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SOME SHARP INEQUALITIES INVOLVING SEIFFERT

AND OTHER MEANS AND THEIR CONCISE PROOFS
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Abstract. In the paper, by establishing the monotonicity of some functions involving the sine and
cosine functions, the authors provide a unified and concise proof of some known inequalities and
find some new sharp inequalities involving the Seiffert, contra-harmonic, centroidal, arithmetic,
geometric, harmonic, and root-square means of two positive real numbers a and b with a �= b .
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[19] E. NEUMAN AND J. SÁNDOR, On the Schwab-Borchardt mean, Math. Pannon. 14, 2 (2003), 253–266.
[20] D.-W. NIU, J. CAO, AND F. QI, Generalizations of Jordan’s inequality and concerned relations,

Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72, 3 (2010), 85–98.
[21] D.-W. NIU, Z.-H. HUO, J. CAO, AND F. QI, A general refinement of Jordan’s inequality and a

refinement of L. Yang’s inequality, Integral Transforms Spec. Funct. 19, 3 (2008), 157–164; Available
online at http://dx.doi.org/10.1080/10652460701635886.

[22] F. QI, D.-W. NIU, AND B.-N. GUO, Refinements, generalizations, and applications of Jordan’s
inequality and related problems, J. Inequal. Appl. 2009 (2009), Article ID 271923, 52 pages; Available
online at http://dx.doi.org/10.1155/2009/271923.

[23] H.-J. SEIFFERT, Aufgabe β 16, Die Wurzel 29 (1995), 221–222.
[24] H.-J. SEIFFERT, Problem 887, Nieuw Arch. Wiskd. (4) 11, 2 (1993), 176.
[25] M.-K. WANG, Y.-F. QIU, AND Y.-M. CHU, Sharp bounds for Seiffert means in terms of Lehmer

means, J. Math. Inequal. 4, 4 (2010), 581–586.
[26] C. ZONG AND Y.-M. CHU, An inequality among identric, geometric and Seiffert’s means, Int. Math.

Forum 5, 26 (2010), 1297–1302.

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


