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NECESSARY AND SUFFICIENT CONDITIONS FOR

BOUNDEDNESS OF THE HARDY–TYPE OPERATOR FROM

A WEIGHTED LEBESGUE SPACE TO A MORREY–TYPE SPACE

V. I. BURENKOV AND R. OINAROV

(Communicated by L. E. Persson)

Abstract. Necessary and sufficient conditions on functions u and w are established ensuring
boundedness of the multi-dimensional Hardy-type operator Hn,ϕ from a weighted Lebesgue
space Lp,u(Rn) to a local Morrey-type space LMqθ ,w(Rn) for a wide range of the numerical
parameters p,q,θ .

1. Introduction

Let ϕ be a fixed non-negative measurable function on (0,∞) which is not equiva-
lent to 0. In this paper we consider the multi-dimensional Hardy operator Hn,ϕ defined
for all functions f ∈ Lloc

1 (Rn) by

(Hn,ϕ f )(x) = ϕ(|x|)
∫

B|x|

f (y)dy, x ∈ R
n, (1.1)

where n ∈ N and Br is the open ball in R
n centered at the origin of radius r > 0.

Let Ω ⊂R
n be a measurable set, v be a non-negative measurable function defined

on Ω , and 0 < p � ∞ . By Lp,v(Ω) we denote the weighted Lp -space, the space of all
functions f measurable on Ω for which ‖ f‖Lp,v(Ω) = ‖v f‖Lp(Ω) < ∞ .

The problem of boundedness of the operator H1,ϕ from one weighted space
Lp1,v1(R) to another one Lp2,v2(R) has been studied in detail and necessary and suffi-
cient conditions on the weights v1 , v2 ensuring boundedness of H1,ϕ from Lp1,v1(R)
to Lp2,v2(R) have been obtained for all values of the parameters 0 < p1, p2 � ∞ . See
books [9], [11], [8], [10] for formulations and proofs of these results, and for the history
of the problem.

In the theory of partial differential equations, together with weighted Lp -spaces,
Morrey spaces Mp,λ are widely used. They were introduced by C. Morrey in 1938 [12]
and defined as follows: For 0 � λ � n , 1 � p � ∞ , f ∈ Mp,λ if f ∈ Lloc

p (Rn) and

‖ f‖Mp,λ ≡ ‖ f‖Mp,λ (Rn) = sup
x∈Rn,r>0

r−
λ
p ‖ f‖Lp(B(x,r)) < ∞. (1.2)

Mathematics subject classification (2010): 47B38.
Keywords and phrases: Hardy–type operator, boundedness, weighted Lebesque spaces, general

Morrey–type spaces.

c© � � , Zagreb
Paper MIA-16-01

1

http://dx.doi.org/10.7153/mia-16-01


2 V. I. BURENKOV AND R. OINAROV

In the last decade much attention was paid to studying properties of various opera-
tors in general Morrey-type spaces defined in following way. Let 0 < p,θ � ∞ and let
w be a non-negative measurable function on (0,∞) . We denote by LMpθ ,w , GMpθ ,w

respectively, the local Morrey-type spaces, the global Morrey-type spaces respectively,
the spaces of all functions f ∈ Lloc

p (Rn) with finite quasinorms

‖ f‖LMpθ ,w ≡ ‖ f‖LMpθ ,w(Rn) = ‖w(r)‖ f‖Lp(Br)‖Lθ (0,∞), (1.3)

‖ f‖GMpθ ,w = sup
x∈Rn

‖ f (x+ ·)‖LMpθ ,w (1.4)

respectively. (Clearly GM
p∞,r

− λ
p
≡ Mp,λ .)

In [3], [4], [5], [2], [6] for a wide range of the numerical parameters p1 , p2 , θ1 ,
θ2 (but not for all admissible values of these parameters) necessary and sufficient con-
ditions on functions w1 and w2 were established ensuring boundedness of the maximal
operator, the fractional maximal operators, the Riesz potentials and the genuine sin-
gular integral operators from one local Morrey-type space LMp1θ1,w1 to another one
LMp2θ2,w2 .

In [7] the problem of boundedness from LMp1θ1,w1 to LMp2θ2,w2 was studied for
the Hardy operator Hα , a particular case of the operator Hn,ϕ in which ϕ(r) = |Br|1− α

n ,
where α ∈ R and |Br| is the Lebesque measure of the ball Br . For all admissible
values of the numerical parameters p1 , p2 , θ1 , θ2 sufficient conditions on w1 and w2

were obtained ensuring the boundedness of Hα . Moreover, for a certain range of the
numerical parameters and under certain regularity assumptions on w2 these sufficient
conditions coincide with the necessary ones. (See Section 4 for more details.) Under
further a priori assumptions on w1 and w2 these conditions are also necessary and
sufficient for the boundedness of Hα from GMp1θ1,w1 to GMp2θ2,w2 .

The aim of this paper is investigation of boundedness of the operator Hn,ϕ from
one local Morrey-type space LMp1θ1,w1 to another one LMp2θ2,w2 under the assumption
θ1 = p1 . One can easy verify that

‖ f‖LMp1 p1,w1
= ‖ f‖Lp1,u1

(1.5)

where

u1(x) = ‖w1‖Lp1 (|x|,∞), (1.6)

so the problem under consideration is a problem of boundedness of the operator Hn,ϕ
from a weighted space Lp1,u1 with a non-negative radially symmetric non-increasing
weight u1 to a local Morrey-type space LMp2θ2,w2 . In fact we shall consider a more
general case in which u1 is a non-negative radially symmetric measurable weight, but
not necessarily non-increasing.
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2. Main results

Let 0 < θ � ∞ . We denote by Ωθ the set of all functions w which are non-
negative, measurable on (0,∞) , not equivalent to 0, and such that for some t > 0

‖w‖Lθ (t,∞) < ∞. (2.1)

Note that, given 0 < p,θ � ∞ and a function ω non-negative, measurable on
(0,∞) and not equivalent to 0, the space LMqθ ,w is non-trivial, i.e. consists not only of
functions equivalent to 0 on R

n , if and only if w ∈ Ωθ [3].
In all statements below we assume that u(x) = v(|x|) , where v is a non-negative

measurable function on (0,∞) and, for a given 0 < θ � ∞ , w is a function of the class
Ωθ .

LEMMA 2.1. Let p � 1 , 0 < q,θ � ∞ , and c1 > 0 . The inequality

‖Hn,ϕ f‖LMqθ ,w � c1‖ f‖Lp,u (2.2)

for all functions f ∈ Lp,u is equivalent to the inequality

⎛⎜⎝ ∞∫
0

wθ (r)

⎛⎝ r∫
0

(Hϕ̃g)qdt

⎞⎠
θ
q

dr

⎞⎟⎠
1
θ

� c2‖g‖Lp,ũ(0,∞) (2.3)

for all non-negative functions g ∈ Lp,ũ(0,∞) , where

Hϕ̃g(t) = ϕ̃(t)
t∫

0

g(s)ds, (2.4)

ϕ̃(t) = ϕ(t)t
n−1
q , ũ(t) = v(t)t−

n−1
p′ , c2 = c1σ

−( 1
p′ +

1
q )

n ,

σn is the surface area of the unit sphere Sn−1 in R
n , and p′ = p

p−1 .
Moreover

‖Hn,ϕ‖Lp,u→LMqθ ,w = σ
1
p′ +

1
q

n ‖Hϕ̃‖Lp,ũ→LMpq,w . (2.5)

REMARK 2.2. If θ = q then inequality (2.3) takes the form⎛⎝ ∞∫
0

w̃q(t)(Hϕ̃g)q(t)dt

⎞⎠
1
q

� c2‖g‖Lp,ũ(0,∞)

i.e. ∥∥∥∥ t∫
0

g(s)ds

∥∥∥∥
Lq,ϕ̃w̃(0,∞)

� c2‖g‖Lp,ũ(0,∞) ,
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where

w̃(t) = ‖w‖Lq(t,∞), 0 < t < ∞ .

Hence, due to the known results [10], [11], [16] the operator Hn,ϕ is bounded from Lp,u

to LMqq,w if and only if
1) for 1 1 < p � q < ∞

A1 = sup
β>0

⎛⎝ ∞∫
β

(ϕ̃w̃)qdt

⎞⎠
1
q
⎛⎝ β∫

0

ũ−p′ds

⎞⎠
1
p′

< ∞,

2) for 1 � q < p < ∞

A2 =

⎛⎜⎜⎝ ∞∫
0

⎛⎝ ∞∫
β

(ϕ̃w̃)qdt

⎞⎠
p

p−q
⎛⎝ β∫

0

ũ−p′ds

⎞⎠
p(q−1)
p−q

ũ−p′(β )dβ

⎞⎟⎟⎠
p−q
pq

< ∞,

3) for 0 < q < 1 < p < ∞

A3 =

⎛⎜⎜⎝ ∞∫
0

⎛⎝ β∫
0

ũ−p′dt

⎞⎠
q(p−1)

p−q
⎛⎝ ∞∫

β

(ϕ̃w̃)qds

⎞⎠
q

p−q

(ϕ̃(β )w̃(β ))qdβ

⎞⎟⎟⎠
p−q
pq

< ∞.

Moreover, the norm ‖Hn,ϕ‖Lp,u→LMqq,w is equivalent to A1,A2,A3 respectively,
with equivalency constants depending only on n, p and q .

If 0 < q < 1 < p < ∞ and
β∫
0

ũ−p′ds < ∞ for all β > 0, then integration by parts

implies that

A3 =
(

q(p−1)
p

) p−q
pq

A2.

If
β∫
0

ũ−p′ds = ∞ for some β > 0, then conditions A2 < ∞ and A3 < ∞ are not

equivalent (see [16], page 93).

Taking into account this remark, in the sequel we focus on the case θ �= q .

1 It may happen that
β∫
0

ũ−p′ds = 0 and
∞∫
β
(ϕ̃w̃)qdt = ∞. In this case, and in similar cases in the sequel, it

is assumed that ∞ ·0 = 0 .
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THEOREM 2.3. Let 1 < p � q, θ < ∞ . Then the operator Hn,ϕ is bounded from
Lp,u to LMqθ ,w if and only if

B1 = sup
β>0

⎛⎜⎝ ∞∫
β

wθ (r)

⎛⎝ r∫
β

ϕ̃qds

⎞⎠
θ
q

dr

⎞⎟⎠
1
θ ⎛⎝ β∫

0

ũ−p′dr

⎞⎠
1
p′

< ∞. (2.6)

Moreover,

σ
1
p′ +

1
q

n B1 � ‖Hn,ϕ‖Lp,u→LMqθ ,w � 4σ
1
p′ +

1
q

n B1.

REMARK 2.4. Since the functions w and ϕ are not equivalent to 0 on (0,∞) it

follows from (2.6) that
β∫
0

ũ−p′dr < ∞ for all β > 0.

REMARK 2.5. Note that if θ = q then B1 = A1 .

THEOREM 2.6. Let 0 < q < p � θ < ∞ . Assume that q � 1 or q < 1 , p > 1 and
β∫
0

ũ−p′ds < ∞ for all β > 0 . Then the operator Hn,ϕ is bounded from Lp,u to LMqθ ,w

if and only if max{B1,B2} < ∞ , where

B2 = sup
β>0

⎛⎝ ∞∫
β

wθ dr

⎞⎠
1
θ

⎛⎜⎜⎝
β∫

0

⎛⎝ β∫
t

ϕ̃qdr

⎞⎠
q

p−q

ϕ̃q(t)

⎛⎝ t∫
0

ũ−p′dr

⎞⎠
q(p−1)

p−q

dt

⎞⎟⎟⎠
p−q
pq

.

Moreover, ‖Hn,ϕ‖Lp,u→LMqθ ,w is equivalent to max{B1,B2}, briefly

‖Hn,ϕ‖Lp,u→LMqθ ,w ≈ max{B1,B2},

with the equivalency constants depending only on n, p,q and θ .

THEOREM 2.7. Let 0 < q < θ < p < ∞ . Assume that q � 1 or q < 1 , θ > 1 and
β∫
0

ũ−p′ds < ∞ for all β > 0 . Then the operator Hn,ϕ is bounded from Lp,u to LMqθ ,w

if and only if max{C1,C2} < ∞ , where

C1 =

⎛⎜⎜⎝
∞∫

0

⎛⎜⎝ ∞∫
β

wθ (r)

⎛⎝ r∫
β

ϕ̃ds

⎞⎠
θ
q

dr

⎞⎟⎠
p

p−θ ⎛⎝ β∫
0

ũ−p′dt

⎞⎠
p(θ−1)
p−θ

ũ−p′(β )dβ

⎞⎟⎟⎠
p−θ
pθ

,
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C2 =

⎛⎜⎜⎜⎝
∞∫

0

⎛⎝ ∞∫
β

wθ dr

⎞⎠
p

p−θ

⎛⎜⎜⎝
β∫

0

⎛⎝ β∫
t

ϕ̃ds

⎞⎠
q

p−q
⎛⎝ t∫

0

ũ−p′dτ

⎞⎠
q(p−1)

p−q

dt

⎞⎟⎟⎠
θ (p−q)
q(p−θ )

wθ (β )dβ

⎞⎟⎟⎟⎠
p−θ
pθ

.

Moreover,
‖Hn,ϕ‖Lp,u→LMqθ ,w ≈ max{C1,C2},

with the equivalency constants depending only on n, p,q and θ .

REMARK 2.8. Sometimes the variants of the Hardy operator of the following
form are considered

(Hn,ϕ,v f )(x) = ϕ(|x|)v(|x|)
∫

B|x|

f (y)
v(|x|) dx, x ∈ R

n, (2.7)

where v is a positive measurable function on (0,∞)when dealing with such operators
one should keep in mind that

‖Hn,ϕ,v‖Lp,u→LMqθ ,w = ‖Hn,ϕv‖Lp,uv→LMqθ ,w .

Operators Hα
n,v of the form (2.7) with ϕ(r) = rα−n where considered in [15], [14],

where under a number of a priori assumptions on v and w necessary and sufficient
conditions on v and w were found ensuring that Hα

n,v : LMp∞,w → LMq∞,w .

3. Proofs of the main results

Proof of Lemma 2.1

1. By taking the spherical coordinates and applying Hölder’s inequality we get

‖Hn,ϕ f‖Lq(Br) =

⎛⎝∫
Br

∣∣∣∣∣∣ϕ(|x|)
|x|∫
0

⎛⎝ ∫
Sn−1

f (σρ)dσ

⎞⎠ρn−1dρ

∣∣∣∣∣∣
q

dx

⎞⎠
1
q

= σ
1
q
n

⎛⎝ r∫
0

∣∣∣∣∣∣ϕ(t)
t∫

0

⎛⎝ ∫
Sn−1

f (σρ)dσ

⎞⎠ρn−1dρ

∣∣∣∣∣∣
q

tn−1dt

⎞⎠
1
q

� σ
1
p′ +

1
q

n

⎛⎜⎝ r∫
0

⎛⎜⎝ϕ(t)t
n−1
q

t∫
0

⎛⎝ ∫
Sn−1

| f (σρ)|pdσ

⎞⎠
1
p

ρn−1dρ

⎞⎟⎠
q

dt

⎞⎟⎠
1
q

= σ
1
p′ +

1
q

n ‖ϕ̃(t)
t∫

0

g(ρ)dρ‖Lq(0,r), (3.1)
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where

g(ρ) =

⎛⎝ ∫
Sn−1

| f (σρ)|pdσ

⎞⎠
1
p

ρn−1. (3.2)

Furthermore,

‖ f‖Lp,u =

⎛⎝ ∫
Rn

|v(|x|) f (x)|pdx

⎞⎠
1
p

=

⎛⎝ ∞∫
0

v(ρ)p

⎛⎝ ∫
Sn−1

| f (σρ)|pdσ

⎞⎠ρn−1dρ

⎞⎠
1
p

=

⎛⎝ ∞∫
0

(
v(ρ)ρ− n−1

p′ g(ρ)
)p

dρ

⎞⎠
1
p

= ‖g‖Lp,ũ(0,∞). (3.3)

Note that if f (x) = f̃ (|x|) where f̃ is a non-negative measurable function on
(0,∞) , then in (3.1) there is equality because in this case

∫
Sn−1

f (σρ)dσ = σn f̃ (ρ) = σ
1
p′

n

⎛⎝ ∫
Sn−1

| f (σρ)|pdσ

⎞⎠
1
p

.

Also in this case by (3.2) we get

g(ρ) = σ
1
p

n f̃ (ρ)ρn−1. (3.4)

2. Assume that inequality (2.2) holds for all functions f ∈ Lp,u and let g be an
arbitrary non-negative function in Lp,ũ(0,∞) . Taking into account equality (3.4) we

put in (2.2) the function f defined by f (x) = σ
− 1

p
n g(|x|)|x|1−n , x ∈ R

n . In this case
there is equality in inequality (3.1) and this equality together with equality (3.3) imply
inequality (2.3).

3. Assume that inequality (2.3) holds for all non-negative functions g∈ Lp,ũ(0,∞) ,
and let f be an arbitrary function in Lp,u . We put in (2.3) the function g defined by
equality (3.2). By inequality (3.1) the left-hand side of inequality (2.3) is greater than or

equal to σ
−( 1

p′ +
1
q )

n ‖Hn,ϕ f‖LMqθ ,w , and by equality (3.3) the right-hand side of inequality
(2.3) is equal to c2‖ f‖Lp,u . Hence inequality (2.2) follows.

4. Equality (2.5) follows by inequality (3.1), equality (3.3) and the last part of Step
1. �

Proof of Theorem 2.3

Necessity. Assume that the operator Hn,ϕ is bounded from Lp,u to LMqθ ,w . Then
by Lemma 2.1 for some c2 > 0 inequality (2.3) is satisfied. Let 0 < α < β < ∞ and
ε > 0. Consider in (2.3) the test-functions gε defined by

gε(t) = v−p′(t)tn−1χ(α ,β )(t)ψε(t), t ∈ (0,∞),
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where χ(α ,β ) is the characteristic function of the interval (α,β ) and ψε(t) = 1 if v(t)�
ε and ψε(t) = 0 if v(t) < ε . Then

‖gε‖Lp,ũ =

⎛⎝ β∫
α

(
v−p′+1(s)s(n−1)(1− 1

p′ )ψε(s)
)p

ds

⎞⎠
1
p

=

⎛⎝ β∫
α

v−p′(s)sn−1ψε(s)ds

⎞⎠
1
p

and by (2.3)⎛⎝ β∫
α

v−p′(s)sn−1ψε(s)ds

⎞⎠
1
p

� c−1
2

⎛⎜⎝ ∞∫
0

wθ (r)

⎛⎝ r∫
0

⎛⎝ϕ̃(t)
t∫

0

gε(s)ds

⎞⎠q

dt

⎞⎠
θ
q

dr

⎞⎟⎠
1
θ

� c−1
2

⎛⎜⎜⎝
∞∫

β

wθ (r)

⎛⎝ r∫
β

ϕ̃q(t)

⎛⎝ β∫
α

v−p′(s)sn−1ψε (s)ds

⎞⎠q

dt

⎞⎠
θ
q

dr

⎞⎟⎟⎠
1
θ

= c−1
2

⎛⎜⎝ ∞∫
β

wθ (r)

⎛⎝ r∫
β

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

⎞⎟⎠
1
θ ⎛⎝ β∫

α

v−p′(s)sn−1ψε(s)ds

⎞⎠ .

Since
β∫

α
v−p′(s)sn−1ψε (s)ds < ∞ it follows that

⎛⎜⎝ ∞∫
β

wθ (r)

⎛⎝ r∫
β

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

⎞⎟⎠
1
θ ⎛⎝ β∫

α

v−p′(s)sn−1ψε (s)ds

⎞⎠
1
p′

� c2.

By the Fatou Lemma this inequality implies that for all α ∈ (0,β )⎛⎜⎝ ∞∫
β

wθ (r)

⎛⎝ r∫
β

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

⎞⎟⎠
1
q ⎛⎝ β∫

α

v−p′(s)sn−1ds

⎞⎠
1
p′

� c2,

which in its turn, by passing to the limit as α → 0+ and by taking supremum with
respect to β > 0, implies condition (2.6).
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Moreover, B1 � c2 .

Sufficiency. 1. By Lemma 2.1 it suffices to prove inequality (2.3). Let B1 < ∞
and 0 � g ∈ Lp,ũ(0,∞) . First assume that g is not equivalent to 0 on (0,∞) and g ∈
L1(0,∞) . Consider the sequence {rk}0

k=−∞ , where r0 = +∞ and for integer k < 0 the
numbers rk are defined by

rk∫
0

g(s)ds = 2k

∞∫
0

g(s)ds.

Note that for all integer k � 0, 0 < rk−1 < rk and

rk∫
0

g(s)ds = 4

rk−1∫
rk−2

g(s)ds. (3.5)

Let σ = sup{x ∈ (0,∞) :
x∫
0

g(y)dy = 0} . Then

(0,∞) = (0,σ ]
⋃( 0⋃

k=−∞
[rk−1,rk)

)
.

Therefore by applying equality (3.5) we get

I =
∞∫

0

wθ (r)

⎛⎝ r∫
0

⎛⎝ϕ̃(t)
t∫

0

g(s)ds

⎞⎠q

dt

⎞⎠
θ
q

dr

=
0

∑
k=−∞

rk∫
rk−1

wθ (r)

⎛⎝ r∫
σ

⎛⎝ϕ̃(t)
t∫

0

g(s)ds

⎞⎠q

dt

⎞⎠
θ
q

dr

�
0

∑
k=−∞

rk∫
rk−1

wθ (r)

⎛⎝ k

∑
i=−∞

min{r,ri}∫
ri−1

⎛⎝ϕ̃(t)
t∫

0

g(s)ds

⎞⎠q

dt

⎞⎠
θ
q

dr

�
0

∑
k=−∞

rk∫
rk−1

wθ (r)

⎛⎝ k

∑
i=−∞

⎛⎝ min{r,ri}∫
ri−1

ϕq(t)tn−1dt

⎞⎠⎛⎝ ri∫
0

g(s)ds

⎞⎠q⎞⎠
θ
q

dr

= 4θ
0

∑
k=−∞

rk∫
rk−1

wθ (r)

⎛⎝ k

∑
i=−∞

⎛⎝ min{r,ri}∫
ri−1

ϕq(t)tn−1dt

⎞⎠⎛⎝ ri−1∫
ri−2

g(s)ds

⎞⎠q⎞⎠
θ
q

dr. (3.6)
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2. If θ � q then by Jensen’s inequality

I � 4θ
0

∑
k=−∞

k

∑
i=−∞

⎛⎝ ri−1∫
ri−2

g(s)ds

⎞⎠θ rk∫
rk−1

wθ (r)

⎛⎝ min{r,ri}∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

� 4θ
0

∑
i=−∞

⎛⎝ ri−1∫
ri−2

g(s)ds

⎞⎠θ
0

∑
k=i

rk∫
rk−1

wθ (r)

⎛⎝ r∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

= 4θ
0

∑
i=−∞

⎛⎝ ri−1∫
ri−2

g(s)ds

⎞⎠θ ∞∫
ri−1

wθ (r)

⎛⎝ r∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q

dr.

By Hölder’s inequality, by the definition of B1 and by Jensen’s inequality we have

I � 4θ
0

∑
i=−∞

⎛⎝ ri−1∫
ri−2

|g(s)ũ(s)|pds

⎞⎠
θ
p

×
⎛⎝ ri−1∫

ri−2

v−p′(s)sn−1ds

⎞⎠
θ
p′ ∞∫

ri−1

wθ (r)

⎛⎝ r∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

� (4B1)θ
0

∑
i=−∞

⎛⎝ ri−1∫
ri−2

|g(s)ũ(s)|pds

⎞⎠
θ
p

� (4B1)θ

⎛⎝ 0

∑
i=−∞

ri−1∫
ri−2

|g(s)ũ(s)|pds

⎞⎠
θ
p

= (4B1)θ

⎛⎝ r−1∫
0

|g(s)ũ(s)|pds

⎞⎠
θ
p

�
(
4B1‖g‖Lp,ũ(0,∞)

)θ
.

Hence,
I

1
θ � 4B1‖g‖Lp,ũ(0,∞). (3.7)

3. If θ > q then starting with inequality (3.6) and applying Minkowski’s inequal-
ities of the forms

rk∫
rk−1

(
k

∑
i=−∞

ai(r)

)σ

dr �

⎛⎜⎜⎝ k

∑
i=−∞

⎛⎝ rk∫
rk−1

ai(r)σ dr

⎞⎠
1
σ
⎞⎟⎟⎠

σ

and (
0

∑
k=−∞

(
k

∑
i=−∞

bi

)σ) 1
σ

�
0

∑
i=−∞

(
0

∑
k=i

bσ
i

) 1
σ

,
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where σ =
θ
q

> 1, we get

I
q
θ � 4q

⎡⎢⎢⎣ 0

∑
k=−∞

rk∫
rk−1

⎛⎝ k

∑
i=−∞

w
1
q (r)

⎛⎝ min{r,ri}∫
ri−1

ϕq(t)tn−1dt

⎞⎠⎛⎝ ri−1∫
ri−2

g(s)ds

⎞⎠q⎞⎠
θ
q

dr

⎤⎥⎥⎦
q
θ

� 4q

⎡⎢⎢⎢⎢⎢⎢⎣
0

∑
k=−∞

⎡⎢⎢⎢⎢⎣
k

∑
i=−∞

⎛⎜⎜⎝
rk∫

rk−1

wθ (r)

⎛⎝ min{r,ri}∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q
⎛⎝ ri−1∫

ri−2

g(s)ds

⎞⎠θ

dr

⎞⎟⎟⎠
q
θ
⎤⎥⎥⎥⎥⎦

θ
q

⎤⎥⎥⎥⎥⎥⎥⎦

q
θ

� 4q
0

∑
i=−∞

⎛⎜⎜⎝ 0

∑
k=i

rk∫
rk−1

wθ (r)

⎛⎝ r∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q
⎛⎝ ri−1∫

ri−2

g(s)ds

⎞⎠θ

dr

⎞⎟⎟⎠
q
θ

= 4q
0

∑
i=−∞

⎛⎝ ri−1∫
ri−2

g(s)ds

⎞⎠q
⎛⎜⎜⎝ 0

∑
k=i

rk∫
rk−1

wθ (r)

⎛⎝ r∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

⎞⎟⎟⎠
q
θ

= 4q
0

∑
i=−∞

⎛⎝ ri−1∫
ri−2

g(s)ds

⎞⎠q
⎛⎜⎜⎝

∞∫
ri−1

wθ (r)

⎛⎝ r∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

⎞⎟⎟⎠
q
θ

.

By Hölder’s inequality, by the definition of B1 and by Jensen’s inequality we have

I
q
θ � 4q

0

∑
i=−∞

⎛⎝ ri−1∫
ri−2

|g(s)ũ(s)|pds

⎞⎠
q
p
⎛⎝ ri−1∫

ri−2

v−p′(s)sn−1ds

⎞⎠
q
p′

×

⎛⎜⎜⎝ ∞∫
ri−1

wθ (r)

⎛⎝ r∫
ri−1

ϕq(t)tn−1dt

⎞⎠
θ
q

dr

⎞⎟⎟⎠
q
θ

� (4B1)q
0

∑
i=−∞

⎛⎝ ri−1∫
ri−2

|g(s)ũ(s)|pds

⎞⎠
q
p

� (4B1)q

⎛⎝ 0

∑
i=−∞

ri−1∫
ri−2

|g(s)ũ(s)|pds

⎞⎠
q
p
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= (4B1)q

⎛⎝ r−1∫
0

|g(s)ũ(s)|pds

⎞⎠
q
p

�
(
4B1‖g‖Lp,ũ(0,∞)

)q
.

Hence for θ > q inequality (3.7) also holds.

4. If
∞∫
0

g(s)ds = ∞ we consider the sequence {rk}∞
k=−∞ , where for all integer k

rk∫
0

g(s)ds = 2k.

Note that in this case for all integer k 0 < rk−1 < rk and equality (3.5) holds. By a
similar argument we get for θ � q

I � (4B1)θ

⎛⎝ ∞

∑
i=−∞

ri−1∫
ri−2

|g(s)ũ(s)|pds

⎞⎠
θ
p

=
(
4B1‖g‖Lp,ũ(0,∞)

)θ

and for θ > q

I
q
θ � (4B1)q

⎛⎝ ∞

∑
i=−∞

ri−1∫
ri−2

|g(s)ũ(s)|pds

⎞⎠
q
p

=
(
4B1‖g‖Lp,ũ(0,∞)

)q
.

So for all 0 � g ∈ Lp,ũ(0,∞) inequality (3.7) holds which means that inequality
(2.3) is valid with c2 = 4B1 .

Therefore the statement of Theorem 2.3 follows by Lemma 2.1 �

Proof of Theorem 2.6

1. By Lemma 2.1 and the duality formula if suffices to estimate the quantity

Cq = sup
g�0

(
∞∫
0

(
wq(r)

r∫
0

(
Hϕ̃g

)q
dt

) θ
q

dr

) q
θ

‖ũg‖q
Lp(0,∞)

= sup
g�0

sup
h�0

∞∫
0

h(r)
(

r∫
0

(
ϕ̃(t)

t∫
0

g(s)ds

)q

dt

)
dr

‖w−qh‖L θ
θ−q

(0,∞)‖ũg‖q
Lp(0,∞)

= sup
h�0

sup
g�0

∞∫
0

(
ϕ̃(t)

t∫
0

g(s)ds

)q(∞∫
t
h(r)dr

)
dt

‖w−qh‖L θ
θ−q

(0,∞)‖ũg‖q
Lp(0,∞)

.
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By Remark 2.2 it follows that

sup
g�0

∞∫
0

(
ϕ̃(t)

t∫
0

g(s)ds

)q ∞∫
t
h(r)drdt

‖ũg‖q
Lp(0,∞)

≈

⎛⎜⎜⎝ ∞∫
0

⎛⎝ ∞∫
t

ϕ̃q(τ)

⎛⎝ ∞∫
τ

h(r)dr

⎞⎠dτ

⎞⎠
p

p−q
⎛⎝ t∫

0

ũ−p′(s)ds

⎞⎠
p(q−1)
p−q

ũ−p′(t)dt

⎞⎟⎟⎠
p−q
p

=

⎛⎜⎜⎝
∞∫

0

⎛⎝ ∞∫
t

⎛⎝ r∫
t

ϕ̃q(τ)dτ

⎞⎠h(r)dr

⎞⎠
p

p−q
⎛⎝ t∫

0

ũ−p′(s)ds

⎞⎠
p(q−1)
p−q

ũ−p′(t)dt

⎞⎟⎟⎠
p−q
p

,

where the equivalency constants depend only on p,q and θ .

Let

(Kh)(t) =
∞∫

t

k(r,t)h(r)dr,

where

k(r,t) =
r∫

t

ϕ̃q(τ)dτ.

Note that the kernel k satisfies the condition

k(r,t) = k(r,s)+ k(s,t), r � s � t � 0. (3.8)

Let

Ũ(t) =

⎛⎜⎜⎝
⎛⎝ t∫

0

ũ−p′(s)ds

⎞⎠
p(q−1)
p−q

ũ−p′(t)

⎞⎟⎟⎠
p−q
p

, W̃ (t) = w−q(t).

Then by the above

Cq ≈ ‖K‖L θ
θ−q ,W̃

(0,∞)→L p
p−q ,Ũ (0,∞), (3.9)

where the equivalency constants depend only on p,q and θ .
2. By the assumptions on the parameters 1 < θ

θ−q � p
p−q , therefore due to condi-

tion (3.8) by [13] Cq ≈ max{B̃1, B̃2}, where the equivalency constants depend only on
p,q and θ ,
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B̃1 = sup
β>0

⎛⎝ β∫
0

Ũ
p

p−q (t)dt

⎞⎠
p−q
q
⎛⎝ ∞∫

β

W̃− θ
q (r)k

θ
q (r,β )dr

⎞⎠
q
θ

= sup
β>0

⎛⎜⎜⎝
β∫

0

⎛⎝ r∫
0

ũ−p′(s)ds

⎞⎠
p(q−1)
p−q

ũ−p′(r)dr

⎞⎟⎟⎠
p−q
p ⎛⎜⎝ ∞∫

β

wθ (r)

⎛⎝ r∫
β

ϕ̃q(s)ds

⎞⎠
θ
q

dr

⎞⎟⎠
q
θ

=
(

p−q
q(p−1)

) p−q
p

sup
β>0

⎛⎜⎝ ∞∫
β

wθ (r)

⎛⎝ r∫
β

ϕ̃q(s)ds

⎞⎠
θ
q

dr

⎞⎟⎠
q
θ ⎛⎝ β∫

0

ũ−p′(r)dr

⎞⎠
q
p′

=
(

p−q
q(p−1)

) p−q
p

Bq
1

and

B̃2 = sup
β>0

⎛⎝ β∫
0

Ũ
p

p−q (t)k
p

p−q (β ,t)dt

⎞⎠
p−q
q
⎛⎝ ∞∫

β

W̃− θ
q (r)dr

⎞⎠
q
θ

= sup
β>0

⎛⎜⎜⎝
β∫

0

⎛⎝ β∫
t

ϕ̃q(s)ds

⎞⎠
p

p−q
⎛⎝ t∫

0

ũ−p′(r)dr

⎞⎠
p(q−1)
p−q

ũ−p′(t)dt

⎞⎟⎟⎠
p−q
p ⎛⎝ ∞∫

β

wθ (r)dr

⎞⎠
q
θ

=
(

p′

q

) p−q
p

sup
β>0

⎛⎜⎜⎝
β∫

0

⎛⎝ β∫
t

ϕ̃q(s)ds

⎞⎠
q

p−q

ϕ̃q(t)

⎛⎝ t∫
0

ũ−p′(r)dr

⎞⎠
q(p−1)

p−q

dt

⎞⎟⎟⎠
p−q
p

×
⎛⎝ ∞∫

β

wθ (r)dr

⎞⎠
q
θ

=
(

p′

q

) p−q
p

Bq
2.

Taking into account equality (2.5) we get C ≈ max{B1,B2}, where the equivalency
constants depend only on n, p,q and θ , hence the result. �
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Proof of Theorem 2.7

By the assumptions on the parameters 1 < p
p−q < θ

θ−q , therefore due to formula

(3.9) and condition (3.8) by [13] Cq ≈ max{C̃1,C̃2}, where

C̃1 =

⎛⎜⎜⎜⎜⎝
∞∫

0

⎡⎢⎢⎣
⎛⎜⎝ ∞∫

β

W̃− θ
q (r)

⎛⎝ r∫
β

ϕ̃(s)ds

⎞⎠
θ
q

dr

⎞⎟⎠
q
θ ⎛⎝ β∫

0

Ũ
p

p−q

⎞⎠
θ−q

θ
⎤⎥⎥⎦

pθ
q(p−θ )

Ũ
p

p−q (β )dβ

⎞⎟⎟⎟⎟⎠
q(p−θ )

pθ

≈

⎛⎜⎜⎝
∞∫

0

⎛⎜⎝ ∞∫
β

wθ (r)

⎛⎝ r∫
β

ϕ̃(s)ds

⎞⎠
θ
q

dr

⎞⎟⎠
p

p−θ ⎛⎝ β∫
0

ũ−p′(s)ds

⎞⎠
p(θ−1)
p−θ

ũ−p′(β )dβ

⎞⎟⎟⎠
q(p−θ )

pθ

= Cq
1 ,

and

C̃2 =

⎛⎜⎜⎜⎜⎝
∞∫

0

⎡⎢⎢⎢⎣
⎛⎜⎝ β∫

0

⎛⎝ β∫
t

ϕ̃(s)ds

⎞⎠
p

p−q

Ũ
p

p−q (t)dt

⎞⎟⎠
p−q
p⎛⎝ ∞∫

β

W̃− θ
q (r)dr

⎞⎠
q
θ

⎤⎥⎥⎥⎦
pθ

q(p−θ )

W̃− θ
q (β )dβ

⎞⎟⎟⎟⎟⎠
q(p−θ )

pθ

≈

⎛⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎝
β∫

0

⎛⎝ β∫
t

ϕ̃(s)ds

⎞⎠
q

p−q
⎛⎝ t∫

0

ũ−p′(τ)dτ

⎞⎠
q(p−1)

p−q

ũ−p′(t)dt

⎞⎟⎟⎠
θ (p−q)
q(p−θ )

×
⎛⎝ ∞∫

β

wθ (r)dr

⎞⎠
p

p−θ

wθ (β )dβ

⎞⎟⎠
q(p−θ )

pθ

= Cq
2 ,

and the equivalency constants depend only p,q and θ . Hence the statement of Theorem
2.7 follows by equality (2.5). �

4. Corollaries of the main results

As noted in Introduction in [7] the problem of boundedness from LMp1θ1,w1 to
LMp2θ2,w2 was studied for the Hardy-type operator Hα , where α ∈ R, defined by

(Hα f )(x) =
1

|B|x||1− α
n

∫
B|x|

f (y)dy, x ∈ R
n.
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Since Hα ≡ Hn,ϕ , where ϕ(r) = υ
α
n −1

n rα−n and vn is the volume of the unit ball in
R

n , Theorems 2.3, 2.6 and 2.7 are applicable to the operator Hα . We formulate the
appropriate corollary for the case of Theorem 2.3, the other cases being similar.

COROLLARY 4.1. Let 1 < p1 � p2,θ2 < ∞ and α ∈ R . Then the operator Hα is
bounded from LMp1p1,w1 to LMp2θ2,w2 if and only if

D1 = sup
β>0

⎛⎜⎜⎝ ∞∫
β

wθ2
2 (r)

⎛⎝ r∫
β

s(α−n)p2+n−1ds

⎞⎠
θ2
p2

dr

⎞⎟⎟⎠
1

θ2 ⎛⎝ β∫
0

‖w1‖−p′1
Lp1(r,∞)r

n−1dr

⎞⎠
1
p′1

< ∞.

If α > n
p′2

, then

D1 � ((α −n)p2 +n)−
1
p2 n

− 1
p′1 E1,

where
E1 = sup

β>0
‖w2(r)r

α−n( 1
p1

− 1
p2

)‖Lθ2
(β ,∞)‖w1‖−1

Lp1(β ,∞).

Hence the condition E1 < ∞ is sufficient for the boundedness of Hα from LMp1p1,w1

to LMp2θ2,w2 if 1 < p1 � p2,θ2 < ∞ and α > n
p′2

.

This condition is similar for the case θ1 = p1 to the sufficient condition obtained
in [7]. In that paper it is proved that if 1 � p1 � ∞, 0 < p2,θ1,θ2 � ∞, θ1 � θ2 and

α � n

(
1
p1

− 1
p2

)
if 1 < p1 � p2 < ∞ or p1 = 1and p2 = ∞ (4.1)

or

α > n

(
1
p1

− 1
p2

)
if p1 = 1 � p2 < ∞ or 0 < p2 < p1 � ∞, (4.2)

then the condition

F1 = sup
β>0

‖w2(r)r
α−n( 1

p1
− 1

p2
)‖Lθ2

(β ,∞)‖w1‖−1
Lθ1

(β ,∞) < ∞

is sufficient for the boundedness of Hα from LMp1θ1,w1 to LMp2θ2,w2 . Moreover, under
certain regularity assumption on the function w2 (formulas (60) and (61) in [7]), the
condition F1 < ∞ is necessary and sufficient for the boundedness of Hα from LMp1θ1,w1

to LMp2θ2,w2 .
Let us consider in more detail the case of power-type local Morrey space LMλ

pθ ,
where 0 < p,θ � ∞, λ > 0 if θ < ∞ and λ � 0 if θ = ∞ , the spaces of all functions
f ∈ Lloc

p (Rn) for which

‖ f‖LMλ
pθ

=

⎛⎝ ∞∫
0

(‖ f‖Lp(Br)

rλ

)θ
dr
r

⎞⎠
1
θ

< ∞
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if θ < ∞ and

‖ f‖LMλ
p∞

= sup
r>0

‖ f‖Lp(Br)

rλ < ∞

if θ = ∞ . (If λ � 0 for θ < ∞ or λ < 0 for θ = ∞ , then these spaces are trivial.)

Clearly, LMλ
pθ = LMpθ ,w with w(r) = r−λ− 1

θ (hence ‖w‖Lθ (r,∞) = (λ θ )−
1
θ r−λ ).

First of all we note that the condition

α = λ2−λ1 +n

(
1
p1

− 1
p2

)
(4.3)

is necessary for the boundedness of Hα from LMλ1
p1θ1

to LMλ2
p2θ2

. This follows by the
‘dilation’ argument (see [7, Remark 9] for details.) The non-triviality assumptions on
λ1 and λ2 imply that

α < λ2 +n

(
1
p1

− 1
p2

)
if θ1 < ∞, α � λ2 +n

(
1
p1

− 1
p2

)
if θ1 = ∞ (4.4)

and

α > −λ1 +n

(
1
p1

− 1
p2

)
if θ2 < ∞, α � −λ1 +n

(
1
p1

− 1
p2

)
if θ2 = ∞. (4.5)

COROLLARY 4.2. Let 1 < p1 � p2,θ2 < ∞ , λ1,λ2 > 0 and α ∈ R . Then the
operator Hα is bounded from LMλ1

p1 p1 to LMλ2
p2θ2

if and only if equality (4.3) holds.

Proof. Follows by Corollary 4.1 if one takes into account inequalities (4.4). In-
deed, it suffices to prove that equality (4.3) implies that D1 < ∞ . This follows since if
α > n

p′2
, then by (4.4) and (4.3)

D1 � c sup
β>0

⎛⎝ ∞∫
β

r
(−λ2+α− n

p′2
)θ2−1

dr

⎞⎠
1

θ2

β
λ1+ n

p′1 < ∞,

where c = (λ1p1)
− 1

p1 (λ1 +n)
− 1

p′1 |(α −n)p2 +n|− 1
p2 , if α < n

p′2
, then by (4.3)

D1 � c sup
β>0

⎛⎝ ∞∫
β

r−λ2θ2−1dr

⎞⎠
1

θ2

β
α− n

p′2
+λ1+ n

p′1 < ∞,

and if α = n
p′2

, then by (4.3)

D1 = (λ1p1)
− 1

p1 (λ1 +n)
− 1

p′1 sup
β>0

⎛⎝ ∞∫
β

r−λ2θ2−1
(

ln
r
β

) θ2
p2

dr

⎞⎠
1

θ2

β
λ1+ n

p′1

= (λ1p1)
− 1

p1 (λ1 +n)
− 1

p′1

⎛⎝ ∞∫
1

t−λ2θ2−1 (ln t)
θ2
p2 dt

⎞⎠
1

θ2

sup
β>0

β
−λ2+λ1+ n

p′1 < ∞. �
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For comparison, in [7] for a wider range of the parameters p1, p2,θ1,θ2,λ1,λ2,
namely

1 � p1 � ∞;0 < p2,θ1,θ2 � ∞;λi > 0 if θi < ∞, λi � 0 if θi = ∞(i = 1,2), (4.6)

and
θ1 � θ2, (4.7)

it is proved that Hα is bounded from LMλ1
p1θ1

to LMλ2
p2θ2

if and only if equality (4.3)
holds, but under the additional assumption that conditions (4.1) — (4.2) are satisfied.
(These additional conditions are necessary for application of the method used in [7]
which is based on proving first the boundedness of Hα from Lp1(Br) to Lp2(Br) .)

Conditions (4.6) are maximal admissible assumptions on the parameters
p1, p2,θ1,θ2 and λ1,λ2 . As for inequality (4.7) it is likely that it is also a necessary
condition for the boundedness of Hα from LMλ1

p1θ1
to LMλ2

p2θ2
. If θ1 = p1 and θ2 = p2

this is true. (See [7, Remark 11].) If θ1 = p1 , 0 < p2 < θ2 < ∞ with p2 � 1, or p2 < 1
and θ > 1, this follows by Theorem 2.7 because in the case θ2 < θ1 = p1 C1 = ∞.

So the conjecture is that under natural assumptions (4.6) the operator Hα is
bounded from LMλ1

p1θ1
to LMλ2

p2θ2
if only if both inequality (4.7) and equality (4.3)

are satisfied.
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