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MARTIN LIND

(Communicated by Lars Erik Persson)

Abstract. This paper is concerned with the study of two functionals of variational type - the
Riesz type generalized variation vp,α ( f ) (1 < p < ∞,0 � α � 1− 1/p) and the moduli of p -
continuity ω1−1/p( f ;δ ) . These functionals generate scales of spaces connecting the class Vp of
functions of bounded p -variation and the Sobolev space W 1

p . Some limiting relations in these
scales are proved. Sharp estimates of vp,α ( f ) in terms of ω1−1/p( f ;δ ) are obtained.

1. Introduction

Let f be a periodic function with the period 1 on the real line. A set Π =
{x0,x1, ...,xn} of points such that

x0 < x1 < ... < xn, where xn = x0 +1,

will be called a partition of a period (or simply a partition). Let 1 � p < ∞ . For any
partition Π , set

vp( f ;Π) =

(
n−1

∑
k=0

| f (xk+1)− f (xk)|p
)1/p

.

We say that f is a function of bounded p-variation and write f ∈Vp if

vp( f ) = sup
Π

vp( f ;Π) < ∞,

where the supremum is taken over all partitions Π. This definition was given by N.
Wiener [17]. The following strict inclusions hold

Vp ⊂Vq for 1 � p < q < ∞.

For 1 � p < ∞ , we denote by W 1
p the class of all absolutely continuous 1-periodic

functions f such that f ′ ∈ Lp . F. Riesz (see, e.g., [9, Ch. 9]) found a variational type
characterization of W 1

p . This result was formulated in the framework of the following
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general definition (see [11]). Let 1 < p < ∞ , α � 0, and let f be a 1-periodic function.
For any partition Π = {x0,x1, ...,xn} of a period, we set

vp,α( f ;Π) =

(
n−1

∑
k=0

| f (xk+1)− f (xk)|p
(xk+1− xk)α p

)1/p

. (1.1)

We denote by Vα
p the class of all 1-periodic functions f such that

vp,α( f ) = sup
Π

vp,α( f ;Π) < ∞,

where the supremum is taken over all partitions of a period. Let p′ = p/(p− 1) . If
α > 1/p′ , then V α

p contains only constants. For α = 1/p′ , the F. Riesz theorem states

that a function f belongs to the class V 1/p′
p if and only if f ∈ W 1

p . For α = 0 we
obtain the class Vp . Thus, Vα

p for 0 < α < 1/p′ form a scale of spaces of fractional
smoothness between Vp and W 1

p .
Another characterization of W 1

p is given by moduli of p -continuity. For a partiton
Π , denote ‖Π‖ = max j(x j+1− x j) . Wiener [17] introduced the function

ω1−1/p( f ;δ ) = sup
‖Π‖�δ

vp( f ;Π) 0 � δ � 1, (1.2)

where the supremum is taken over all partitions Π with ‖Π‖ � δ . The function (1.2)
is called the modulus of p-continuity of the function f . If 1 < p < ∞ , then the equality

lim
δ→0+

ω1−1/p( f ;δ ) = 0 (1.3)

may hold for non-trivial functions. A function f satisfying (1.3) is called p-continuous.
We denote by Cp the class of all p -continuous functions.

If f ∈W 1
p (1 < p < ∞) , then

ω1−1/p( f ;δ ) � ‖ f ′‖pδ 1/p′ . (1.4)

Conversely, if
ω1−1/p( f ;δ ) = O(δ 1/p′),

then f ∈ W 1
p (see [13]). Thus, the space W 1

p can be also characterized in terms of
moduli of p -continuity.

The main objectives of this paper are twofold:

1. to obtain sharp relations between vp,α( f ) and moduli of p -continuity;

2. to study limits in the scales generated by vp,α( f ) and ω1−1/p( f ;δ ) .

Obviously, if f ∈Vα
p (0 < α � 1/p′) , then

ω1−1/p( f ;δ ) = O(δ α) (1.5)
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Moreover, as we have seen, for α = 1/p′ , the converse also holds. However, for 0 <
α < 1/p′ , the condition (1.5) does not imply that f ∈ Vα

p . On the other hand, it is in
general impossible to improve (1.5).

We prove (see Theorem 4.1 below) that if f ∈ Vp (1 < p < ∞) , 0 < α < 1/p′ ,
and

Ip,α( f ) ≡
(∫ 1

0
(t−α ω1−1/p( f ;t))p dt

t

)1/p

< ∞, (1.6)

then f ∈Vα
p and

vp,α( f ) � A[vp( f )+ cp,αIp,α( f )], (1.7)

where A is an absolute constant and cp,α = p′α1/p(1/p′ −α)1/p . Further, we show
(see Theorem 4.5) that the condition (1.6) cannot be weakened whatever be the order
of decay of the modulus of p-continuity. That is, if ω is any continuous nondecreasing
function on [0,1] such that ω(0) = 0, t−1/p′ω(t) is nonincreasing, and∫ 1

0
(t−α ω(t))p dt

t
= ∞,

then there exists a function f such that ω1−1/p( f ;δ ) � ω(δ ) (0 � δ � 1) and f /∈Vα
p .

It is also important to stress that the constant cp,α in (1.7) has the optimal asymp-
totic behaviour as α → 0+ and α → 1/p′− . Actually, an inequality of the type (1.7)
could be derived from estimates of vp,α( f ) via Lp -moduli of continuity obtained in [6]
(see Remark 4.4 below). However, the constant obtained in this way is not optimal.

For the functionals vp,α( f ) we prove the following limiting relations (see Theorem
3.4 below):

1. for any 1-periodic function f , we have

lim
α→1/p′−

vp,α( f ) = vp,1/p′( f ); (1.8)

2. if f ∈Vα0
p for some α0 > 0, then

lim
α→0+

vp,α( f ) = vp( f ). (1.9)

Further, we study limits of the Besov type norms Ip,α( f ) as α → 1/p′− . This
problem was inspired by the results obtained in [2] (see also [3, 8]) concerning limits
of usual Besov norms. We prove that for functions f ∈W 1

p ,

lim
α→1/p′−

(1/p′ −α)1/pIp,α( f ) = p−1/p‖ f ′‖p. (1.10)

Conversely, if the limit in the left-hand side of (1.10) is finite, then f ∈W 1
p .

The limiting relations (1.8)–(1.10) show the sharpness of the constant in (1.7).
An essential role in the proofs of our main results play estimates of approximation

by Steklov averages in Vp proved below in Lemma 2.2. We use also these estimates to
show that the K -functional K( f ,t;Vp,W 1

p ) is equivalent to ω1−1/p( f ; t p′), 1 < p < ∞.
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2. Auxiliary results

We shall begin with some basic properties of the modulus of p -continuity (1.2). It
was proved in [13] that for 1 < p < ∞ and any n ∈ N

ω1−1/p( f ;nδ ) � n1/p′ω1−1/p( f ;δ ) (0 � δ � 1/n).

It follows that
ω1−1/p( f ;δ )

δ 1/p′ � 21/p′ ω1−1/p( f ;μ)
μ1/p′ (2.1)

for 0 < μ < δ � 1 (that is, the function δ−1/p′ω1−1/p( f ;δ ) is “almost decreasing”).
As a consequence of (2.1), we see that the best order of decay of the modulus of p -
continuity for f ∈Cp is ω1−1/p( f ;δ ) = O(δ 1/p′) . This order is attained only for func-
tions f ∈W 1

p (see the Introduction).
Let Ωγ (0 < γ � 1) be the class of all continuous functions ω defined on [0,1]

such that ω(0) = 0, ω(t) is nondecreasing and ω(t)/tγ is nonincreasing. For historical
remarks and some new information concerning conditions of this type (including the
close relation to index numbers), we refer to the paper [12] and the references given
there.

For γ = 1, the class Ω1 is “almost” the same as the class of moduli of continuity
(see, e.g., [4, p.41]), in the sense that for any modulus of continuity η , there is ω ∈ Ω1

such that ω(t) � η(t) � 2ω(t) , t ∈ [0,1] .
Similarly, A.P. Terehin [15] proved that for γ = 1/p′ , the class Ω1/p′ “almost

coincides” with the class of all moduli of p -continuity for functions in Cp . Indeed, let
f ∈Cp and set

ω∗(t) = t1/p′ inf
0<u�t

ω1−1/p( f ;u)
u1/p′ . (2.2)

Then clearly ω∗ ∈ Ω1/p′ and by (2.1)

ω∗(t) � ω1−1/p( f ;t) � 21/p′ω∗(t), 0 � t � 1. (2.3)

Conversely, for any ω ∈ Ω1/p′ , in [15] there was constructed a function f ∈ Cp such
that

ω(t) � ω1−1/p( f ;t) � 9ω(t), 0 � t � 1.

For this reason, we shall call a function ω ∈ Ω1/p′ a modulus of p-continuity.
Throughout this paper, for any ω ∈ Ωγ we denote

ωn = ω(2−n) and ωn = 2nγω(2−n) (n ∈ N). (2.4)

Since ω(t) is nondecreasing and ω(t)/tγ is nonincreasing, we have

ωn+1 � ωn � 2γωn+1 (2.5)

and
ωn � ωn+1 � 2γωn (n ∈ N). (2.6)
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Let ω ∈ Ωγ and assume that

lim
t→0+

ω(t)/tγ = ∞. (2.7)

Then we define the sequence of natural numbers nk ≡ nk(ω ,γ) as follows. Set n0 = 0
and

nk+1 = min

(
n : max

(
ωn

ωnk

,
ωnk

ωn

)
� 1

2

)
(k = 0,1, ...). (2.8)

Thus,
2ωnk+1 � ωnk , 2ωnk � ωnk+1 (k = 0,1, ...), (2.9)

and for each k = 0,1, ... at least one of the inequalities

2ωnk+1−1 > ωnk or ωnk+1−1 < 2ωnk

holds. By (2.5) and (2.6), this implies that for each k = 0,1, ... we have at least one of
the inequalities

ωnk < 4ωnk+1 (2.10)

or
ωnk+1 < 4ωnk . (2.11)

Partitions (2.8) for moduli of continuity have been used for a long time, beginning
from the works [1, 10, 16].

The following lemma is a slight generalisation of Lemma 2.1 in [6] and it can be
proved in exactly the same way.

LEMMA 2.1. Let 0 < γ � 1 and let ω ∈ Ωγ satisfy (2.7). Let 1 � q < ∞ and
0 < β < qγ be given numbers. Then

∞

∑
k=0

2nkβ ωq
nk

� 2ωq
0 +

2q+2

qγ
β (qγ −β )

∫ 1

0
t−β ω(t)q dt

t
.

Let f ∈ L1 . For any 0 < h � 1, let

fh(x) =
1
h

∫ h

0
f (x+ t)dt (2.12)

be the Steklov average of the function f .

LEMMA 2.2. Let 1 < p < ∞ and f ∈Vp . Then

ω1−1/p( fh;t) � ω1−1/p( f ;t), 0 � t � 1, (2.13)

‖ f ′h‖p � h−1/p′ω1−1/p( f ;h) (2.14)

and
vp( f − fh) � 6ω1−1/p( f ;h). (2.15)
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Proof. The inequality (2.13) is immediate and (2.14) follows from (3.1). We shall
prove (2.15). Let Π = {x0,x1, ...,xn} be any partition and set

K′ = { j : x j+1− x j � h}, K′′ = {0,1, ...,n−1} \K′

Set also gh = f − fh and

V ′ =

(
∑
j∈K′

|gh(x j+1)−gh(x j)|p
)1/p

and

V ′′ =

(
∑

j∈K′′
|gh(x j+1)−gh(x j)|p

)1/p

.

Then vp(gh;Π) � V ′ +V ′′ . By Minkowski’s inequality

V ′ �
(

∑
j∈K′

| f (x j+1)− f (x j)|p
)1/p

+

(
∑
j∈K′

| fh(x j+1)− fh(x j)|p
)1/p

� ω1−1/p( f ;h)+ ω1−1/p( fh;h).

Using (2.13), we get
V ′ � 2ω1−1/p( f ;h). (2.16)

We now estimate V ′′ . We have

(V ′′)p = h−p ∑
j∈K′′

∣∣∣∣
∫ h

0
[ f (x j+1)− f (x j+1 + t)− f (x j)+ f (x j + t)]dt

∣∣∣∣
p

.

Applying the trivial inequality |a+ b|p � 2p(|a|p + |b|p) and Hölder’s inequality, we
obtain

(V ′′)p � 2ph−1
∫ h

0

[
∑

j∈K′′
| f (x j+1 + t)− f (x j+1)|p+

+ ∑
j∈K′′

| f (x j + t)− f (x j)|p
]

dt.

For t ∈ [0,h] and j ∈ K′′ we have [x j,x j + t] ⊂ [x j,x j+1) , and hence [x j,x j + t]∩
[xi,xi + t] = /0 for i, j ∈ K′′ , i 
= j . Moreover, since j � n−1 and j ∈ K′′ , we have that
x j + t � x j+1 � xn . Thus, ⋃

j∈K′′
[x j,x j + t]⊂ [x0,xn],

and

∑
j∈K′′

| f (x j + t)− f (x j)|p � ω1−1/p( f ;h)p
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for each t ∈ [0,h] . Furthermore, if i, j ∈ K′′ and i < j , then xi+1 + t � x j + t � x j+1 .
Whence, [xi+1,xi+1 + t]∩ [x j+1,x j+1 + t] = /0 , i < j , and⋃

j∈K′′
[x j+1,x j+1 + t]⊂ [x0 + t,xn + t].

Thus,

∑
j∈K′′

| f (x j+1 + t)− f (x j+1)|p � ω1−1/p( f ;h)p

for each t ∈ [0,h] . It follows that

V ′′ � 21+1/pω1−1/p( f ;h). (2.17)

By (2.16) and (2.17) we obtain

vp( f − fh) � 6ω1−1/p( f ;h).

This completes the proof. �

REMARK 2.3. Applying Lemma 2.2, we can show that the Peetre K -functional
K( f ,t;Vp,W 1

p ) is equivalent to ω1−1/p( f ;t p′) .
Set ‖ f‖Vp = | f (0)|+ vp( f ) for f ∈Vp . It is simple to show that ‖ · ‖Vp is a norm

on Vp and that Vp is a Banach space with respect to this norm.
As in [4, p.172], we define the K -functional for the pair (Vp,W 1

p ) by the equality

K( f ,t;Vp,W
1
p ) = inf

g∈W 1
p

(‖ f −g‖Vp + t‖g′‖p).

We emphasize that the second term on the right-hand side is only a seminorm on W 1
p .

We shall prove that

ω1−1/p( f ;t p′) � K( f ,t;Vp,W
1
p ) � 8ω1−1/p( f ; t p′). (2.18)

Fix an arbitrary t ∈ (0,1] and set h = t p′ . Let g = fh be the Steklov average (2.12),
then g ∈W 1

p . By (2.14) and (2.15), we have that

| f (0)−g(0)|+ vp( f −g)+h1/p′‖g′‖p � 8ω1−1/p( f ;h).

Substituting h = t p′ above yields

‖ f −g‖Vp + t‖g′‖p � 8ω1−1/p( f ; t p′),

and therefore,
K( f ,t;Vp,W

1
p ) � 8ω1−1/p( f ; t p′).

On the other hand, for any g ∈W 1
p , we have by (1.4) that

ω1−1/p( f ;t p′) � ω1−1/p( f −g;t p′)+ ω1−1/p(g; t p′)

� vp( f −g)+ t‖g′‖p.
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Taking infimum over all g ∈W 1
p , we obtain that

ω1−1/p( f ;t p′) � K( f ,t;Vp,W
1
p ).

Thus, (2.18) is proved.

3. Limiting relations

The Lp -modulus of continuity of a function f ∈ Lp is defined by

ω( f ;δ )p = sup
0�h�δ

(∫ 1

0
| f (x+h)− f (x)|pdx

)1/p

, 0 � δ � 1.

It was proved in [14] that for δ ∈ [0,1]

ω( f ;δ )p � δ 1/pω1−1/p( f ;δ ) (1 < p < ∞). (3.1)

Observe that in the non-periodic case (which is much simpler), (3.1) was proved in [18].
Let f ∈ Lp (1 < p < ∞) . It was proved in [2] that if

sup
0<s<1

(1− s)
∫ 1

0
(t−sω( f ;t)p)p dt

t
< ∞,

then f ∈W 1
p and

lim
s→1−

(1− s)1/p
(∫ 1

0
(t−sω( f ;t)p)p dt

t

)1/p

=
(

1
p

)1/p

‖ f ′‖p.

We shall consider a similar limiting relation involving the modulus of p -continuity
instead of Lp -modulus of continuity. We begin with the following proposition.

PROPOSITION 3.1. Let f ∈W 1
p (1 < p < ∞) . Then

lim
h→0+

ω1−1/p( f ;h)
h1/p′ = ‖ f ′‖p. (3.2)

Proof. It is a direct consequence of (1.4) that

lim
h→0+

ω1−1/p( f ;h)
h1/p′ � ‖ f ′‖p.

For h ∈ (0,1] , denote Δh f (x) = f (x+h)− f (x) and set

μ(h) = ‖ f ′ − (Δh f )/h‖p.

Then

‖ f ′‖p � μ(h)+
‖Δh f‖p

h
� μ(h)+

ω( f ;h)p

h
.
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From here and (3.1), we obtain that

‖ f ′‖p � μ(h)+
ω1−1/p( f ;h)

h1/p′ , (3.3)

for any 0 < h � 1. Further,

Δh f (x) =
∫ h

0
f ′(x+ t)dt.

Thus, applying Hölder’s inequality and Fubini’s theorem, we have

μ(h) =
(∫ 1

0

∣∣∣∣ f ′(x)− 1
h

∫ h

0
f ′(x+ t)dt

∣∣∣∣
p

dx

)1/p

�
(

1
h

∫ h

0

(∫ 1

0
| f ′(x)− f ′(x+ t)|pdx

)
dt

)1/p

� ω( f ′;h)p.

Since f ′ ∈ Lp , ω( f ′;h)p → 0 as h → 0. Thus, μ(h) → 0 as h → 0 and we get from
(3.3) that

lim
h→0+

ω1−1/p( f ;h)
h1/p′ � ‖ f ′‖p.

This completes the proof. �

THEOREM 3.2. Let f be an 1-periodic function. Then the following statements
hold:

1. if f ∈W 1
p (1 < p < ∞) , then

lim
s→1/p′−

(1/p′ − s)1/p
(∫ 1

0
[t−sω1−1/p( f ;t)]p

dt
t

)1/p

=
(

1
p

)1/p

‖ f ′‖p; (3.4)

2. if f ∈Cp (1 < p < ∞) and

lim
s→1/p′−

(1/p′ − s)
∫ 1

0
[t−sω1−1/p( f ; t)]p

dt
t

< ∞,

then f ∈W 1
p .

Proof. We first prove the statement 1. Let f ∈W 1
p and s ∈ (0,1/p′) . Set

J(s,h) = p(1/p′ − s)
∫ h

0
[t−sω1−1/p( f ;t)]p

dt
t

, 0 � h � 1,

then we shall prove that
lim

s→1/p′−
J(s,1) = ‖ f ′‖p

p.
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By (3.2) we have that for any ε > 0, there is a number δ = δ (ε) > 0 such that for
0 < t < δ

‖ f ′‖p
p− ε <

ω1−1/p( f ;t)p

t p−1 < ‖ f ′‖p
p + ε. (3.5)

Multiplying (3.5) by t p−2−sp , integrating over [0,δ ] and taking into account that p−
1− sp = p(1/p′ − s) yield the inequalities

δ p−1−sp(‖ f ′‖p
p− ε) � J(s,δ ) � δ p−1−sp(‖ f ′‖p

p + ε).

It follows that

(1− δ p−1−sp)‖ f ′‖p
p− εδ p−1−sp � ‖ f ′‖p

p− J(s,δ ) � (1− δ p−1−sp)‖ f ′‖p
p + εδ p−1−sp.

(3.6)
Furthermore, since f ∈W 1

p , we also have f ∈Vp and

p(1/p′ − s)
∫ 1

δ
[t−sω1−1/p( f ;t)]p

dt
t

� p(1/p′ − s)δ−sp−1vp( f )p.

Therefore,

∣∣J(s,1)−‖ f ′‖p
p

∣∣ � (1− δ p−1−sp)‖ f ′‖p + εδ p−1−sp

+p(1/p′ − s)δ−sp−1vp( f )p.

As s → 1/p′− , the limit of the right hand side of this inequality is equal to ε . Since
ε > 0 is arbitrary, the proof of 1. is complete.

Let now f ∈ Cp . For any 0 < h < 1, let fh be the Steklov average of f given
by (2.12). Then fh ∈W 1

p and f ′h(x) = [ f (x + h)− f (x)]/h a.e. Applying (3.4) to the
function fh and using (2.13), we have that

1
p
‖ f ′h‖p

p = lim
s→1/p′−

(1/p′ − s)
∫ 1

0
[t−sω1−1/p( fh; t)]p

dt
t

� lim
s→1/p′−

(1/p′ − s)
∫ 1

0
[t−sω1−1/p( f ; t)]p

dt
t

= C < ∞.

On the other hand,

‖ f ′h‖p
p = h−p

∫ 1

0
| f (x+h)− f (x)|pdx.

Thus, (∫ 1

0
| f (x+h)− f (x)|pdx

)1/p

� Ch, h ∈ (0,1].

Since f is continuous, a theorem of G.H. Hardy and J.E. Littlewood [5, Thm. 24]
implies that f ∈W 1

p . �
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REMARK 3.3. M. Milman [8] studied continuity properties of interpolation scales
at the endpoints. In particular, it follows from his results that for any f ∈W 1

p ,

lim
s→1−

(1− s)1/p
(∫ 1

0
(t−sK( f ,t;Vp,W

1
p ))p dt

t

)1/p

=
(

1
p

)1/p

‖ f ′‖p

Together with (2.18), this provides another look on (3.4).

We shall also give some limiting relations for the functionals vp,α( f ) defined by
(1.1).

THEOREM 3.4. Let f be an 1-periodic function and let 1 < p < ∞ . Then the
following relations hold:

1. for any f we have
lim

α→1/p′−
vp,α( f ) = vp,1/p′( f ); (3.7)

2. if f ∈V α0
p for some α0 > 0 , then

lim
α→0+

vp,α( f ) = vp( f ). (3.8)

Proof. To prove 1, we first observe that

vp,α( f ) � vp,1/p′( f ), 0 < α < 1/p′.

Further, let Π = {x0,x1, ...,xn} be any partition. Then, since

vp,α( f ) �
(

n−1

∑
k=0

| f (xk+1)− f (xk)|p
(xk+1− xk)α p

)1/p

,

we get

lim
α→1/p′−

vp,α( f ) �
(

n−1

∑
k=0

| f (xk+1)− f (xk)|p
(xk+1− xk)p−1

)1/p

.

Taking supremum over all partitions, we obtain

lim
α→1/p′−

vp,α( f ) � vp,1/p′( f ).

Thus, (3.7) holds.
We proceed to prove 2. Since

vp( f ) � vp,α( f )

for any α > 0, it is sufficient to show that

lim
α→0+

vp,α( f ) � vp( f ).



32 M. LIND

For any partition Π = {x0,x1, ...,xn} , we set

σk = { j : 2−k−1 < x j+1− x j � 2−k},

and

Sk( f ) =

(
∑
j∈σk

| f (x j+1)− f (x j)|p
)1/p

.

Then

vp,α( f ;Π) � 2α

(
∞

∑
k=0

2kα pSk( f )p

)1/p

. (3.9)

Furthermore, by applying the Abel transform we have

∞

∑
k=0

2kα pSk( f )p =
∞

∑
k=0

2kα p

[
∞

∑
j=k

S j( f )p −
∞

∑
j=k+1

S j( f )p

]

=
∞

∑
k=0

Sk( f )p +(1−2−α p)
∞

∑
k=1

2kα p
∞

∑
j=k

S j( f )p.

It is easy to see that
∞

∑
j=k

S j( f )p � vp,α0( f )p2−kα0 p.

Whence, for 0 < α < α0

∞

∑
k=0

2kα pSk( f )p � vp( f )p + vp,α0( f )pα p
∞

∑
k=1

2−k(α0−α)p.

Thus, by (3.9)

vp,α( f ) � 2α

(
vp( f )+ α1/pvp,α0( f )

(
p

2(α0−α)p−1

)1/p
)

and it follows that

lim
α→0+

vp,α( f ) � vp( f ),

which concludes the proof. �

REMARK 3.5. The condition that f ∈ Vα0
p for some α0 > 0 in (ii) cannot be

omitted. Indeed, if f ∈ Vp has a discontinuity at some point, then vp,α( f ) = ∞ for all
α > 0 whence limvp,α( f ) = ∞ , while vp( f ) < ∞ .
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4. Estimates of the vp,α -variation

In this Section we obtain a sharp estimate of vp,α( f ) (see (1.1)) in terms of the
modulus of p -continuity ω1−1/p( f ;δ ) .

THEOREM 4.1. Let 1 < p < ∞ and let 0 < α < 1/p′ . Assume that f ∈ Vp and
that

Ip,α( f ) =
(∫ 1

0
[t−α ω1−1/p( f ;t)]p

dt
t

)1/p

< ∞. (4.1)

Then f ∈Vα
p and

vp,α( f ) � A[vp( f )+ cp,αIp,α( f )], (4.2)

where A is an absolute constant and

cp,α = p′α1/p(1/p′ −α)1/p. (4.3)

Proof. The condition (4.1) implies that f ∈Cp . Let ω∗(t) be given by (2.2) and
take ω ∈ Ω1/p′ such that

ω∗(t) � ω(t), t ∈ [0,1] (4.4)

and

lim
t→0+

ω(t)/t1/p′ = ∞. (4.5)

We specify later how such ω can be obtained. As before, set ωn = ω(2−n) and ωn =
2n/p′ωn . Let the natural numbers nk ≡ nk(ω ,1/p′) , k = 0,1, ..., be defined by (2.8).
Set μ(k) = k if (2.10) holds and μ(k) = k+1 if (2.11) holds, and define

gk(x) = 2nμ(k)

∫ 2
−nμ(k)

0
f (x+ t)dt.

Fix a partition Π = {x0,x1, ...,xn} and set

σk = { j : 2−nk+1 < x j+1− x j � 2−nk}.

For any function ϕ we define

Rk(ϕ) =

(
∑
j∈σk

|ϕ(x j+1)−ϕ(x j)|p
(x j+1− x j)α p

)1/p

and

Sk(ϕ) =

(
∑
j∈σk

|ϕ(x j+1)−ϕ(x j)|p
)1/p

.
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By Hölder’s inequality we have for j ∈ σk

|gk(x j+1)−gk(x j)|p
(x j+1− x j)α p =

1
(x j+1− x j)α p

∣∣∣∣
∫ x j+1

x j

g′k(t)dt

∣∣∣∣
p

� (x j+1− x j)p−1−α p
∫ x j+1

x j

|g′k(t)|pdt

� 2−nk(p−1−α p)
∫ x j+1

x j

|g′k(t)|pdt.

Thus, by (2.14) and (4.4),

Rk(gk) � 2−nk(1/p′−α)‖g′k‖p

� 2−nk(1/p′−α)2nμ(k)/p′ω1−1/p( f ;2−nμ(k) )

� 2−nk(1/p′−α)2nμ(k)/p′ωnμ(k) .

If μ(k) = k , then Rk(gk) � 2nkα ωnk . If μ(k) = k+1, then ωnk+1 < 4ωnk and

Rk(gk) � 2−nk(1/p′−α)ωnk+1 � 2nkα+2ωnk . (4.6)

Thus, (4.6) holds for each k ∈ N . Further,

Rk( f −gk) � 2nk+1αSk( f −gk). (4.7)

Applying (4.6) and (4.7), we get

vp,α( f ;Π) �
(

∞

∑
k=0

Rk(gk)p

)1/p

+

(
∞

∑
k=0

Rk( f −gk)p

)1/p

� 4

(
∞

∑
k=0

2nkα pω p
nk

)1/p

+

(
∞

∑
k=0

2nk+1α pSk( f −gk)p

)1/p

.

We estimate the latter sum. Clearly, Sk( f − gk) � vp( f − gk) . Applying (2.15), we
obtain

Sk( f −gk) � 6ωnμ(k) .

If μ(k) = k , then ωnk � 4ωnk+1 and

2nk+1αSk( f −gk) � 2nk+1α+3ωnk � 2nk+1α+5ωnk+1 .

If μ(k) = k+1, then

2nk+1αSk( f −gk) � 2nk+1α+3ωnk+1 .

Thus (
∞

∑
k=0

2nk+1α pSk( f −gk)p

)1/p

� 32

(
∞

∑
k=0

2nkα pω p
nk

)1/p

.
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It follows that

vp,α( f ;Π) � 36

(
∞

∑
k=0

2nkα pω p
nk

)1/p

.

Applying Lemma 2.1 with γ = 1/p′ , q = p and β = α p yields

vp,α( f ) � 36

(
2ω p

0 +2p+2pp′α(1/p′ −α)
∫ 1

0
t−α pω(t)p dt

t

)1/p

.

Set

Dp,α(ω) =
(∫ 1

0
t−α pω(t)p dt

t

)1/p

.

Since p1/p � 2 and (p′)1/p � p′ , we obtain

vp,α( f ) � 210
[
ω0 + p′α1/p(1/p′ −α)1/pDp,α(ω)

]
. (4.8)

If there holds

lim
t→0+

ω∗(t)
t1/p′ = ∞, (4.9)

then we take ω(t) = ω∗(t) . In this case

Dp,α(ω) � Ip,α( f )

and ω0 � vp( f ) , by (2.3). Thus, (4.2) is proved in this case.
If (4.9) does not hold, we take ωε(t) = ω∗(t)+ εtγ where α < γ < 1/p′ . Then

ωε ∈ Ω1/p′ for each ε > 0 and ωε satisfies (4.4) and (4.5). Furthermore, by (2.3) and
a simple calculation we have

Dp,α(ωε ) � Ip,α( f )+ ε(p(γ −α))1/p

and ωε(1) � vp( f )+ ε . Thus, we get from (4.8) that

vp,α( f ) � 210(vp( f )+ ε + p′α1/p(1/p′ −α)1/p[Ip,α( f )+ ε(p(γ −α))1/p]).

Letting ε → 0 yields (4.2). �

REMARK 4.2. Assume that f ∈W 1
p (1 < p < ∞) . By Theorem 3.2

lim
α→1/p′−

(1/p′ −α)1/pIp,α( f ) = p−1/p‖ f ′‖p.

Further, vp( f ) � ‖ f ′‖p for f ∈W 1
p . Thus, the upper limit as α → 1/p′− of the right-

hand side of (4.2) does not exceed A‖ f ′‖p (where A is an absolute constant). On
the other hand, by Proposition 3.4, the left-hand side of (4.2) tends to vp,1/p′( f ) as
α → 1/p′− . Thus,

vp,1/p′( f ) � A‖ f ′‖p.

This agrees with the theorem of F. Riesz (see the Introduction) and shows that the order
of the constant (4.3) is optimal as α → 1/p′− .
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REMARK 4.3. Assume that Ip,α0( f )< ∞ for some 0 < α0 < 1/p′ . Since Ip,α( f )�
Ip,α0( f ) for 0 < α � α0 , we get that

lim
α→0+

α1/pIp,α( f ) � lim
α→0+

α1/pIp,α0( f ) = 0.

Thus, as α → 0+ , the limit of the right-hand side of (4.2) does not exceed Avp( f )
(where A is an absolute constant). On the other hand, if Ip,α0( f ) < ∞ , then f ∈ Va0

p

by Theorem 4.1. By (3.8), vp,α( f ) → vp( f ) as α → 0+ . Thus, the behaviour of the
left-hand side of (4.2) agrees with the behaviour of the right-hand side as α → 0+ .

REMARK 4.4. Let 1 < p < ∞ and 0 < α < 1/p′ . In [6], sharp estimates of
vp,α( f ) in terms of ω( f ;δ )p were studied. There it was proved that if f ∈ Lp and

Kp,α( f ) ≡
(∫ 1

0
t−α p−1ω( f ;t)p

p
dt
t

)1/p

< ∞,

then there exists f ∈Vα
p such that f = f a.e. and

vp,α( f ) � Aα−1/p′(1/p′ −α)1/pKp,α( f ), (4.10)

where A is an absolute constant. The scheme of the proof of Theorem 4.1 is similar to
one used in [6] in the proof of (4.10).

We shall now compare (4.10) and (4.2). For 1 < p < ∞ , 0 < α < 1/p′ and f ∈Vp ,
we have

Kp,α( f ) � Ip,α( f ) � C
α

Kp,α( f ), (4.11)

where C is an absolute constant. Indeed, the left inequality is an immediate conse-
quence of (3.1), while the right inequality follows from estimates of ω1−1/p( f ;δ ) in
terms of ω( f ;δ )p obtained in [14] (see also [6]) combined with Hardy’s inequality (see
[7, p.7]).

Applying (4.10) and the left inequality of (4.11), we get

vp,α( f ) � Ac′p,αIp,α( f ),

where A is an absolute constant and c′p,α = α−1/p′(1/p′ −α)1/p . Observe that for
small α > 0, the constant c′p,α is much larger than the constant cp,α given by (4.3).
Indeed, c′p,α → ∞ as α → 0+ , while cp,α → 0 as α → 0+ . Thus, (4.2) with the
sharp constant (4.3) cannot be obtained from (4.10). However, note that the order of
the constant in (4.10) as α → 0+ is optimal (see [6], Remark 5.3).

Now we show that for 0 < α < 1/p′ the condition (4.1) is sharp.

THEOREM 4.5. Let 1 < p < ∞ and 0 < α < 1/p′ . Assume that ω ∈ Ω1/p′ is any
modulus of p-continuity such that∫ 1

0
(t−αω(t))p dt

t
= ∞. (4.12)

Then there is a function f ∈Vp such that ω1−1/p( f ;δ ) � ω(δ ) but f /∈V α
p .
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Proof. Define ωn,ωn by (2.4) with γ = 1/p′ . The condition (4.12) implies that
ω(δ ) 
= O(δ 1/p′) , thus we may construct {nk}∞

k=0 by (2.8).
For k = 1,2, ... , set ξk = 2−nk , δk = 2−nk−2 and Ik = [ξk − δk,ξk + δk] . Then

Ik ⊂ (0,1) . Further, since nk+1 � nk +1, we have ξk+1 + δk+1 < ξk − δk and thus the
intervals {Ik}k∈N are pairwise disjoint and ordered from the right to the left.

For k ∈ N , define ϕk as a continuous 1-periodic function such that ϕk(x) = 0 for
x ∈ [0,1]\ Ik , ϕk(ξk) = ωnk , and ϕk is linear on [ξk − δk,ξk] and [ξk,ξk + δk] . Set

f (x) =
∞

∑
k=1

ϕk(x).

We shall estimate ω1−1/p( f ;2−s) for s ∈ N . Assume that nm � s < nm+1 for some
m � 1. Clearly, there holds

ω1−1/p( f ;2−s) �
∞

∑
k=1

ω1−1/p(ϕk;2
−s).

For each k � m+1 we have the trivial estimate

ω1−1/p(ϕk;2
−s) � v1(ϕk) = 2ωnk .

Fix 1 � k � m . Observe that

|ϕ ′
k(x)| = 2nk+2ωnk , x ∈ (ξk − δk,ξk)∪ (ξk,ξk + δk),

and
ϕ ′

k(x) = 0, x ∈ [0,1]\ Ik.

By (1.4), we have

ω1−1/p(ϕk;2
−s) � 2−s/p′‖ϕ ′

k‖p = 2−s/p′
(∫

Ik
2(nk+2)pω p

nk
dx

)1/p

= 2−s/p′+2−1/pωnk .

By (2.9),

ω1−1/p( f ;2−s) � 4

[
2−s/p′

m

∑
k=1

ωnk +
∞

∑
k=m+1

ωnk

]

� 8(2−s/p′ωnm + ωnm+1).

Further, since nm � s < nm+1 , we have ωnm � ωs = 2s/p′ωs , and ωnm+1 � ωs . Thus,
ω1−1/p( f ;2−s) � 16ωs . This implies that

ω1−1/p( f ;δ ) � 32ω(δ ) for 0 � δ � 1.

We shall prove that f /∈V α
p . For any N ∈ N , consider the points

0 < ξN − δN < ξN < ξN−1− δN−1 < .... < ξ1 − δ1 < ξ1 < 1.
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Clearly

vp,α( f ) �
(

N

∑
k=1

| f (ξk)− f (ξk − δk)|p
δ α p

k

)1/p

= 4α

(
N

∑
k=1

2nkα pω p
nk

)1/p

.

Thus,

vp,α( f ) � 4α

(
∞

∑
k=1

2nkα pω p
nk

)1/p

.

It remains to show that the series at the right-hand side diverges.
If (2.10) holds, then

∫ 2−nk

2−nk+1
(t−α ω(t))p dt

t
� 4p

α p
2nk+1α pω p

nk+1
.

If (2.11) holds, then

∫ 2−nk

2−nk+1
(t−αω(t))p dt

t
� 4p

p−1−α p
2nkα pω p

nk
.

These estimates and (4.12) yield that

∞

∑
k=1

2nkα pω p
nk

= ∞. �
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