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Abstract. A detailed analysis of potential inequality from [6] and [1] is presented. Special atten-
tion is given to the equality case. This enables us to obtain some improvements and generaliza-
tions of classical Hardy’s inequality.

1. Introduction

Potential inequality is a very general inequality which generates many important
inequalities as special cases. Authors proved potential inequality in [1] for kernels and
functions that satisfy the maximum principle (see below).

In this paper the equality case will be discussed in detail. Further, improvements
and generalizations of Hardy type inequalities will be derived.

Let us start by introducing notation and the setup, see [1] for details. We say that
N(x,dy) is a (positive) kernel on X if N : X ×B(X) → [0,+∞] is a mapping such
that, for every x ∈ X , A �→ N(x,A) is a σ -finite measure, and, for every A ∈ B(X) ,
x �→ N(x,A) is a measurable function. For a measurable function f , the potential of f
with respect to N at a point x ∈ X is

(N f )(x) =
∫

X
f (y)N(x,dy),

whenever the integral exists. The class of functions that have the potential at every point
is denoted by POT (N) .

For a measure μ on (X ,B(X)) and a measurable set C ∈ B(X) we will denote
by N̂Cμ the measure defined by

(N̂Cμ)(dy) =
∫
C

N(x,dy)μ(dx).

If C = X we will omit the subscript, i. e. N̂μ will denote the measure N̂X μ .
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DEFINITION 1. Let N be a positive kernel on X and R ⊂ POT (N) . We say
that N satisfies the strong maximum principle on R (with constant M � 1) if

(N f )(x) � Mu+N[ f +1{(N f )�u}](x) (1)

holds for every x ∈ X , f ∈ R and u � 0.

�

In [1, Theorem 5] the potential inequality is proved for the standard class of convex
and concave functions on (0,+∞) :

THEOREM 1. (The revised potential inequality) Let N(x,dy) be a positive kernel
on X which satisfies the strong maximum principle on R with constant M . Let f ∈R ,
x ∈ X and z > 0 be such that z � (N f )(x)/M and denote by Bz the set

Bz =
{
y ∈ X : (N f )(y) � z

}
.

Then, for a convex function Φ : (0,+∞) → R , the following inequality holds

Φ
( 1
M

(N f )(x)
)−Φ(z) � 1

M
N[ f +ϕ(N f )1Bz ](x)

+
1
M

ϕ(z)N[ f − f +1Bz](x)− zϕ(z).

If Φ is a concave function, then the above inequality is reversed.

In the sequel, we shall also need the following result.

THEOREM 2. [1, Theorem 15] Under the assumptions of Theorem 1, if f is non-
negative and limz→0 zϕ(z) = 0 , then

Φ(
1
M

(N f )(x))−Φ(0+) � 1
M

N[ fϕ(N f )1B](x).

Furthermore, for a finite measure μ on (X ,B(X)) , the following inequality holds

∫
B

Φ(
1
M

(N f )(x))μ(dx)−Φ(0+)μ(B) � 1
M

∫
B

f (x)ϕ((N f )(x))(N̂B μ)(dx).

2. Equality Case

In this section we will give a set of sufficient conditions on the kernel N(x,dy) and
the function f ∈ R under which the potential inequality from Theorem 1 holds with
equality, not just for convex functions, but for a more general class of functions K
given in Definition 2 below. Using these results, Hardy’s inequality will be generalized.

DEFINITION 2. A function Φ belongs to K if there exists a function ϕ of locally
bounded total variation such that Φ(t) =

∫ t
0 ϕ(u)du for every t > 0.
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Due to the properties of ϕ , one can easily derive the following two properties:
(i) a function Φ ∈ K is absolutely continuous and, thus, satisfies the fundamental
theorem of integral calculus (see [3], p. 286) and (ii) the measure dϕ generated by ϕ
is a well-defined signed measure. These two properties guarantee that the key step in
the proof of Theorem 1, the integration by parts given in [1, equation (1)], is still valid
for a function Φ ∈ K . Hence, we can state and prove the following theorem

THEOREM 3. (The Potential equality) Let Φ ∈ K . If a positive kernel N(x,dy)
on X , which satisfies the strong maximum principle on R with constant M , and f ∈R
satisfy the following two properties:

(i) for every x ∈ X and u such that 0 � u � 1
M (N f )(x) , the maximum principle

holds with equality, i. e.

(N f )(x) = Mu+N[ f +1{N f�u}](x), for 0 � Mu � (N f )(x)

(ii) for every x ∈ X we have N(x,Bτ(x)) = 0 , where τ(x) = 1
M (N f )(x) ,

then the potential inequality from Theorem 1 holds with equality, i. e.

Φ
( 1
M

(N f )(x)
)−Φ(z) =

1
M

N[ f +ϕ(N f )1Bz ](x)+
1
M

ϕ(z)N[ f − f +1Bz ](x)− zϕ(z),

for every x ∈ X and z > 0 such that z � (N f )(x)/M.

Proof. Inspection of the proof of Theorem 1 given in [1, Theorem 5] shows that
sign of inequality is used in two steps. Under the property (i) , the first inequality holds
with equality, i. e.

∫ τ(x)

z
(τ(x)−u)dϕ(u) =

∫ τ(x)

z

1
M

N[ f +1{N f�u}]dϕ(u).

Under the property (ii) , the measure N(x, ·) is identically equal to zero on the set
Bτ(x) = {y ∈ X : (N f )(y) � τ(x)} , so

∫
X

N(x,dy)

[
f +(y)

∫ τ(x)

z
1{(N f )�u}(y)dϕ(u)

]

=
∫

X
N(x,dy)

[
f +(y)

∫ +∞

z
1{(N f )�u}(y)dϕ(u)

]
,

i. e., the second inequality in the proof of Theorem 1 also holds with equality. �

REMARK 4. If a kernel N(x,dy) satisfies the assumptions (i) and (ii) from Theo-
rem 3 and if the condition that Φ is convex is loosened to Φ ∈K , then the inequalities
in Corollaries 6, 9 and 12 and Theorems 11 and 15 of [1] hold with equality. The same
is true for the first inequalities in Corollaries 8, 10, 13 and 16 of [1].
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The following lemma gives sufficient conditions under which a kernel N satisfies
the assumptions of Theorem 3 for all nonnegative functions f .

LEMMA 5. Let a kernel N on X and a nonnegative f : X → [0,+∞) satisfy the
following three properties

(i) for every x1,x2 ∈ X , the measures N(x1, ·) and N(x2, ·) are identical on the set
Bc

t , where t = min
(
(N f )(x1),(N f )(x2)

)
, i. e.

N(x1,C∩Bc
t ) = N(x2,C∩Bc

t ), for every C ∈ B(X)

(ii) N(x,Bt) = 0 for every x ∈ X , where t = (N f )(x)

(iii) The range {(N f )(x) : x ∈ X} is a connected set in R containing 0 .

Then, the kernel N satisfies the maximum principle for the function f with con-
stant M = 1 and the potential equality from Theorem 3 holds for every Φ ∈ K .

Proof. The inequality from the definition of the maximum principle holds trivially
for u > (N f )(x) . On the other hand, for u � (N f )(x) , nonnegative f and M = 1, the
inequality from the definition of the maximum principle is equivalent to

∫
X

f (y)1{(N f )<u}(y)N(x,dy) � u. (2)

By property (iii) , there exists x̃ such that u = (N f )(x̃) . By property (ii) we have

u =
∫

X
f (y)N(x̃,dy) =

∫
X

f (y)1{(N f )<u}(y)N(x̃,dy),

while by property (i) we have
∫

X
f (y)1{(N f )<u}(y)N(x̃,dy) =

∫
X

f (y)1{(N f )<u}(y)N(x,dy).

Combining the last two equalities, we see that (2) holds with equality. Therefore, the
property (i) from Theorem 3 (with M = 1) holds, while the property (ii) from that
theorem with M = 1 is equivalent to the property (ii) of this lemma. Hence, the as-
sumptions of Theorem 3 are satisfied, so the potential equality holds. �

3. Applications to Hardy-type inequalities

Hardy’s inequality states that for nonnegative f and p > 1 we have

[∫ +∞

0

(
1
x

∫ x

0
f (y)dy

)p

dx

] 1
p

� p
p−1

[∫ +∞

0
f p(x)dx

] 1
p

. (3)
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To work in our setup, we will set X = (0,+∞) and define the kernel N by its
density

G(x,y) =

{
1, if y � x,

0, otherwise.
(4)

Notice that

F(x) = (N f )(x) =
∫ x

0
f (y)dy

and that the kernel N satisfies the conditions in Lemma 5.

THEOREM 6. Let f be nonnegative, F(x) =
∫ x
0 f (y)dy, p ∈ R\{1} , q = p/(p−

1) , Φ ∈ K , Φ(0+) = 0 , limz→0 zϕ(z) = 0 and let νi(dx) = λi(x)dx , i = 1,2 , be two
σ -finite measures with densities λi that satisfy

λ2(x) = λ 1−p
1 (x)

[∫ +∞

x
λ1(y)dy

]p
. (5)

Then ∫
B

Φ(F(x))λ1(x)dx =
∫

B
f (x)ϕ(F(x))λ 1/q

1 (x)λ 1/p
2 (x)dx,

where
B = (b,+∞), for b = ess inf{y : f (y) > 0}.

Proof. By the assumptions on the kernel N , the function f and the set B we see
that B = {x ∈ (0,+∞) : (N f )(x) > 0} .

The kernel N satisfies the conditions in Lemma 5 and, taking into account Re-
mark 4, we see that the second inequality from Theorem 2 holds with equality. Since
Φ(0+) = 0 this is equivalent to

∫
B

Φ(F(x))ν1(dx) =
∫

B
f (x)ϕ(F(x))(N̂Bν1)(dx). (6)

Notice that

(N̂Bν1)(dx) =
∫ +∞

b

[∫ y

0
dx

]
λ1(y)dy =

∫ +∞

0

[∫ +∞

max(b,x)
λ1(y)dy

]
dx,

i. e.

d(N̂Bν1)(x) =
∫ +∞

max(b,x)
λ1(y)dy.

Due to (5), we see that for x ∈ B

d(N̂Bν1)(x) = λ 1/q
1 (x)λ 1/p

2 (x).

Plugging the last equality into (6) finishes the proof. �
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COROLLARY 7. Let f , F , B and νi , i = 1,2 , be as in Theorem 6. Then, for
p > 1 the following inequality holds

[∫
B
F p(x)λ1(x)dx

] 1
p

� p

[∫
B

f p(x)λ2(x)dx

] 1
p

,

while for 0 < p < 1 the inequality is reversed.

Proof. Applying Theorem 6 with Φ(τ) = τ p for p > 0 we get∫
B
F p(x)λ1(x)dx = p

∫
B

f (x)λ 1/p
2 (x)F p−1(x)λ 1/q

1 (x)dx.

Finally, applying Hölder’s inequality on the right hand side integral for functions fλ 1/p
2

and Fp−1λ 1/q
1 = (F pλ1)1/q and multiplying the inequality by

[∫
B F p(x)λ1(x)dx

]−1/q

we get the claim of the corollary. �
Similarly, let the kernel N be defined on the set X = (0,+∞) by its density

G(x,y) =

{
1, if x < y,

0, otherwise.
(7)

Then

F(x) = (N f )(x) =
∫ +∞

x
f (y)dy

and that the kernel N also satisfies the conditions in Lemma 5.

THEOREM 8. Let f be nonnegative, F(x)=
∫ +∞
x f (y)dy, p∈R\{1} , q = p/(p−

1) , Φ ∈ K , Φ(0+) = 0 , limz→0 zϕ(z) = 0 and let νi(dx) = λi(x)dx , i = 1,2 , be two
σ -finite measures with densities λi that satisfy

λ2(x) = λ 1−p
1 (x)

[∫ x

0
λ1(y)dy

]p
. (8)

Then ∫
B

Φ(F(x))λ1(x)dx =
∫

B
f (x)ϕ(F(x))λ 1/q

1 (x)λ 1/p
2 (x)dx,

where
B = (0,b), for b = ess sup{y : f (y) > 0}.

Proof. By the assumptions on the kernel N , the function f and the set B we see
that B = {x ∈ (0,+∞) : (N f )(x) > 0} .

The kernel N satisfies Lemma 5 and, taking into account Remark 4, we see that
the second inequality from Theorem 2 holds with equality. Since Φ(0+) = 0 this is
equivalent to ∫

B
Φ(F(x))ν1(dx) =

∫
B

f (x)ϕ(F(x))(N̂Bν1)(dx). (9)
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Notice that

(N̂Bν1)(dx) =
∫ b

0

[∫ +∞

y
dx

]
λ1(y)dy =

∫ +∞

0

[∫ min(b,x)

0
λ1(y)dy

]
dx,

i. e. d(N̂Bν1)(x) =
∫ min(b,x)
0 λ1(y)dy . Due to (8), we see that for x ∈ B

d(N̂Bν1)(x) = λ 1/q
1 (x)λ 1/p

2 (x).

Plugging the last equality into (9) finishes the proof. �

COROLLARY 9. Let f , F , B and νi , i = 1,2 , be as in Theorem 8. Then, for
p > 1 the following inequality holds

[∫
B
F p(x)λ1(x)dx

] 1
p

� p

[∫
B

f p(x)λ2(x)dx

] 1
p

,

while for 0 < p < 1 the inequality is reversed.

Proof. Applying Theorem 8 with Φ(τ) = τ p for p > 0 we get∫
B
F p(x)λ1(x)dx = p

∫
B

f (x)λ 1/p
2 (x)F p−1(x)λ 1/q

1 (x)dx.

Finally, applying Hölder’s inequality on the right hand side integral for functions fλ 1/p
2

and Fp−1λ 1/q
1 = (F pλ1)1/q and multiplying the inequality by

[∫
B F p(x)λ1(x)dx

]−1/q

we get the claim of the corollary. �

COROLLARY 10. Let f be nonnegative, p > 0 , p �= 1 and k �= 1 . Define F by

F(x) =

{∫ x
0 f (y)dy, k > 1,∫ +∞
x f (y)dy, k < 1.

(10)

Then, for p > 1 the following inequality holds

[∫ +∞

0
x−kF p(x)dx

] 1
p

� p
|k−1|

[∫ +∞

0
xp−k f p(x)dx

] 1
p

,

while for 0 < p < 1 the inequality is reversed.

Proof. Since, for any choice of p and k , we have f (x) = F(x) = 0 for a.e. x /∈ B ,
the integrals over (0,+∞) can be replaced with integrals over B . Then the inequality
for k > 1 follows from Corollary 7, while for k < 1 from Corollary 9, by taking

λ1(x) = x−k and λ2(x) =
xp−k

|k−1|p . �
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The last corollary is a well-known result (see [2]) and it is a generalization of
Hardy’s inequality. Indeed, by taking k = p > 1, λ1(x) = x−p and λ2(x) = 1 we get
inequality (3).

We will end this section with an elementary proof of the potential equality from
Theorem 6, but with additional assumptions that f ∈ L1 and that ν1(dx) = λ1(x)dx is
a finite measure. Under the same additional assumptions, the dual potential equality
from Theorem 8 can be proven in an analogous way.

Proof of Theorem 6. We have

d
dx

Φ(F(x)) = ϕ(F(x)) f (x)

and condition (5) can be restated as

λ 1/q
1 (x)λ 1/p

2 (x) =
∫ +∞

x
λ1(y)dy, (11)

so the integration by parts gives

∫ +∞

b
Φ(F(x))λ1(x)dx =

= −Φ(F(x))
∫ +∞

x
λ1(y)dy

∣∣∣∣∣
x=+∞

x=b

+
∫ +∞

b
f (x)ϕ(F(x))

(∫ +∞

x
λ1(y)dy

)
dx (12)

Notice that, due to the additional assumptions, we have

lim
x→+∞

F(x) =
∫ +∞

0
f (y)dy < +∞,

so limx→+∞ Φ(F(x)) is finite, while limx→b Φ(F(x)) = Φ(0+)= 0 due to the definition
of b and properties of Φ .

On the other hand, since ν1 is a finite measure, the integral
∫ +∞
b λ1(y)dy is finite

and

lim
x→+∞

∫ +∞

x
λ1(y)dy = 0,

so the first term on the right hand side of equality (12) vanishes.
Taking into account (11), we see that the second term on the right hand side of

equality (12) is equal to

∫
B

f (x)ϕ(F(x))λ 1/q
1 (x)λ 1/p

2 (x)dx,

so the equality from Theorem 6 holds. �
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4. n -dimensional Hardy-type inequality

Hardy’s inequality compares the Lp norm of the “averages” 1
x

∫ x
0 f (y)dy to the Lp

norm of the function itself. We can generalize this to n dimensions by looking at the
averages of a function over the n -dimensional balls Bn(0,‖x‖) around the origin. To
derive the results, we will look at X = R

n and the kernel N with the density

G(x,y) =

{
1, ‖y‖ � ‖x‖,
0, otherwise.

The kernel N satisfies the conditions of Lemma 5 and we have

F(x) = (N f )(x) =
∫

Bn(0,‖x‖)
f (y)dy.

THEOREM 11. Let f : R
n → [0,+∞) ,

F(x) =
∫

Bn(0,‖x‖)
f (y)dy,

p ∈ R\{1} , q = p/(p−1) and Φ ∈ K such that Φ(0+) = 0 and limz→0 zϕ(z) = 0 .
Let νi(dx) = λi(x)dx , i = 1,2 , be two σ -finite measures on R

n with densities λi that
satisfy

λ2(x) = λ 1−p
1 (x)

[∫
Bn(0,‖x‖)c

λ1(y)dy
]p

. (13)

Then ∫
B

Φ(F(x))λ1(x)dx =
∫

B
f (x)ϕ(F(x))λ 1/q

1 (x)λ 1/p
2 (x)dx,

where

B = Bn(0,b)c, for b = sup{b′ : f (y) = 0 for almost every y ∈ Bn(0,b′)}.

Proof. By the assumptions on the kernel N , the function f and the set B we see
that B = {x ∈ R

n : (N f )(x) > 0} .
The kernel N satisfies Lemma 5 and, taking into account Remark 4, we see that

the second inequality from Theorem 2 holds with equality. Since Φ(0+) = 0 this is
equivalent to ∫

B
Φ(F(x))ν1(dx) =

∫
B

f (x)ϕ(F(x))(N̂Bν1)(dx). (14)

Notice that

(N̂Bν1)(dx) =
∫

Bn(0,b)c

[∫
Bn(0,‖y‖)

dx
]
λ1(y)dy

=
∫

Rn

[∫
Bn(0,max(b,‖x‖))c

λ1(y)dy
]
dx,
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i. e. d(N̂Bν1)(x) =
∫
Bn(0,max(b,‖x‖))c λ1(y) . Due to (13), we see that for x ∈ B

d(N̂Bν1)(x) = λ 1/q
1 (x)λ 1/p

2 (x).

Plugging the last equality into (14) finishes the proof. �

COROLLARY 12. Let f , F , B and νi , i = 1,2 , be as in Theorem 11. Then, for
p > 1 the following inequality holds

[∫
B
F p(x)λ1(x)dx

] 1
p

� p

[∫
B

f p(x)λ2(x)dx

] 1
p

,

while for 0 < p < 1 the inequality is reversed.

Proof. Applying Theorem 11 with Φ(τ) = τ p for p > 0 we get∫
B
F p(x)λ1(x)dx = p

∫
B

f (x)λ 1/p
2 (x)F p−1(x)λ 1/q

1 (x)dx.

Finally, applying Hölder’s inequality on the right hand side integral to the functions

fλ 1/p
2 and F p−1λ 1/q

1 = (F pλ1)1/q , and multiplying the inequality by

[∫
B
F p(x)λ1(x)dx

]−1/q

we get the claim of the corollary. �
Similarly, let the kernel N be defined on the set X = R

n by its density

G(x,y) =

{
1, if ‖x‖ < ‖y‖,
0, otherwise.

Then
F(x) = (N f )(x) =

∫
Bn(0,‖x‖)c

f (y)dy.

and that the kernel N also satisfies the conditions of Lemma 5.

THEOREM 13. Let f : R
n → [0,+∞) ,

F(x) =
∫

Bn(0,‖x‖)c
f (y)dy,

p ∈ R\{1} , q = p/(p−1) and Φ ∈ K such that Φ(0+) = 0 and limz→0 zϕ(z) = 0 .
Let νi(dx) = λi(x)dx , i = 1,2 , be two σ -finite measures on R

n with densities λi that
satisfy

λ2(x) = λ 1−p
1 (x)

[∫
Bn(0,‖x‖)

λ1(y)dy
]p

. (15)
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Then ∫
B

Φ(F(x))λ1(x)dx =
∫

B
f (x)ϕ(F(x))λ 1/q

1 (x)λ 1/p
2 (x)dx,

where

B = Bn(0,b), for b = inf{b′ : f (y) = 0 for almost every y ∈ Bn(0,b′)c}.

Proof. By the assumptions on the kernel N , the function f and the set B we see
that B = {x ∈ R

n : (N f )(x) > 0} .
The kernel N satisfies Lemma 5 and, taking into account Remark 4, we see that

the second inequality from Theorem 2 holds with equality. Since Φ(0+) = 0 this is
equivalent to ∫

B
Φ(F(x))ν1(dx) =

∫
B

f (x)ϕ(F(x))(N̂Bν1)(dx). (16)

Notice that

(N̂Bν1)(dx) =
∫

Bn(0,b)

[∫
Bn(0,‖y‖)c

dx
]
λ1(y)dy =

∫
Rn

[∫
Bn(0,min(b,x))

λ1(y)dy
]
dx,

i. e. d(N̂Bν1)(x) =
∫
Bn(0,min(b,x)) λ1(y)dy . Due to (15), we see that for x ∈ B

d(N̂Bν1)(x) = λ 1/q
1 (x)λ 1/p

2 (x).

Plugging the last equality into (16) finishes the proof. �

COROLLARY 14. Let f , F , B and νi , i = 1,2 , be as in Theorem 13. Then, for
p > 1 the following inequality holds

[∫
B
F p(x)λ1(x)dx

] 1
p

� p

[∫
B

f p(x)λ2(x)dx

] 1
p

,

while for 0 < p < 1 the inequality is reversed.

Proof. Applying Theorem 11 with Φ(τ) = τ p for p > 0 we get

∫
B
F p(x)λ1(x)dx = p

∫
B

f (x)λ 1/p
2 (x)F p−1(x)λ 1/q

1 (x)dx.

Finally, applying Hölder’s inequality on the right hand side integral for functions fλ 1/p
2

and Fp−1λ 1/q
1 = (F pλ1)1/q and multiplying the inequality by

[∫
B F p(x)λ1(x)dx

]−1/q

we get the claim of the corollary. �

REMARK 15. If the densities of the measures νi , i = 1,2 are radial, i. e. νi(dx) =
λ̃i(‖x‖)dx with λ̃i : [0,+∞) → [0,+∞) , then the integrals in conditions (13) and (15)
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can be simplified by switching to the hyperspherical coordinates. Condition (13) is
equivalent to

λ̃2(r) = ω p
n λ̃ 1−p

1 (r)
[∫ +∞

r
λ̃1(t)dt

]p

holding for every r � 0, while condition (15) is equivalent to

λ̃2(r) = ω p
n λ̃ 1−p

1 (r)
[∫ r

0
λ̃1(t)dt

]p

holding for every r � 0, where ωn is the area of the surface of the unit hypersphere
Sn−1 in R

n .

COROLLARY 16. Let f : R
n → [0,+∞) , p > 0 , p �= 1 , q = p/(p−1) and k �= 1 .

Define F by

F(x) =

{∫
Bn(0,‖x‖) f (y)dy, k > 1,∫
Bn(0,‖x‖)c f (y)dy, k < 1.

(17)

Then, for p > 1 the following inequality holds

[∫
Rn

‖x‖−nkF p(x)dx

] 1
p

� ωnp
n|k−1|

[∫
Rn

‖x‖n(p−k) f p(x)dx

] 1
p

,

while for 0 < p < 1 the inequality is reversed.

Proof. Since, for any choice of p and k , we have f (x) = F(x) = 0 for a.e. x /∈ B ,
the integrals over R

n can be replaced with integrals over B . Then, the inequality for
k > 1 follows from Corollary 12, while for k < 1 from Corollary 14, by taking into
account Remark 15 with

λ̃1(x) = ‖x‖−nk and λ̃2(x) =
ω p

n ‖x‖n(p−k)

np|k−1|p . �

REMARK 17. Since the volume of the n -dimensional ball Bn(0,‖x‖) satisfies

V (Bn(0,‖x‖)) = ‖x‖nωn/n,

the inequality from Corollary 16 for k = p > 1 can be rewritten as

[∫
Rn

( 1
V (Bn(0,‖x‖))

∫
Bn(0,‖x‖)

f (y)dy
)p

dx

] 1
p

� p
p−1

[∫
Rn

f p(x)dx

] 1
p

,

which can be interpreted as the n -dimensional analogon of Hardy’s inequality.
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As in the 1-dimensional case, we will end this section with a direct, elementary
proof of the potential equality from Theorem 11, but with additional assumptions that
f ∈ L1 and that ν1(dx) = λ1(x)dx is a finite measure. Under the same additional as-
sumptions, the dual potential equality from Theorem 13 can be proven in an analogous
way.

In the proof we will make use of hyperspherical coordinates (r,θ )= (r,θ1, ...,θn−1)
in R

n . Interchange between x and (r,θ ) or use of the equation x = (r,θ ) will mean
that (r,θ ) are the hyperspherical coordinates of a point x ∈ R

n . Let us denote by

J(r,θ ) = rn−1 sinn−2(θ1)sinn−3(θ2) · · · sin(θn−2)

the Jacobian of the transformation from hyperspherical to Cartesian coordinates and let
Sn−1 = {x ∈ R

n : ‖x‖ = 1} denote the unit sphere in R
n .

Proof of Theorem 11. Notice that F(x) depends only on the norm ‖x‖ , so we can
interpret F as a function with the domain [0,+∞) and, in this proof, we will use both
notations F(x) and F(‖x‖) . With this understanding, we see that

F(r) =
∫

Bn(0,r)
f (y)dy =

∫ r

0

∫
θ∈Sn−1

f (r̃,θ )J(r̃,θ )dθdr̃,

where the last integral is obtained by transferring to hyperspherical coordinates. There-
fore,

F ′(r) =
∫

θ∈Sn−1
f (r,θ )J(r,θ )dθ .

Let us introduce the functions g and G by

g(r) =
∫

θ∈Sn−1
λ1(r,θ )J(r,θ )dθ

and

G(r) =
∫ +∞

r
g(r̃)dr̃.

By transferring to hyperspherical coordinates in the integral in condition (13), we see
that that condition is equivalent to

λ 1/q
1 (x)λ 1/p

2 (x) = G(‖x‖). (18)

By transferring to hyperspherical coordinates and using integration by parts we get∫
Bn(0,b)c

Φ(F(x))λ1(x)dx =

=
∫ +∞

b

∫
θ∈Sn−1

Φ(F(r))λ1(r,θ )J(r,θ )dθdr =
∫ +∞

b
Φ(F(r))g(r)dr

= −Φ(F(r))G(r)

∣∣∣∣∣
+∞

b

+
∫ +∞

b
ϕ(F(r))

(∫
θ∈Sn−1

f (r,θ )J(r,θ )dθ
)
G(r)dr. (19)
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Notice that, due to the additional assumptions, we have

lim
r→+∞

F(r) =
∫

Bn(0,r)
f (y)dy < +∞,

so limr→+∞ Φ(F(r)) is finite, while limr→b Φ(F(r)) = Φ(0+) = 0 due to the definition
of b and properties of Φ .

On the other hand, notice that G(r) = ν1(Bn(0,r)c) , so, since ν1 is a finite mea-
sure, G(b) is finite and limr→+∞ G(r) = 0, so the first term on the right hand side of
equality (19) vanishes.

By transferring back to Cartesian coordinates and taking into account (18), we see
that the second term on the right hand side of equality (19) is equal to

∫ +∞

b

∫
θ∈Sn−1

f (r,θ )ϕ(F(r))G(r)J(r,θ )dθdr

=
∫

Bn(0,b)c
f (x)ϕ(F(x))λ 1/p

1 (x)λ 1/q
2 (x)J(x)J−1(x)dx.

The Jacobians J and J−1 cancel out, so we see that the equality from Theorem 11
holds. �
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