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SOME SHARP INEQUALITIES INVOLVING SEIFFERT

AND OTHER MEANS AND THEIR CONCISE PROOFS

WEI-DONG JIANG AND FENG QI

(Communicated by K. B. Stolarsky)

Abstract. In the paper, by establishing the monotonicity of some functions involving the sine and
cosine functions, the authors provide a unified and concise proof of some known inequalities and
find some new sharp inequalities involving the Seiffert, contra-harmonic, centroidal, arithmetic,
geometric, harmonic, and root-square means of two positive real numbers a and b with a �= b .

1. Introduction

The quantities

C(a,b) =
a2 +b2

a+b
, C(a,b) =

2(a2 +ab+b2)
3(a+b)

, (1.1)

A(a,b) =
a+b

2
, G(a,b) =

√
ab , (1.2)

H(a,b) =
2ab
a+b

, S(a,b) =

√
a2 +b2

2
(1.3)

are called in the literature the contra-harmonic, centroidal, arithmetic, geometric, har-
monic, and root-square means of two positive real numbers a and b with a �= b .

For a,b > 0 with a �= b , the first Seiffert mean P(a,b) was defined in [24] by

P(a,b) =
a−b

4arctan
√ a

b −π
. (1.4)

Its equivalent form

P(a,b) =
a−b

2arcsin
(

a−b
a+b

) (1.5)

Mathematics subject classification (2010): Primary 26E60; Secondary 11H60, 26A48, 26D05, 33B10.
Keywords and phrases: Inequality, mean, monotonicity, unified and concise proof, sine, cosine, Seif-

fert mean.
The first author was partially supported by the Project of Shandong Province Higher Educational Science and Tech-

nology Program under grant No. J11LA57. The second author was partially supported by the Science Foundation of Tianjin
Polytechnic University.

c© � � , Zagreb
Paper MIA-15-86

1007

http://dx.doi.org/10.7153/mia-15-86


1008 WEI-DONG JIANG AND FENG QI

was given by [19, Eq. (2.4)]. For a,b > 0 with a �= b , the second Seiffert mean T (a,b)
was introduced in [23] by

T (a,b) =
a−b

2arctan
(

a−b
a+b

) . (1.6)

Recently, the following double inequalities involving the Seiffert, contra-harmonic,
centroidal, arithmetic, geometric, harmonic, and root-square means of two positive real
numbers a and b with a �= b were obtained.

PROPOSITION 1.1. ([5, Theorem 2.1]) The double inequality

αA(a,b)+ (1−α)H(a,b) < P(a,b) < βA(a,b)+ (1−β )H(a,b) (1.7)

holds for all a,b > 0 with a �= b if and only if α � 2
π and β � 5

6 .

PROPOSITION 1.2. ([17, Theorem 2.2]) The double inequality

αC(a,b)+ (1−α)H(a,b) < P(a,b) < βC(a,b)+ (1−β )H(a,b) (1.8)

holds for all a,b > 0 with a �= b if and only if α � 1
π and β � 5

12 .

PROPOSITION 1.3. ([10, Theorem 2.1]) The double inequality

αC(a,b)+ (1−α)H(a,b) < P(a,b) < βC(a,b)+ (1−β )H(a,b) (1.9)

holds for all a,b > 0 with a �= b if and only if α � 3
2π and β � 5

8 .

PROPOSITION 1.4. ([6, Theorem 2.1]) The double inequality

αS(a,b)+ (1−α)A(a,b)< T (a,b) < βS(a,b)+ (1−β )A(a,b) (1.10)

holds for all a,b > 0 with a �= b if and only if α � 4−π
(
√

2−1)π
and β � 2

3 .

For more information on this topic, please refer to [4, 7, 8, 9, 11, 12, 14, 15, 25, 26].
We point out that all the proofs of Propositions 1.1 to 1.4 are very complicated and

tedious.
In this paper, by establishing the monotonicity of some functions involving the

sine and cosine functions, we provide a unified and concise proof of Propositions 1.1
to 1.3, supply a concise proof of Proposition 1.4, and find some new sharp inequali-
ties involving the Seiffert, contra-harmonic, arithmetic, geometric, harmonic, and root-
square means of two positive real numbers a and b with a �= b .
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2. Lemmas

For establishing the monotonicity of some functions involving the sine and cosine
functions, we need some lemmas below.

LEMMA 2.1. The Bernoulli numbers B2n for n ∈ N have the property

(−1)n−1B2n = |B2n|, (2.1)

where the Bernoulli numbers Bi for i � 0 are defined by

x
ex −1

=
∞

∑
i=0

Bi

i!
xi = 1− x

2
+

∞

∑
i=1

B2i
x2i

(2i)!
, |x| < 2π . (2.2)

Proof. In [3, p. 16 and p. 56], it is listed that for q � 1

ζ (2q) = (−1)q−1 (2π)2q

(2q)!
B2q

2
, (2.3)

where ζ is the Riemann zeta function defined by

ζ (s) =
∞

∑
n=1

1
ns . (2.4)

From (2.3), the formula (2.1) follows. �

LEMMA 2.2. For 0 < |x| < π , we have

1
sinx

=
1
x

+
∞

∑
n=1

2
(
22n−1−1

)|B2n|
(2n)!

x2n−1. (2.5)

Proof. This is an easy consequence of combining the equality

cscx =
1
x

+
∞

∑
n=1

(−1)n−12
(
22n−1−1

)
B2n

(2n)!
x2n−1, (2.6)

see [1, p. 75, 4.3.68], with Lemma 2.1. �

LEMMA 2.3. ([1, p. 75, 4.3.70]) For 0 < |x| < π ,

cotx =
1
x
−

∞

∑
n=1

22n|B2n|
(2n)!

x2n−1. (2.7)

LEMMA 2.4. For 0 < |x| < π ,

1

sin2 x
=

1
x2 +

∞

∑
n=1

22n(2n−1)|B2n|
(2n)!

x2(n−1). (2.8)
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Proof. Since
1

sin2 x
= csc2 x = − d

dx
(cotx),

the formula (2.8) follows from differentiating (2.7). �

LEMMA 2.5. Let f and g be continuous on [a,b] and differentiable in (a,b)
such that g′(x) �= 0 in (a,b) . If f ′(x)

g′(x) is increasing (or decreasing) in (a,b) , then the

functions f (x)− f (b)
g(x)−g(b) and f (x)− f (a)

g(x)−g(a) are also increasing (or decreasing) in (a,b) .

The above Lemma 2.5 can be found, for example, in [2, p. 292, Lemma 1], [13,
p. 57, Lemma 2.3], [20, p. 92, Lemma 1], [21, p. 161, Lemma 2.3], [22, Lemma 2.9]
and closely related references therein.

3. Monotonicity of some functions involving sine and cosine

For providing a unified and concise proof of Propositions 1.1 to 1.3, supplying a
concise proof of Proposition 1.4, and finding some new sharp inequalities involving the
Seiffert, contra-harmonic, arithmetic, geometric, harmonic, and root-square means of
two positive real numbers a and b with a �= b , we need the following monotonicity of
some functions involving the sine and cosine functions, which can be proved by making
use of Lemmas 2.2 to 2.5.

THEOREM 3.1. For x ∈ (0,π) , the function

h1(x) =
sinx
x − cos2 x

sin2 x
(3.1)

is strictly decreasing and has the limits

lim
x→0+

h1(x) =
5
6

and lim
x→π− h1(x) = −∞. (3.2)

Proof. It is easy to see that

h1(x) =
1

xsinx
− 1

sin2 x
+1

for x ∈ (0,π) . By using (2.5) and (2.8), we have

h1(x) =
1
x2 +

∞

∑
n=1

22n−2
(2n)!

|B2n|x2n−2− 1
x2 −

∞

∑
n=1

(2n−1)22n

(2n)!
|B2n|x2n−2 +1

=
∞

∑
n=1

(1−n)22n+1−2
(2n)!

|B2n|x2n−2 +1.

So the function h1(x) is strictly decreasing on (0,π) .
The two limits in (3.2) come from L’Hôspital rule and standard arguments. The

proof of Theorem 3.1 is complete. �
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THEOREM 3.2. For x ∈ (0,2π) , the function

h2(x) =
sinx− xcosx
x(1− cosx)

(3.3)

is strictly decreasing and has the limits

lim
x→0+

h2(x) =
2
3

and lim
x→(2π)−

h2(x) = −∞. (3.4)

Proof. Let

f1(x) = sinx− xcosx and f2(x) = x(1− cosx).

Then

f ′1(x)
f ′2(x)

=
xsinx

1− cosx+ xsinx
=

(
1+

1− cosx
xsinx

)−1

=
(

1+
tan x

2

x

)−1

.

Since
f ′2(x)
f ′1(x)

=
1− cosx+ xsinx

xsinx
= 1+

1− cosx
xsinx

= 1+
tan x

2

x

is increasing on both (0,π) and (π ,2π) , the function f ′1(x)
f ′2(x)

is decreasing on both (0,π)
and (π ,2π) . Hence, by virtue of Lemma 2.5 and the continuity of h2(x) at x = π , it
follows that the function h2(x) is strictly decreasing on (0,2π) .

Two limits in (3.4) may be derived from L’Hôspital rule and standard arguments.
The proof of Theorem 3.2 is complete. �

THEOREM 3.3. For x ∈ (0,π) , the function

h3(x) =
x− sinxcosx

xsin2 x
(3.5)

is strictly increasing and satisfies

lim
x→0+

h3(x) =
2
3

and lim
x→π− h3(x) = ∞. (3.6)

Proof. The function h3(x) may be rewritten as

h3(x) =
1

sin2 x
− cotx

x

for x ∈ (0,π) . By using (2.8) and (2.7), we have

h3(x) =
1
x2 −

∞

∑
n=1

22n(2n−1)
(2n)!

|B2n|x2n−2− 1
x2 −

∞

∑
n=1

22n

(2n)!
|B2n|x2n−2
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=
∞

∑
n=1

n22n+1

(2n)!
|B2n|x2n−2.

So the function h3(x) is strictly increasing on (0,π) .
The limits in (3.6) may be concluded from L’Hôspital rule and standard arguments.

The proof of Theorem 3.3 is complete. �

THEOREM 3.4. For x ∈ (0,π) , the function

h4(x) =
(x− sinx)cosx
x− sinxcosx

(3.7)

is strictly decreasing, with

lim
x→0+

h4(x) =
1
4

and lim
x→π− h4(x) = −1. (3.8)

Proof. It is obvious that

h4(x) = 1− f1(x)
f2(x)

,

where
f1(x) = x(1− cosx) and f2(x) = x− sinxcosx.

Easy computations give

f ′1(x)
f ′2(x)

=
1− cosx+ xsinx

2sin2 x
� f3(x)

f4(x)

and
f ′3(x)
f ′4(x)

=
2sinx+ xcosx

4sinxcosx
=

1
2cosx

+
x

4sinx
.

Since 1
cosx and x

sinx are increasing on both
(
0, π

2

)
and

(π
2 ,π

)
, the function

f ′3(x)
f ′4(x)

is

strictly increasing on both
(
0, π

2

)
and

(π
2 ,π

)
. Hence, By Lemma 2.5 and the continuity

of h4(x) at x = π
2 , we see that h4(x) is is strictly decreasing on (0,π) .

The limits in (3.8) can be deduced from L’Hôspital rule and standard arguments.
The proof of Theorem 3.4 is complete. �

4. Unified and concise proofs of Propositions 1.1 to 1.4

Now we are in a position to provide a unified and concise proof of Propositions 1.1
to 1.3 and to supply a concise proof of Proposition 1.4.

A unified and concise proof of Propositions 1.1 to 1.3. It is not difficult to see that
the inequalities (1.7), (1.8), and (1.9) can be rearranged respectively and equivalently
as

α <
P(a,b)−H(a,b)
A(a,b)−H(a,b)

< β , (4.1)
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α <
P(a,b)−H(a,b)
C(a,b)−H(a,b)

< β , (4.2)

and

α <
P(a,b)−H(a,b)
C(a,b)−H(a,b)

< β . (4.3)

The denominators in (4.1), (4.2), and (4.3) meet

2[A(a,b)−H(a,b)] =
2
3

[
C(a,b)−H(a,b)

]
= C(a,b)−H(a,b) =

(a−b)2

a+b
. (4.4)

This implies that Propositions 1.1 to 1.3 are identical up to a scalar. So it is sufficient
to verify one of the three Propositions 1.1 to 1.3, that is, to prove one of the three
inequalities (4.1), (4.2), and (4.3).

Without loss of generality, we assume that a > b > 0. Let x = a
b > 1. Then the

inequality (4.1) becomes

P(a,b)−H(a,b)
A(a,b)−H(a,b)

=

x−1
2arcsin x−1

x+1
− 2x

1+x

x+1
2 − 2x

1+x

.

Let t = x−1
x+1 . Then t ∈ (0,1) and

P(a,b)−H(a,b)
A(a,b)−H(a,b)

=
t

arcsin t −
(
1− t2

)
t2

.

Let t = sinθ for θ ∈ (
0, π

2

)
. Then

P(a,b)−H(a,b)
A(a,b)−H(a,b)

=
sinθ

θ − cos2 θ
sin2 θ

.

By Theorem 3.1 and h1
(π

2

)
= 2

π , Propositions 1.1 to 1.3 thus follow. �

A concise proof of Proposition 1.4. The inequality (1.10) may be rewritten as

α <
T (a,b)−A(a,b)
S(a,b)−A(a,b)

< β .

Without loss of generality, we assume that a > b > 0. Let x = a
b > 1. Then

T (a,b)−A(a,b)
S(a,b)−A(a,b)

=

x−1
2arctan x−1

x+1
− x+1

2√
x2+1

2 − x+1
2

.

Let t = x−1
x+1 . Then t ∈ (0,1) and

T (a,b)−A(a,b)
S(a,b)−A(a,b)

=
t

arctan t −1√
1+ t2 −1

.
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Let t = tanθ for θ ∈ (
0, π

4

)
. Then

T (a,b)−A(a,b)
S(a,b)−A(a,b)

=
tanθ

θ −1
1

cosθ −1
=

sinθ −θ cosθ
θ (1− cosθ )

.

By Theorem 3.2 and h2
(π

4

)
= 4−π

(
√

2−1)π
, we obtain Proposition 1.4. �

5. New inequalities involving Seiffert and other means

In this section we will find some new sharp inequalities involving the Seiffert,
contra-harmonic, arithmetic, geometric, harmonic, and root-square means of two posi-
tive real numbers a and b with a �= b .

THEOREM 5.1. The double inequality

αC(a,b)+ (1−α)H(a,b) < T (a,b) < βC(a,b)+ (1−β )H(a,b) (5.1)

holds for all a,b > 0 with a �= b if and only if α � 2
π and β � 2

3 .

Proof. The double inequality (5.1) is the same as

α <
T (a,b)−H(a,b)
C(a,b)−H(a,b)

< β .

Without loss of generality, we assume that a > b > 0. Let x = a
b > 1. Then

T (a,b)−H(a,b)
C(a,b)−H(a,b)

=

x−1
2arctan x−1

x+1
− 2x

x+1

x2+1
x+1 − 2x

x+1

.

Let t = x−1
x+1 . Then t ∈ (0,1) and

T (a,b)−H(a,b)
C(a,b)−H(a,b)

=
t

arctan t −1+ t2

2t2
.

Let t = tanθ for θ ∈ (
0, π

4

)
. Then

T (a,b)−H(a,b)
C(a,b)−H(a,b)

=
tanθ

θ −1+ tan2 θ
2tan2 θ

= 1− θ − sinθ cosθ
2θ sin2 θ

.

By Theorem 3.3 and h3
(π

4

)
= 2− 4

π , we obtain Theorem 5.1. �

THEOREM 5.2. The double inequality

αC(a,b)+ (1−α)T(a,b) < S(a,b) < βC(a,b)+ (1−β )T(a,b) (5.2)

holds for all a,b > 0 with a �= b if and only if α � π−2
√

2
(π−2)

√
2

and β � 1
4 .
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Proof. It is sufficient to show

α <
S(a,b)−T(a,b)
C(a,b)−T(a,b)

< β .

Without loss of generality, we assume a > b > 0. Let x = a
b > 1. Then

S(a,b)−T(a,b)
C(a,b)−T(a,b)

=

√
x2+1

2 − x−1
2arctan x−1

x+1

x2+1
x+1 − x−1

2arctan x−1
x+1

.

Let t = x−1
x+1 . Then t ∈ (0,1) and

S(a,b)−T(a,b)
C(a,b)−T(a,b)

=

√
1+ t2 − t

arctan t

1+ t2− t
arctan t

.

Let t = tanθ for θ ∈ (
0, π

4

)
. Then

1
cosθ − tanθ

θ
1

cos2 θ − tanθ
θ

=
cosθ (θ − sinθ )
θ − sinθ cosθ

.

By Theorem 3.4 and h4
(π

4

)
= π−2

√
2√

2π−2
√

2
, we obtain Theorem 5.2. �

THEOREM 5.3. The double inequality

αA(a,b)+ (1−α)G(a,b) < P(a,b) < βA(a,b)+ (1−β )G(a,b) (5.3)

holds for all a,b > 0 with a �= b if and only if α � 2
π and β � 2

3 .

Proof. The inequality (5.3) is equivalent to

α <
P(a,b)−G(a,b)
A(a,b)−G(a,b)

< β .

Without loss of generality, assume a > b > 0. Let x = a
b . Then x > 1 and

P(a,b)−G(a,b)
A(a,b)−G(a,b)

=

x−1
2arcsin x−1

x+1
−√

x

x+1
2 −√

x
.

Let t = x−1
x+1 . Then t ∈ (0,1) and

P(a,b)−G(a,b)
A(a,b)−G(a,b)

=
t

arcsin t −
√

1− t2

1−√
1− t2

.

Let t = sinθ for θ ∈ (
0, π

2

)
. Then

P(a,b)−G(a,b)
A(a,b)−G(a,b)

=
sinθ

θ − cosθ
1− cosθ

=
sinθ −θ cosθ
θ (1− cosθ )

. (5.4)

By Theorem 3.2 and h2
(π

2

)
= 2

π , we obtain Theorem 5.3. �
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REMARK 5.1. In [18], the double inequality

1
2
[A(a,b)+G(a,b)] < P(a,b) <

2
3
A(a,b)+

1
3
G(a,b)

for all a,b > 0 with a �= b , a special case of Theorem 5.3 for α = 1
2 and β = 2

3 , was
given.

REMARK 5.2. This is a revised version of the preprint [16].
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