + μ

(
AGM

x

)p

+
μ

λ + μ

(
AGM

y

)q

. (4.16)

If x < y, then the inequality (4.16) holds true if either p > 0 and q � pλ/μ or if
q � p � −1 and μ � λ .

If p � 1 , then

2 <
( x

AGM

)p
+

( y
AGM

)p
<

(
AGM

x

)p

+
(

AGM
y

)p

, (4.17)

where the second inequality in (4.17) is valid provided p > 0 .

Inequalities (4.16) and (4.17) imply inequalities involving Legendre’s complete
elliptic integral K (see (4.1)). Let k′ =

√
1− k2 be the complementary modulus. Using

the formula which connects AGM and K :

AGM(1,k′) =
π
2K

(see, e.g., [1]) together with (4.16) and (4.17) one can obtain inequalities involving
integral K . We omit further details.

4.5. Applications to the Schwab-Borchardt mean

The Schwab-Borchardt mean of x � 0 and y > 0, in the sequel, will be denoted
by SB(x,y) or simply by SB . It is another iterative mean, i.e.,

SB = lim
n→∞

xn = lim
n→∞

yn,
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where now
x0 = x, y0 = y, xn+1 =

xn + yn

2
, yn+1 =

√
xn+1yn

(n = 0,1, . . .). See, e.g., [1], [2]. It is worth mentioning that the mean under discussion
is not symmetric in its variables, i.e. SB(x,y) �= SB(y,x) if x �= y . This mean has been
studied extensively in [8], [9], and [7]. For future reference, let us record one result [8,
Thm. 3.1]:

(xy2)1/3 < SB(x,y) <
x+2y

3
. (4.18)

Let u = SB/x and v = SB/y . If y < x , then y < SB < x and u < 1 < v . It follows
from (4.18) that inequalities (2.2) and (2.3) are satisfied with α = 1 and β = 2. The
following result is an immediate consequence of Theorem 3.1.

COROLLARY 4.6. Assume that λ > 0 and μ > 0 . If y < x , then the inequality

1 <
λ

λ + μ

(
SB
x

)p

+
μ

λ + μ

(
SB
y

)q

(4.19)

holds true if either

q > 0 and p � q
μ
2λ

(4.20)

or
p � q � −1 and μ � 2λ . (4.21)

If x < y, then the inequality (4.19) is satisfied if either

p > 0 and q � p
2λ
μ

(4.22)

or
q � p � −1 and μ � 2λ . (4.23)

A two-sided inequality involving mean SB , which also follows from Theorem 3.2,
is established in [7].

To the end of this subsection we will deal with inequalities for the logarithmic
mean and the first Seiffert mean. Recall that the logarithmic mean of two positive
numbers x and y is defined as

L(x,y) ≡ L =
x− y

logx− logy

(x �= y). The first Seiffert mean of x and y is given by [12]

P(x,y) ≡ P = A
z

sin−1 z
,

where A is the unweighted arithmetic mean of x and y and z = (x− y)/(x+ y) . It is
known that

L = SB(A,G) (4.24)
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and
P = SB(G,A) (4.25)

(see [8]). Here G stands for the unweighted geometric mean of x and y . Assuming that
λ > 0 and μ > 0 we obtain using (4.24) and Corollary 4.6 that

1 <
λ

λ + μ

(
L
A

)p

+
μ

λ + μ

(
L
G

)q

(4.26)

if either conditions (4.20) or (4.21) are satisfied. Similarly, using (4.25) together with
Corollary 4.6 we arrive at

1 <
λ

λ + μ

(
P
G

)p

+
μ

λ + μ

(
P
A

)q

(4.27)

which is valid if either conditions (4.22) or (4.23) are satisfied.
Two other iterative means which can be derived from the Schwab-Borchardt mean

are the second Seiffert mean [13]

T (x,y) ≡ T = A
z

tan−1 z

and
M(x,y) ≡ M = A

z

sinh−1 z

(see [8]). It has been demonstrated in [8] that

T = SB(A,Q) and M = SB(Q,A),

where Q stands for the unweighted power mean of order 2 of x and y . Means M
and T are comparable and they satisfy A < M < T < Q . Inequalities similar to (4.26)
and (4.27) can be easily obtained using Corollary 4.6. For more inequalities involving
the Schwab-Borchardt mean and four subordinate means L,P,T and M the interested
reader is referred to [7].
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