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Abstract. A selfadjoint involutive matrix J endows Cn with the indefinite Krein space struc-
ture endowed by the inner product [·, ·] given by [x,y] := 〈Jx,y〉 , x,y ∈ Cn. For a pair of
J− selfadjoint matrices A,B with positive eigenvalues, LogA �J LogB is called the J−chaotic
order or the indefinite chaotic order. Sano [8], proved as an application of Furuta inequality of

indefinite type that LogA �J LogB if and only if Ar �J
(
A

r
2 BpA

r
2
) r

p+r for all p > 0 and r > 0 .
In this paper, we prove Sano’s result using a different approach. In the process, some other re-
sults due to Bebiano, Lemos, Providência and Soares [4, 9] are reobtained. The techniques in
this paper are inspired by [5].

1. Introduction

Let Mn denote the algebra of n×n complex matrices. For a selfadjoint involution
J ∈ Mn : J = J∗ and J2 = In, we consider Cn with a Krein space structure induced by
the indefinite inner product [x,y] = 〈Jx,y〉 , x,y ∈ Cn, where 〈·, ·〉 denotes the standard
inner product in Cn . A matrix A ∈ Mn is said to be J -selfadjoint if A = A[∗], where
A[∗] = JA∗J denotes the J -adjoint matrix of A . For J -selfadjoint matrices A,B ∈ Mn ,
we define the J−order relation A �J B by [Ax,x] � [Bx,x] , x ∈ Cn , which means
that the selfadjoint matrix J(A−B) is positive semidefinite. If A ∈ Mn is J -selfadjoint
and In �J A , then all the eigenvalues of A are real, because In −A is the product of
the selfadjoint involution J and a positive semidefinite matrix. A matrix A ∈ Mn is
called a J -contraction if In �J A[∗]A and a J -expansion if A[∗]A �J In . When A is
a J -contraction (or J -expansion), then all the eigenvalues of the product A[∗]A are
nonnegative [2].

Let A,B ∈ Mn be J -selfadjoint matrices with nonnegative eigenvalues such that
In �J A �J B , then In �J Aα �J Bα holds [7], 0 � α � 1. This result is known as
the Löwner inequality of indefinite type, obtained by Ando [1] for the particular case
α = 1

2 . Motivated by these results, the Furuta inequality of indefinite type [3, 7] was
established in the following way:
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2 G. SOARES

THEOREM 1.1. Let A,B∈Mn be J -selfadjoint with nonnegative eigenvalues and
μ In �J A �J B for some μ > 0 . For each r � 0 , the following inequalities hold

(
A

r
2 ApA

r
2

) 1
q �J

(
A

r
2 BpA

r
2

) 1
q
, (1)

(
B

r
2 ApB

r
2

) 1
q �J

(
B

r
2 BpB

r
2

) 1
q
, (2)

for all p � 0 and q � 1 with (1+ r)q � p+ r .

If we consider r = 0 in Theorem 1.1, we obtain Löwner inequality of indefinite
type.For J -selfadjoint matrices A,B ∈ Mn with positive eigenvalues, the J -chaotic or-
der is defined by Log(A) �J Log(B) , where Log(t) denotes the principal branch of
the logarithm function and is weaker than the usual J -order relation A �J B . Some
characterizations of the J -chaotic order were obtained [3, 4, 8], using Furuta inequality
of indefinite type.

Let A,B ∈ Mn be J -selfadjoint matrices with nonnegative eigenvalues such that
A�J B (or B �J A) and let 0 � α � 1. If A is an invertible matrix, then In �J A− 1

2 BA− 1
2

(or A− 1
2 BA− 1

2 �J In ) and the J -selfadjoint power
(
A− 1

2 BA− 1
2
)α

is well defined. Under
these assumptions, the α -power mean of A and B is defined by

A�αB = A
1
2

(
A− 1

2 BA− 1
2

)α
A

1
2 .

The following theorem on the α−power mean is the corresponding result to one
due to Fujii, Kamei and Nakamoto [5] in the case of bounded linear operators on a
Hilbert space.

THEOREM 1.2. Let A,B be J−selfadjoint matrices with positive eigenvalues such
that μIn �J A �J B, for some μ > 0 . Then

In �J A−r� r
p+r

Bp and B−r� r
p+r

Ap �J In

for r � 0 and p � 0.

This note is organized as follows. In section 2, we present a proof of Theorem 1.2
using an analogous approach as the the one used by Fujii, Kamei and Nakamoto [5] for
Hilbert spaces. In section 2, we reobtain some results already proved in [4, 8, 9].

2. Proof of Theorem 1.2

To prove Theorem 1.2, we recall the following useful lemma.

LEMMA 2.1. For J−selfadjoint matrices A,B with positive eigenvalues, A �J B
(or A �J B) and α,β ∈ [0,1] . Then

(i) (A�αB)−1 = A−1�αB−1 ;
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(ii) A�αβ B = A�α
(
A�β B

)
;

(iii) A�αB = A
(
A−1�−αB−1

)
A.

The proof of the previous lemma follows directly from the definition of α−power
mean. In the next proposition, we consider some additional properties of the α -power
mean, namely the effect of interchanging A and B and the J -monotonicity of �α in the
second variable (see [4] for the proof).

LEMMA 2.2. Let A,B,C∈Mn be J -selfadjoint matrices with positive eigenvalues
and 0 � α � 1 .

(i) If A �J μIn �J B or (B �J μIn �J A) for some μ > 0 , then A#αB = B#1−αA.

(ii) If A �J B (or B �J A) and A �J C (or C �J A), then B �J C implies A�αB �J

A�αC.

The following lemmas will be used throughout this section.

LEMMA 2.3. [7] If A,B are J−selfadjoint matrices with positive eigenvalues
and A �J B, then B−1 �J A−1 .

LEMMA 2.4. [3] Let A,B ∈ Mn be J−selfadjoint matrices. Then X [∗]AX �J

X [∗]BX for all X ∈ Mn if and only if A �J B.

LEMMA 2.5. [7] Let A be a J−selfadjoint matrix with nonnegative eigenvalues
and In �J A. Then In �J Aλ for all λ > 0 .

LEMMA 2.6. Let A,B be J−selfadjoint matrices with positive eigenvalues such
that μIn �J A �J B, for some μ > 0 . Then

In �J A−m� m
p+m

Bp and B−m� m
p+m

Ap �J In

for m = 1,2, . . . , and p � 0.

Proof. Without loss of generality we may consider μ = 1. Otherwise, replace A
and B by Aμ = 1

μ A , Bμ = 1
μ B , respectively. The proof of In �J A−m� m

p+m
Bp is made

by induction on m .
Since A−1 �J In �J Bp hold by Lemmas 2.3 and 2.5 and 0 � 1

p+1 � 1, then by
Lemma 2.2 (i),

A−1� 1
p+1

Bp = Bp� p
p+1

A−1. (3)

From Lemmas 2.3 and 2.5, we conclude that B−1 �J In �J Bp and A−1 �J In �J Bp .
By hypothesis A �J B, so applying Lemma 2.3, we have B−1 �J A−1, which implies
by Lemma 2.2 (ii),

In = Bp� p
p+1

B−1 �J Bp� p
p+1

A−1. (4)
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Hence, from (3) and (4), we have the case m = 1.
Suppose now, that In �J A−m� m

p+m
Bp , holds for a given m. By Lemmas 2.4 and

2.5, this is equivalent to In �J Am �J (A
m
2 BpA

m
2 )

m
p+m . Since 0 < 1

m � 1, applying
Löwner inequality of indefinite type, we get

In �J A �J (A
m
2 BpA

m
2 )

1
p+m . (5)

Consider, now, the case m + 1. From Lemmas 2.3 and 2.5, we may conclude
that A−(m+1) �J In �J Bp . By other hand, since In �J Bp (Lemma 2.5), this implies by
Lemmas 2.4, 2.3 and 2.5, A−1 �J In �J Am �J A

m
2 BpA

m
2 . Henceforth, applying Lemma

2.2, (i), we get

A−m−1� m+1
p+m+1

Bp = A−m
2

(
A−1� m+1

p+m+1
A

m
2 BpA

m
2

)
A−m

2 = A−m
2

(
A

m
2 BpA

m
2 � p

p+m+1
A−1

)
A−m

2 .

(6)
We proved that In �J A

m
2 BpA

m
2 , so by Lemmas 2.5 and 2.3, we may conclude

(A
m
2 BpA

m
2 )−

1
p+m �J In �J A

m
2 BpA

m
2 . Applying Lemma 2.3 to (5), we obtain

(A
m
2 BpA

m
2 )

−1
p+m �J A−1 which implies by Lemma 2.2 (ii),

A
m
2 BpA

m
2 � p

p+m+1

(
A

m
2 BpA

m
2

) −1
p+m �J A

m
2 BpA

m
2 � p

p+m+1
A−1

which is equivalent by Lemma 2.4

A−m
2

(
A

m
2 BpA

m
2 � p

p+m+1
(A

m
2 BpA

m
2 )

−1
p+m

)
A−m

2 �J A−m
2

(
A

m
2 BpA

m
2 � p

p+m+1
A−1

)
A−m

2

(7)
By easy computations, we can show that

A−m� m
p+m

Bp = A−m
2

(
A

m
2 BpA

m
2 � p

p+m+1
(A

m
2 BpA

m
2 )

−1
p+m

)
A−m

2 , (8)

Hence, by (6), (7), (8) and the inductive hypothesis, we get

In �J A−m� m
p+m

Bp �J A−m−1� m+1
p+m+1

Bp.

To prove B−m� m
p+m

Ap �J In , we proceed in an analogous way. �

Proof of Theorem 1.2. Without loss of generality we may consider μ = 1. Other-
wise, replace A and B by Aμ = 1

μ A , Bμ = 1
μ B , respectively.

We first prove In �J A−r� r
p+r

Bp . Let us consider the case 0� r � 1. From Lemmas

2.3 and 2.5, we conclude A−r �J In �J Bp, and so by Lemma 2.2 (i),

A−r� r
p+r

Bp = Bp� p
p+r

A−r. (9)

From Lemmas 2.3 and 2.5, B−r �J In �J Bp and A−r �J In �J Bp . On the other
hand, by hypothesis, In �J A �J B . Using Löwner inequality of indefinite type, In �J

Ar �J Br and by Lemma 2.3, B−r �J A−r , which implies by Lemma 2.2 (ii),

In = Bp� p
p+r

B−r �J Bp� p
p+r

A−r. (10)



ANOTHER APPROACH FOR SANO’S CHARACTERIZATION OF THE J−CHAOTIC ORDER 5

We proved the theorem in the case 0 � r � 1, having in mind (9) and (10).
From Lemmas 2.4, 2.5 and 2.6, we get

In �J Am �J (A
m
2 BpA

m
2 )

m
p+m . (11)

Let r = m + ε , for positive integer m and 0 � ε < 1. Since 0 � ε
m < 1, applying

Löwner inequality of indefinite type to (11), we get

In �J Aε �J (A
m
2 BpA

m
2 )

ε
p+m . (12)

By other hand, since In �J Bp (Lemma 2.5), this implies by Lemmas 2.3, 2.4, and
2.5, A−ε �J In �J Am �J A

m
2 BpA

m
2 . We have from Lemma 2.2, (i), that

A−r� r
p+r

Bp = A−(m+ε)� m+ε
p+m+ε

Bp = A−m
2

(
A−ε� m+ε

p+m+ε
A

m
2 BpA

m
2

)
A−m

2

= A−m
2

(
A

m
2 BpA

m
2 � m+ε

p+m+ε
A−ε

)
A−m

2 . (13)

We proved that In �J A
m
2 BpA

m
2 , so by Lemmas 2.5 and 2.3, we may conclude

(A
m
2 BpA

m
2 )−

ε
p+m �J In �J A

m
2 BpA

m
2 . Applying Lemma 2.3 to (12), we obtain

(A
m
2 BpA

m
2 )

−ε
p+m �J A−ε which implies by Lemma 2.2 (ii)

A
m
2 BpA

m
2 � m+ε

p+m+ε
(A

m
2 BpA

m
2 )

−ε
p+m �J A

m
2 BpA

m
2 � m+ε

p+m+ε
A−ε (14)

which is equivalent by Lemma 2.4

A−m
2

(
A

m
2 BpA

m
2 � m+ε

p+m+ε
(A

m
2 BpA

m
2 )

−ε
p+m

)
A−m

2 �J A−m
2

(
A

m
2 BpA

m
2 � m+ε

p+m+ε
A−ε

)
A−m

2

(15)
By easy computations, we can show that

A−m
2

(
A

m
2 BpA

m
2 � m+ε

p+m+ε
(A

m
2 BpA

m
2 )

−ε
p+m

)
A−m

2 = A−m� m
p+m

Bp

Hence, by Lemma 2.6 and by (13), (14) and (15) we get

In �J A−m� m
p+m

Bp �J A−r� r
p+r

Bp.

The proof of B−r� r
p+r

Ap �J In is made in an analogous way. �

3. Some consequences of Theorem 1.2

In this section, we reobtain some known results, but first we need the following
lemma.

LEMMA 3.1. If A,B ∈ Mn are J -selfadjoint matrices with positive eigenvalues
such that μIn �J A �J B for some μ > 0 , then A−r� r

p+r
Bp �J Bp and A−r �J A−r� r

p+r
Bp

for r � 0 and p � 0 .
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Proof. Since In �J Ar, from Lemmas 2.4 and 2.5, we may conclude In �J Bp �J

B
p
2 ArB

p
2 , which is equivalent by Lemmas 2.5 and 2.3 to

(
B

p
2 ArB

p
2

)− p
p+r �J In. Ap-

plying Lemma 2.4, we have Bp� p
p+r

A−r �J Bp and the lemma is proved using Lemma

2.2 (i) and nothing that A−r �J In �J Bp.
The proof of A−r �J A−r� r

p+r
Bp follows analogous steps. �

The next result is obtained in a quite easy way from Theorem 1.2 and is known as
indefinite version of Kamei’s satellite to Furuta inequality (see [4] for another proof).

THEOREM 3.1. If A,B ∈ Mn are J -selfadjoint matrices with positive eigenvalues
such that μIn �J A �J B for some μ > 0 , then

B−r� 1+r
p+r

Ap �J A �J B �J A−r� 1+r
p+r

Bp

for all p � 1 and r � 0 .

Proof. From Lemmas 2.3 and 2.5, we get A−r �J In �J Bp, so by Lemma 2.2 (i)
and Lemma 2.1 (ii), we conclude

A−r� 1+r
p+r

Bp = Bp� p−1
p+r

A−r = Bp� p−1
p

(
Bp� p

p+r
A−r

)
= Bp� p−1

p

(
A−r� r

p+r
Bp

)
. (16)

By Lemmas 3.1 and 2.5, A−r� r
p+r

Bp �J Bp and In �J Bp , respectively. We can con-

clude by Theorem 1.2, that In �J A−r� r
p+r

Bp, which implies by Lemma 2.2 (ii) and
(16)

A �J B = Bp� p−1
p

In �J Bp� p−1
p

(
A−r� r

p+r
Bp

)
.

The proof of B−r� 1+r
p+r

Ap �J A is made in an analogous way. �

Some characterizations of the J -chaotic order were obtained in [3, 8], using Furuta
inequality of indefinite type. For example, Sano [8] obtained the following useful result.

THEOREM 3.2. Let A,B ∈ Mn be J -selfadjoint matrices with positive eigenval-
ues such that In �J A and In �J B. Then Log(A) �J Log(B) if and only if Ar �J(
A

r
2 BpA

r
2
) r

p+r for all p > 0 and r > 0 .

Next we will obtain Sano result’s without the use of Furuta inequality of indefinite
type. First, we recall that eLogX = X for any matrix X with all eigenvalues positive and
we recall the following essential formula:

lim
m→∞

(
In +

1
m

A

)m

= eA,

which holds for any matrix A .
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THEOREM 3.3. Let A,B be J−selfadjoint matrices with positive eigenvalues and
μI �J A, μI �J B, for some μ > 0 . Then LogA �J LogB if and only if

In �J A−r� r
p+r

Bp and B−r� r
p+r

Ap �J In

for r � 0 and p � 0.

Proof. Without loss of generality we may consider μ = 1. Otherwise, replace A ,
B by Aμ = 1

μ A , Bμ = 1
μ B , respectively.

We prove the equivalence between LogA �J LogB and In �J A−r� r
p+r

Bp . The
other equivalence is obtained in an analogous way.

(⇒) Since In �J A,B , then 0 = LogIn �J LogA,LogB, because Logx is operator
monotone. Suppose LogA �J LogB , then

A1 = In +
1
m

LogA �J In +
1
m

LogB = B1,

holds for sufficiently large natural number m .
By Lemmas 2.3 and 2.5, A−mr

1 �J In �J Bmp
1 , applying Theorem 1.2 to A1 and

B1 , we have

In �J A−mr
1 � mr

mp+mr
Bmp

1 =
(

In +
1
m

LogA

)−mr

� r
p+r

(
In +

1
m

LogB

)mp

. (17)

Since, A and B are invertible, we obtain

lim
m→∞

(
In +

1
m

LogA

)−mr

= A−r and lim
m→∞

(
In +

1
m

LogB

)mp

= Bp.

Henceforth from (17), we get
In �J A−r� r

p+r
Bp.

(⇐) Suppose that In �J A−r� r
p+r

Bp. This implies, Ar �J (A
r
2 BpA

r
2 )

r
p+r . Since

Logx is an increasing function of x , we get LogA �J Log(A
r
2 BpA

r
2 )

1
p+r , for all r � 0

and p � 0. Considering r = 0, we get LogA �J LogB. �

The following result is understood as a corollary of the previous theorem and
was obtained in [9, Theorem 3.5] using Löwner inequality of indefinite type. Next
we present another simple proof.

COROLLARY 3.1. Let A,B be J−selfadjoint matrices with positive eigenvalues
and μIn �J A, μIn �J B, for some μ > 0 . Then LogA �J LogB, if and only if

(i) Bδ �J A−r� δ+r
p+r

Bp , for 0 � δ � p and r � 0.

(ii) Aδ �J A−r� δ+r
p+r

Bp , for −r � δ � 0 and p � 0.
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Proof. Without loss of generality we may consider μ = 1. Otherwise, replace A ,
B by Aμ = 1

μ A , Bμ = 1
μ B , respectively.

(i) Since A−r �J In �J Bp , by Lemma 2.2 (i) and Lemma 2.1 (ii), we have

A−r� δ+r
p+r

Bp = Bp� p−δ
p+r

A−r = Bp� p−δ
p

(
Bp� p

p+r
A−r

)
= Bp� p−δ

p

(
A−r� r

p+r
Bp

)
. (18)

By Lemma 3.1 and Lemma 2.5, A−r� r
p+r

Bp �J Bp and In �J Bp , respectively.

Applying Theorem3.3, we have that LogA �J LogB, is equivalent to In �J A−r� r
p+r

Bp ,
which implies by Lemma 2.2 (ii)

Bδ = Bp� p−δ
p

In �J Bp� p−δ
p

(
A−r� r

p+r
Bp

)
. (19)

The result follows from (18).
(ii) Since A−r �J In �J Bp , by Lemma 2.1 (ii), we have

A−r� δ+r
p+r

Bp = A−r� δ+r
r

(
A−r� r

p+r
Bp

)
. (20)

By Lemma 3.1, Lemma 2.5 and Lemma 2.3, A−r �J A−r� r
p+r

Bp and A−r �J In .

Applying Theorem3.3, we have that LogA �J LogB, is equivalent to In �J A−r� r
p+r

Bp ,
which implies by Lemma 2.2 (ii)

Aδ = A−r� δ+r
p

In �J A−r� δ+r
r

(
A−r� r

p+r
Bp

)
.

The result follows from (20). �

A real valued continuous function f defined on a real interval I is said to be J -
increasing if f (r) �J f (s) whenever r � s . Analogously, f is said to be J -decreasing
if f (r) �J f (s) whenever r � s . Concluding this section, we point out the monotonicity
of an operator function A−r� r

p+r
Bp for p � 0 and r � 0, that was previously obtained

in [4].

THEOREM 3.4. Let A,B be J−selfadjoint matrices with positive eigenvalues and
μIn �J A, μIn �J B, for some μ > 0 . Then LogA �J LogB if and only if A−r� r

p+r
Bp,

is J−decreasing for r � 0 and p � 0.

Proof. Without loss of generality we may consider μ = 1. Otherwise, replace A ,
B by Aμ = 1

μ A , Bμ = 1
μ B , respectively.

Let p1 � p and r1 � r . Since A−r1 �J In �J Bp1 , by Lemma 2.1 (ii), we have

A−r1� r1
p1+r1

Bp1 = A−r1� r1
p+r1

(
A−r1� p+r1

p1+r1

Bp1

)
. (21)
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In an analogous way as the proof of Lemma 3.1, we have A−r1 �J A−r1� p+r1
p1+r1

Bp1 .

By Lemma 2.5 and Lemma 2.3, and A−r1 �J In �J Bp . Applying Corollary 3.1 (i),
Lemma 2.2 (ii), we get

Bp� p
p+r1

A−r1 = A−r1� r1
p+r1

Bp �J A−r1� r1
p+r1

(
A−r1� p+r1

p1+r1

Bp1

)
. (22)

From (21), we obtain A−r1� r1
p+r1

Bp �J A−r1� r1
p1+r1

Bp1 . Applying Lemma 2.1 (ii),

to (22), we get

Bp� p
p+r1

A−r1 = Bp� p
p+r

(
Bp� p+r

p+r1
A−r1

)
= Bp� p

p+r

(
A−r1� r1−r

p+r1

Bp
)

.

In an analogous way as the proof of Lemma 3.1, we have A−r1� r1−r
p+r1

Bp �J Bp . On the

other hand, applying Corollary 3.1 (ii), Lemma 2.2 (ii), we get

A−r� r
p+r

Bp = Bp� p
p+r

A−r �J Bp� p
p+r

(
A−r1� r1−r

p+r1

Bp
)

.

Hence, we get
A−r� r

p+r
Bp �J Bp� p

p+r1
A−r1 �J A−r1� r1

p1+r1
Bp1 ,

so we proved the desired result. �
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