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LpLpLpLp CHANGE OF VARIABLES INEQUALITIES ON MANIFOLDS

ARI STERN

(Communicated by Th. M. Rassias)

Abstract. We prove two-sided inequalities for the Lp -norm of a pushforward or pullback (with
respect to an orientation-preserving diffeomorphism) on oriented volume and Riemannian mani-
folds. For a function or density on a volume manifold, these bounds depend only on the Jacobian
determinant, which arises through the change of variables theorem. For an arbitrary differential
form on a Riemannian manifold, however, these bounds are shown to depend on more general
“spectral” properties of the diffeomorphism, using an appropriately defined notion of singular
values. These spectral terms generalize the Jacobian determinant, which is recovered in the
special cases of functions and densities (i.e., bottom and top forms).

1. Introduction

1.1. Motivation

One of the most important tools in integral calculus (both classically in R
n and

on manifolds) is the change of variables theorem, which states that the integral of a
density is invariant under pushforward and pullback by orientation-preserving diffeo-
morphisms. A closely related object is the Jacobian determinant, which describes how
the volume form changes with respect to pushforwards and pullbacks.

This paper is motivated by the following, natural question:

How do pushforwards and pullbacks affect the Lp -norm of a function or
density, on an oriented volume manifold; or that of a differential form, on
an oriented Riemannian manifold?

We prove two-sided inequalities for each of these cases, showing that the norms of
the pushforward and pullback are controlled by “spectral” properties of the diffeomor-
phism, with respect to an appropriately defined notion of singular values. In the case
of a function or density, the bounds simply depend on the Jacobian determinant of the
diffeomorphism and that of its inverse; these can be thought of as, respectively, the
product of the singular values and that of their reciprocals. For a general differential
form, though, we encounter Jacobian determinant-like products that combine both sin-
gular values and reciprocal singular values. In the Lp -norm, these products are also
shown to involve the conjugate exponent q , which satisfies 1/p+1/q = 1.
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1.2. Main results

The main results of this paper are summarized in the following theorems, which
will be proved in the subsequent sections.

THEOREM 1. (smooth functions) Let M and N be oriented, n-dimensional man-
ifolds with volume forms μM and μN , respectively, and let ϕ : M →N be an orientation-
preserving diffeomorphism with Jacobian determinant J (μM,μN)ϕ ∈ C∞(M) . Then,
for any function u ∈C∞(M) with compact support suppu,
∥∥1suppu [J (μM,μN)ϕ ]−1/p∥∥−1

∞ ‖u‖p �
∥∥u ◦ϕ−1

∥∥
p �

∥∥1suppu [J (μM,μN)ϕ ]1/p∥∥
∞ ‖u‖p ,

for all p ∈ [1,∞] .

If the Jacobian determinant is bounded uniformly on all of M (for example, if M
and N are compact), then this immediately yields a uniform inequality,

∥∥[J (μM,μN)ϕ ]−1/p∥∥−1
∞ ‖u‖p �

∥∥u ◦ϕ−1
∥∥

p �
∥∥[J (μM,μN)ϕ ]1/p∥∥

∞ ‖u‖p ,

which holds for all compactly supported u ∈ C∞(M) . This implies that the map u �→
u ◦ϕ−1 is bounded, and because smooth functions with compact support form a dense
subset of Lp(M) , we can therefore extend this to the whole space. Hence, Theorem 1
has the following corollary.

COROLLARY 2. (Lp functions) Let M and N be oriented, n-dimensional mani-
folds with volume forms μM and μN , respectively, and let ϕ : M→N be an orientation-
preserving diffeomorphism with Jacobian determinant J (μM,μN)ϕ ∈ C∞(M) . If the
Jacobian determinant is bounded uniformly on M , then for any u ∈ Lp(M) ,

∥∥[J (μM,μN)ϕ ]−1/p∥∥−1
∞ ‖u‖p �

∥∥u ◦ϕ−1
∥∥

p �
∥∥[J (μM,μN)ϕ ]1/p∥∥

∞ ‖u‖p ,

for all p ∈ [1,∞] .

There is an analogous result for densities (i.e., n -forms) on a volume manifold.
(Since densities are the Hodge dual of functions, and the Lp and Lq function spaces
are dual to one another, it is perhaps not too surprising that the conjugate exponent q
plays an important role here.)

THEOREM 3. (smooth densities) Let M and N be oriented, n-dimensional mani-
folds with volume forms μM and μN , respectively, and let ϕ : M→N be an orientation-
preserving diffeomorphism with Jacobian determinant J (μM,μN)ϕ ∈ C∞(M) . Then,
for any smooth density uμM ∈Ωn(M) , where u∈C∞(M) has compact support suppu =
suppuμM ,

∥∥1suppuμM [J (μM,μN)ϕ ]1/q∥∥−1
∞ ‖uμM‖p

� ‖ϕ∗ (uμM)‖p �
∥∥1suppuμM [J (μM,μN)ϕ ]−1/q∥∥

∞ ‖uμM‖p ,

for all p,q ∈ [1,∞] such that 1/p+1/q = 1 .
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COROLLARY 4. (Lp densities) Let M and N be oriented, n-dimensional mani-
folds with volume forms μM and μN , respectively, and let ϕ : M→N be an orientation-
preserving diffeomorphism with Jacobian determinant J (μM,μN)ϕ ∈ C∞(M) . If the
reciprocal [J (μM,μN)ϕ ]−1 is bounded uniformly on M , then for any density uμM ∈
LpΩn(M) , where u ∈ Lp(M) ,

∥∥[J (μM,μN)ϕ ]1/q∥∥−1
∞ ‖uμM‖p � ‖ϕ∗ (uμM)‖p �

∥∥[J (μM,μN)ϕ ]−1/q∥∥
∞ ‖uμM‖p ,

for all p,q ∈ [1,∞] such that 1/p+1/q = 1 .

When M and N are Riemannian manifolds, however, we show that it is possible
to obtain a much more general family of inequalities, which hold for arbitrary k -forms
on M , where k = 0,1, . . . ,n . In the special cases k = 0 and k = n , these inequalities
are shown to recover the previous results for functions and densities, respectively. In
order to state and prove these more general results, we will introduce a novel extension
of the singular values of a mapping. Whereas singular values are traditionally defined
only for linear maps between Euclidean vector spaces, we show that they can also be
defined intrinsically for diffeomorphisms between Riemannian manifolds.

THEOREM 5. (smooth k -forms) Let (M,gM) and (N,gN) be oriented, n-dimen-
sional Riemannian manifolds, and let ϕ : M → N be an orientation-preserving diffeo-
morphism with singular values α1(x) � · · · � αn(x) > 0 at each x ∈ M. Then, for any
smooth k -form ω ∈ Ωk(M) , k = 0, . . . ,n, with compact support suppω ,

∥∥1suppω (α1 · · ·αk)
1/q (αk+1 · · ·αn)

−1/p∥∥−1
∞ ‖ω‖p

� ‖ϕ∗ω‖p �
∥∥1suppω (α1 · · ·αn−k)

1/p (αn−k+1 · · ·αn)−1/q∥∥
∞ ‖ω‖p ,

for all p,q ∈ [1,∞] such that 1/p+1/q = 1 .

COROLLARY 6. (Lp k -forms) Let (M,gM) and (N,gN) be oriented, n-dimen-
sional Riemannian manifolds, and let ϕ : M → N be an orientation-preserving dif-
feomorphism with singular values α1(x) � · · · � αn(x) > 0 at each x ∈ M. Given
p,q ∈ [1,∞] such that 1/p+ 1/q = 1 , and some k = 0, . . . ,n, suppose that the prod-
uct (α1 · · ·αn−k)

1/p (αn−k+1 · · ·αn)
−1/q is bounded uniformly on M . Then, for any

ω ∈ LpΩk(M) ,

∥∥(α1 · · ·αk)
1/q (αk+1 · · ·αn)−1/p∥∥−1

∞ ‖ω‖p

� ‖ϕ∗ω‖p �
∥∥(α1 · · ·αn−k)

1/p (αn−k+1 · · ·αn)
−1/q∥∥

∞ ‖ω‖p .
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1.3. Organization of the paper

We begin, in the next section, by proving Theorems 1 and 3, which apply to func-
tions and densities, respectively, on oriented volume manifolds.

In the subsequent section, we turn to the case of differential k -forms on a Rie-
mannian manifold. Unlike the previous inequalities for volume manifolds, whose main
ingredients are the change of variables theorem and Hölder’s inequality, the Rieman-
nian case requires completely new analytical tools, which we introduce and develop
along the way. In particular, the proof of Theorem 5 depends crucially on the general-
ized definition of singular values for a diffeomorphism between Riemannian manifolds.
(Note that this is distinct from the usual notion of spectrum for a Riemannian manifold,
which typically refers to eigenvalues of the Laplacian [3].) This theorem, along with
the new techniques required to state and prove it, are the most significant contributions
of this paper.

The proof of Theorem 5 also depends on some facts from multilinear algebra,
relating the singular values of a linear operator to the spectral norm of its induced map
on alternating tensors. We provide supplementary technical details in Appendix A.

Finally, we mention that although these results only apply to pushforwards, as
stated above, it is trivial to apply them to pullbacks as well. Using the definition
ϕ∗ =

(
ϕ−1

)∗
, simply replace ϕ by ϕ−1 above, along with its corresponding Jaco-

bian determinant and singular values. For completeness (and for the convenience of the
reader), the pullback versions of these inequalities are stated in Appendix B.

2. Change of variables on volume manifolds

2.1. Smooth functions with compact support

Let M and N be oriented, n -dimensional manifolds, with volume forms μM and
μN , respectively. If ϕ : M → N is an orientation-preserving diffeomorphism, recall
that there exists a function J (μM,μN)ϕ ∈ C∞(M) , called the Jacobian determinant,
such that ϕ∗μN = [J (μM,μN)ϕ ]μM (see, e.g., [1]). For any function v ∈C∞(N) with
compact support, this implies the familiar change of variables formula

∫
N

vμN =
∫

M
ϕ∗ (vμN) =

∫
M

(v◦ϕ)[J (μM,μN)ϕ ]μM.

Now, let u ∈ C∞(M) be a function with compact support (denoted by suppu ). Then,
for any p ∈ [1,∞) , it follows that

∫
N

∣∣u ◦ϕ−1
∣∣p μN =

∫
M
|u|p [J (μM,μN)ϕ ]μM

�
∥∥1suppuJ (μM,μN)ϕ

∥∥
∞

∫
M
|u|p μM,

by change of variables and Hölder’s inequality. This immediately gives the Lp -norm
upper bound ∥∥u ◦ϕ−1

∥∥
p �

∥∥1suppu [J (μM,μN)ϕ ]1/p∥∥
∞ ‖u‖p .
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(Notice that this also holds for p = ∞ .) To obtain the lower bound, we write
∫

M
|u|p μM =

∫
M

(∣∣u ◦ϕ−1
∣∣p ◦ϕ

)
μM

=
∫

M
ϕ∗

(
|u ◦ϕ |−1 ϕ∗μM

)

=
∫

M
ϕ∗

(
|u ◦ϕ |−1 [

J (μN ,μM)
(
ϕ−1)]μN

)

Since the Jacobian determinant satisfies the inverse identity

J (μN ,μM)
(
ϕ−1) = [J (μM,μN)ϕ ]−1 ◦ϕ−1, (1)

it follows that ∫
M
|u|p μM =

∫
M

[J (μM,μN)ϕ ]−1 ϕ∗
(∣∣u ◦ϕ−1

∣∣p μN

)

�
∥∥1suppu [J (μM,μN)ϕ ]−1∥∥

∞

∫
N

∣∣u ◦ϕ−1
∣∣p μN ,

again using Hölder’s inequality and change of variables. Thus,

‖u‖p �
∥∥1suppu [J (μM,μN)ϕ ]−1/p∥∥

∞

∥∥u ◦ϕ−1
∥∥

p ,

which rearranges to give the lower bound

∥∥u ◦ϕ−1
∥∥

p �
∥∥1suppu [J (μM,μN)ϕ ]−1/p∥∥−1

∞ ‖u‖p .

In summary, we have now established the two-sided inequality,

∥∥1suppu [J (μM,μN)ϕ ]−1/p∥∥−1
∞ ‖u‖p �

∥∥u ◦ϕ−1
∥∥

p �
∥∥1suppu [J (μM,μN)ϕ ]1/p∥∥

∞ ‖u‖p ,

which completes the proof of Theorem 1. �

REMARK 1. If ϕ is volume-preserving (at least on the support of u ), then it also
preserves the Lp -norm for all p . Indeed, if J (μM,μN)ϕ = 1, then the inequality sim-
ply becomes ‖u‖p �

∥∥u ◦ϕ−1
∥∥

p � ‖u‖p , and thus
∥∥u ◦ϕ−1

∥∥
p = ‖u‖p , as expected.

This equality is also seen to hold for arbitrary diffeomorphisms ϕ (i.e., not necessarily
volume-preserving) when p = ∞ .

2.2. Smooth densities with compact support

Any smooth density on N with compact support can be written as vμN , where
v ∈C∞(N) is a compactly-supported function. Now, since the Hodge star operator �N

is an isometry, with �NμN = 1, the pointwise norm of this density satisfies |vμN | =
|�N (vμN)| = |v| (and likewise for �M ). In particular, this implies the identity

|vμN |p ◦ϕ = |v|p ◦ϕ = |v◦ϕ |p = |(v◦ϕ)μM|p ,
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Therefore,

|ϕ∗ (vμN)|p = |(v◦ϕ)[J (μM,μN)ϕ ]μM|p
= (|vμN |p ◦ϕ) [J (μM,μN)ϕ ]p .

(2)

Now, consider the pushforward of the density uμM , where u ∈ C∞(M) has com-
pact support suppu = suppuμM . Using change of variables,

∫
N
|ϕ∗ (uμM)|p μN =

∫
M

(|ϕ∗ (uμM)|p ◦ϕ)[J (μM,μN)ϕ ]μM

=
∫

M
|uμM|p [J (μM,μN)ϕ ]1−p μM

�
∥∥1suppuμM [J (μM,μN)ϕ ]1−p∥∥

∞

∫
M
|uμM|p μM,

where the last two lines use the identity (2) and Hölder’s inequality, respectively. Taking
the conjugate exponent q such that 1/p+ 1/q = 1, observe that (1− p)/p = −1/q .
Therefore, we can write the upper bound

‖ϕ∗ (uμM)‖p �
∥∥1suppuμM [J (μM,μN)ϕ ]−1/q∥∥

∞ ‖uμM‖p .

For the lower bound, we begin by using the identity (2) to write

|uμM|p = |ϕ∗ϕ∗ (uμM)|p = (|ϕ∗ (uμM)|p ◦ϕ) [J (μM,μN)ϕ ]p ,

and thus ∫
M
|uμM|p μM =

∫
M

(|ϕ∗ (uμM)|p ◦ϕ) [J (μM,μN)ϕ ]p μM

=
∫

M
[J (μM,μN)ϕ ]p ϕ∗ (|ϕ∗ (uμM)|p ϕ∗μM)

=
∫

M
[J (μM,μN)ϕ ]p−1 ϕ∗ (|ϕ∗ (uμM)|p μN)

�
∥∥1suppuμM [J (μM,μN)ϕ ]p−1∥∥

∞

∫
N
|ϕ∗ (uμM)|p μN ,

by the Jacobian inverse identity (1), Hölder’s inequality, and change of variables. There-
fore,

‖uμM‖p �
∥∥1suppuμM [J (μM,μN)ϕ ]1/q∥∥

∞ ‖ϕ∗ (uμM)‖p ,

so rearranging, we have the lower bound

‖ϕ∗ (uμM)‖p �
∥∥1suppuμM [J (μM,μN)ϕ ]1/q∥∥−1

∞ ‖uμM‖p .

Hence, we have shown the two-sided inequality

∥∥1suppuμM [J (μM,μN)ϕ ]1/q∥∥−1
∞ ‖uμM‖p

� ‖ϕ∗ (uμM)‖p �
∥∥1suppuμM [J (μM,μN)ϕ ]−1/q∥∥

∞ ‖uμM‖p ,

which completes the proof of Theorem 3. �
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REMARK 2. For densities, the Lp -norm is preserved if either ϕ is volume-pre-
serving (at least on suppuμM ) or when p = 1, q = ∞ . In these cases, the inequality
becomes ‖uμM‖p � ‖ϕ∗ (uμM)‖p � ‖uμM‖p , and thus ‖ϕ∗ (uμM)‖p = ‖uμM‖p .

3. Change of variables on Riemannian manifolds

3.1. Singular values of a diffeomorphism

In order to generalize this result to differential forms, we suppose now that (M,gM)
and (N,gN) are oriented, n -dimensional Riemannian manifolds, with μM and μN de-
noting their respective Riemannian volume forms. As before, let ϕ : M → N be an
orientation-preserving diffeomorphism. Given a point x ∈ M , let {e1, . . . ,en} be a
positively-oriented, gM -orthonormal basis of the tangent space TxM , and let { f1, . . . , fn}
be a positively-oriented, gN -orthonormal basis of Tϕ(x)N . With respect to these bases,
the tangent map Txϕ : TxM → Tϕ(x)N can be represented by an n×n matrix Φ . Since
ϕ is a diffeomorphism, the matrix Φ has n positive singular values, which we write

α1(x) � · · · � αn(x) > 0.

The singular values of Φ are orthogonally invariant, so they are independent of the
choice of orthonormal basis, and thus are an intrinsic property of the diffeomorphism.
Therefore, we refer to these as the singular values of ϕ at x . It follows that the pullback
of the volume form on N is

ϕ∗μN = (detΦ)μM = (α1 · · ·αn)μM,

so the Jacobian determinant is simply the product of the singular values J (μM,μN)ϕ =
α1 · · ·αn .

Similarly, the inverse map Tϕ(x)
(
ϕ−1

)
: Tϕ(x)N → TxM is represented by the in-

verse matrix Φ−1 , whose singular values are the reciprocals of those for Φ . Hence, we
write the singular values of ϕ−1 at ϕ(x) as

β1 (ϕ(x)) � · · · � βn (ϕ(x)) > 0,

which satisfy βi (ϕ(x)) = αn−i+1(x)−1 , i.e., βi = α−1
n−i+1 ◦ϕ−1 , for i = 1, . . . ,n . Con-

sequently, the pushforward of the volume form on M is

ϕ∗μM =
(
detΦ−1)μN = (β1 · · ·βn)μN .

Therefore, the Jacobian determinant is

J (μN ,μM)
(
ϕ−1) = β1 · · ·βn = (α1 · · ·αn)

−1 ◦ ϕ−1 = [J (μM,μN)ϕ ]−1 ◦ ϕ−1,

so we recover the usual identity (1).
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REMARK 3. Using the well-known “minimax” and “maximin” characterizations
of singular values, it is also possible to write

αi(x) = min
S⊂R

n

dimS=n−i+1

max
0 	=X∈S

|ΦX |
|X | = max

S⊂R
n

dimS=i

min
0 	=X∈S

|ΦX |
|X |

= min
S⊂TxM

dimS=n−i+1

max
0 	=X∈S

|Txϕ(X)|
|X | = max

S⊂TxM
dimS=i

min
0 	=X∈S

|Txϕ(X)|
|X | .

This can be taken as an alternative, basis-independent definition for the singular values
of a diffeomorphism, consistent with the previous one. This also provides another way
to see that βi = αn−i+1 ◦ϕ−1 , since

βi (ϕ(x)) = min
S⊂Tϕ(x)N

dimS=n−i+1

max
0 	=Y∈S

∣∣Tϕ(x)
(
ϕ−1

)
(Y )

∣∣
|Y |

= min
S⊂TxM

dimS=n−i+1

max
0 	=X∈S

|X |
|Txϕ(X)|

=
(

max
S⊂TxM

dimS=n−i+1

min
0 	=X∈S

|Txϕ(X)|
|X |

)−1

= αn−i+1(x)−1.

3.2. Pointwise inequalities for the spectral norm

Now, given a smooth k -form ω ∈ Ωk(M) with compact support, recall that the
spectral norm of ω at a point x ∈ M is defined by

|ω | = max
0 	=X1,...,Xk∈TxM

|ω (X1, . . . ,Xk)|
|X1| · · · |Xk| ,

where |Xi| = gM (Xi,Xi)1/2 denotes the length of the tangent vector Xi . With this defi-
nition, the Lp -norm on Ωk(M) is simply ‖ω‖p =

∫
M |ω |p μM , as usual. Likewise, for

η ∈ Ωk(N) , at each point y ∈ N we have

|η | = max
0 	=Y1,...,Yk∈TyN

|η (Y1, . . . ,Yk)|
|Y1| · · · |Yk| ,

where here |Yi| = gN (Yi,Yi)
1/2 , and ‖η‖p =

∫
N |η |p μN .

To prove Theorem 5, we begin by stating pointwise bounds for the pullback and
pushforward, in terms of the singular values of ϕ and ϕ−1 . Since ω and η are k -linear
and totally antisymmetric at each point, it is straightforward to show that

|ϕ∗η | � α1 · · ·αk (|η | ◦ϕ) =
[
(βn−k+1 · · ·βn)

−1 |η |]◦ϕ , (3)

|ϕ∗ω | � β1 · · ·βk
(|ω | ◦ϕ−1) =

[
(αn−k+1 · · ·αn)

−1 |ω |]◦ϕ−1. (4)
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That is, the pullback of a k -form is controlled by the product of the k largest singular
values of ϕ , while the pushforward is controlled by the product of the k largest singular
values of ϕ−1 . Further discussion of these pointwise inequalities, as well as some
background and details on their derivation, is given in Appendix A.

3.3. Change of variables for k -forms

Using change of variables, the pointwise inequality (4) for the pushforward, and
Hölder’s inequality,

∫
N
|ϕ∗ω |p μN =

∫
M

ϕ∗ (|ϕ∗ω |p μN)

=
∫

M
(|ϕ∗ω |p ◦ϕ)ϕ∗μN

�
∫

M

[
(αn−k+1 · · ·αn)−1 |ω |]p (α1 · · ·αn)μM

=
∫

M
(α1 · · ·αn−k)(αn−k+1 · · ·αn)

1−p |ω |p μM

�
∥∥1suppω (α1 · · ·αn−k)(αn−k+1 · · ·αn)

1−p∥∥
∞

∫
M
|ω |p μM.

Hence, we immediately obtain the upper bound

‖ϕ∗ω‖p �
∥∥1suppω (α1 · · ·αn−k)

1/p (αn−k+1 · · ·αn)−1/q∥∥
∞ ‖ω‖p .

To get the lower bound, we begin by using the pointwise inequality (3) for the pullback
to write

|ω | = |ϕ∗ϕ∗ω | � α1 · · ·αk (|ϕ∗ω | ◦ϕ) .

Thus, using change of variables and Hölder’s inequality once again,
∫

M
|ω |p μM �

∫
M

(α1 · · ·αk)
p (|ϕ∗ω |p ◦ϕ)μM

=
∫

M
ϕ∗ ([

(α1 · · ·αk)
p ◦ϕ−1] |ϕ∗ω |p ϕ∗μM

)

=
∫

M
ϕ∗

([
(α1 · · ·αk)

p ◦ϕ−1] |ϕ∗ω |p [
(α1 · · ·αn)−1 ◦ϕ−1]μN

)

=
∫

M
(α1 · · ·αk)

p−1 (αk+1 · · ·αn)−1 ϕ∗ (|ϕ∗ω |p μN)

�
∥∥1suppω (α1 · · ·αk)

p−1 (αk+1 · · ·αn)
−1∥∥

∞

∫
N
|ϕ∗ω |p μN ,

so
‖ω‖p �

∥∥1suppω (α1 · · ·αk)
1/q (αk+1 · · ·αn)−1/p∥∥

∞ ‖ϕ∗ω‖p .

Hence, this implies the lower bound

‖ϕ∗ω‖p �
∥∥1suppω (α1 · · ·αk)

1/q (αk+1 · · ·αn)
−1/p∥∥−1

∞ ‖ω‖p .
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Combining the upper and lower bounds, we have finally established the two-sided in-
equality

∥∥1suppω (α1 · · ·αk)
1/q (αk+1 · · ·αn)−1/p∥∥−1

∞ ‖ω‖p

� ‖ϕ∗ω‖p �
∥∥1suppω (α1 · · ·αn−k)

1/p (αn−k+1 · · ·αn)
−1/q∥∥

∞ ‖ω‖p ,

which completes the proof of Theorem 5. �

REMARK 4. If ϕ is an isometry (at least on suppω ), then it preserves the Lp -
norm for all p . Indeed, isometry implies that the matrix Φ is orthogonal at every
x∈M , so the singular values are α1 = · · ·= αn = 1. Therefore, the inequality becomes
‖ω‖p � ‖ϕ∗ω‖p � ‖ω‖p , and hence ‖ϕ∗ω‖p = ‖ω‖p .

Note that for k = 0, this simply reduces to Theorem 1, so the Lp -norm is pre-
served whenever ϕ is volume-preserving (since α1 · · ·αn = 1) or when p = ∞ , q = 1.
Similarly, for k = n , this reduces to Theorem 3, so the Lp -norm is preserved whenever
ϕ is volume-preserving or when p = 1, q = ∞ . More generally, though, for 0 < k < n ,
volume preservation is not sufficient: it merely implies that the product of all n singular
values equals 1, but it does not imply that this also holds for products of the k largest
or smallest singular values.

A.Appendix Alternating tensors and pointwise inequalities

The pointwise inequalities (3) and (4) are a consequence of some facts from mul-
tilinear algebra regarding alternating tensors. Consider the case where Φ is a linear
isomorphism on R

n with singular values α1 � · · · � αn > 0. Associated to Φ , there is
a so-called compound (or induced operator) on the k th exterior power, defined by

Ck(Φ) :
∧k

R
n → ∧k

R
n, X1∧·· ·∧Xk �→ ΦX1∧·· ·∧ΦXk.

Due to the total antisymmetry of the exterior product, it can be shown that |Ck(Φ)| =
α1 · · ·αk (see, for example, [2, 5, 4]). This result is derived by considering the repre-
sentation of Ck(Φ) as an

(n
k

)× (n
k

)
matrix, whose entries are the corresponding k× k

minors of Φ , and showing that its singular values are precisely the k -fold products of
singular values of Φ . Hence the largest singular value of Ck(Φ) is α1 · · ·αk , the prod-
uct of the k largest singular values of Φ . (This basic fact about singular values of the
compound matrix was used at least as early as [6], where it was instrumental in proving
the famous Weyl inequalities relating eigenvalues to singular values.) It follows that, if
A is any alternating k -linear form on R

n , we have(
A◦Ck(Φ)

)
(X1, . . . ,Xk) = A(ΦX1, . . . ,ΦXk) ,

which satisfies the spectral norm inequality

|A◦Ck(Φ)| � |A| |Ck(Φ)| = α1 · · ·αk |A| .
Now, as before, suppose that Φ is the matrix representation of Txϕ : TxM→ Tϕ(x)N

at some point x ∈M , relative to a positively-oriented, gM -orthonormal basis at x and a
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positively-oriented, gN -orthonormal basis at ϕ(x) . Then the compound matrix Ck(Φ)
induces a linear map

∧k TxM → ∧k Tϕ(x)N , and has |Ck(Φ)| = α1(x) · · ·αk(x) . If A is
the corresponding tensor representation of η ∈ Ωk(N) at ϕ(x) ∈ N , then ϕ∗η is given
by A◦Ck(Φ) . Thus,

|ϕ∗η | = |A◦Ck(Φ)| � α1(x) · · ·αk(x) |A| = α1(x) · · ·αk(x) |η |(ϕ(x)) ,

as stated in (3). Likewise, if B represents ω ∈ Ωk(M) at x ∈ M , then

|ϕ∗ω | = ∣∣B◦Ck
(
Φ−1)∣∣

� β1 (ϕ(x)) · · · βk (ϕ(x)) |B| = β1 (ϕ(x)) · · · βk (ϕ(x)) |ω |(x),
as in (4). (As with the singular values themselves, these statements are independent of
the particular choice of basis at x ∈ M or ϕ(x) ∈ N .)

Notice that, for k = 0, there is no contribution from the singular values, and we
just obtain the equalities |v◦ϕ |= |v| ◦ϕ and

∣∣u ◦ϕ−1
∣∣ = |u| ◦ϕ−1 . This is why, in the

scalar case, it was possible to simply apply the Jacobian determinant formula to get

ϕ∗ (|v|p μN) = (|v|p ◦ϕ)ϕ∗μN = |v◦ϕ |p [J (μM,μN)ϕ ]μM,

while slightly more care was necessary for the density and k -form cases.

B.Appendix Pullback inequalities

This appendix contains variants of the main results, stated for pullbacks rather than
pushforwards. As mentioned in the introduction, these corollaries follow trivially from
the pushforward results given elsewhere in the paper, simply by replacing ϕ by ϕ−1 .

COROLLARY 7. (smooth functions) Let M and N be oriented, n-dimensional
manifolds with volume forms μM and μN , respectively, and let ϕ : M → N be an
orientation-preserving diffeomorphism, whose inverse ϕ−1 has the Jacobian determi-
nant J (μN ,μM)

(
ϕ−1

) ∈ C∞(N) . Then, for any function v ∈ C∞(N) with compact
support suppv,

∥∥1suppv
[
J (μN ,μM)

(
ϕ−1)]−1/p∥∥−1

∞ ‖v‖p

� ‖v◦ϕ‖p �
∥∥1suppv

[
J (μN ,μM)

(
ϕ−1)]1/p∥∥

∞ ‖v‖p ,

for all p ∈ [1,∞] .

COROLLARY 8. (Lp functions) Let M and N be oriented, n-dimensional mani-
folds with volume forms μM and μN , respectively, and let ϕ : M→N be an orientation-
preserving diffeomorphism, whose inverse ϕ−1 has the Jacobian determinant
J (μN ,μM)

(
ϕ−1

) ∈C∞(N) . If this inverse Jacobian determinant is bounded uniformly
on N , then for any v ∈ Lp(N) ,

∥∥[
J (μN ,μM)

(
ϕ−1)]−1/p∥∥−1

∞ ‖v‖p � ‖v◦ϕ‖p �
∥∥[

J (μN ,μM)
(
ϕ−1)]1/p∥∥

∞ ‖v‖p ,

for all p ∈ [1,∞] .
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REMARK 5. By the Jacobian determinant inverse identity (1), it follows that
J (μN ,μM)

(
ϕ−1

)
is bounded uniformly on N if and only if the reciprocal [J (μM,μN)ϕ ]−1

is bounded uniformly on M . Hence, this inequality can also be written as

∥∥[J (μM,μN)ϕ ]1/p∥∥−1
∞ ‖v‖p � ‖v◦ϕ‖p �

∥∥[J (μM,μN)ϕ ]−1/p∥∥
∞ ‖v‖p .

COROLLARY 9. (smooth densities) Let M and N be oriented, n-dimensionalman-
ifolds with volume forms μM and μN , respectively, and let ϕ : M →N be an orientation-
preserving diffeomorphism, whose inverse ϕ−1 has the Jacobian determinant
J (μN ,μM)

(
ϕ−1

) ∈ C∞(N) . Then, for any smooth density vμN ∈ Ωn(N) , where v ∈
C∞(N) has compact support suppv = suppvμN ,

∥∥1suppvμN

[
J (μN ,μM)

(
ϕ−1)]1/q∥∥−1

∞ ‖vμN‖p

� ‖ϕ∗ (vμN)‖p �
∥∥1suppvμN

[
J (μN ,μM)

(
ϕ−1)]−1/q∥∥

∞ ‖vμN‖p ,

for all p,q ∈ [1,∞] such that 1/p+1/q = 1 .

COROLLARY 10. (Lp densities) Let M and N be oriented, n-dimensional mani-
folds with volume forms μM and μN , respectively, and let ϕ : M→N be an orientation-
preserving diffeomorphism, whose inverse ϕ−1 has the Jacobian determinant

J (μN ,μM)
(
ϕ−1

) ∈ C∞(N) . If the reciprocal
[
J (μN ,μM)

(
ϕ−1

)]−1
is bounded uni-

formly on N , then for any density vμN ∈ LpΩn(N) , where v ∈ Lp(N) ,

∥∥[
J (μN ,μM)

(
ϕ−1)]1/q∥∥−1

∞ ‖vμN‖p

� ‖ϕ∗ (vμN)‖p �
∥∥[

J (μN ,μM)
(
ϕ−1)]−1/q∥∥

∞ ‖vμN‖p ,

for all p,q ∈ [1,∞] such that 1/p+1/q = 1 .

REMARK 6. Again, by the Jacobian determinant inverse identity (1), the recipro-
cal

[
J (μN ,μM)

(
ϕ−1

)]−1
is bounded uniformly on N if and only if J (μM,μN)ϕ is

bounded uniformly on M . Hence, this inequality can also be written as

∥∥[J (μM,μN)ϕ ]−1/q∥∥−1
∞ ‖vμN‖p � ‖ϕ∗ (vμN)‖p �

∥∥[J (μM,μN)ϕ ]1/q∥∥
∞ ‖vμN‖p .

COROLLARY 11. (smooth k -forms) Let (M,gM) and (N,gN) be oriented, n-dimen-
sional Riemannian manifolds, and let ϕ : M → N be an orientation-preserving diffeo-
morphism, whose inverse has singular values β1(y) � · · · � βn(y) > 0 at each y ∈ N .
Then, for any smooth k -form η ∈ Ωk(N) , k = 0, . . . ,n, with compact support suppη ,

∥∥1suppη (β1 · · ·βk)
1/q (βk+1 · · ·βn)

−1/p∥∥−1
∞ ‖η‖p

� ‖ϕ∗η‖p �
∥∥1suppη (β1 · · ·βn−k)

1/p (βn−k+1 · · ·βn)−1/q∥∥
∞ ‖η‖p ,

for all p,q ∈ [1,∞] such that 1/p+1/q = 1 .
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COROLLARY 12. (Lp k -forms) Let (M,gM) and (N,gN) be oriented, n-dimen-
sional Riemannian manifolds, and let ϕ : M → N be an orientation-preserving diffeo-
morphism, whose inverse has singular values β1(y) � · · · � βn(y) > 0 at each y ∈ N .
Given p,q ∈ [1,∞] such that 1/p+ 1/q = 1 , and some k = 0, . . . ,n, suppose that the
product (β1 · · ·βn−k)

1/p (βn−k+1 · · ·βn)
−1/q is bounded uniformly on N . Then, for any

η ∈ LpΩk(N) ,

∥∥(β1 · · ·βk)
1/q (βk+1 · · ·βn)−1/p∥∥−1

∞ ‖η‖p

� ‖ϕ∗η‖p �
∥∥(β1 · · ·βn−k)

1/p (βn−k+1 · · ·βn)
−1/q∥∥

∞ ‖η‖p .

REMARK 7. Using the singular value inverse identity βi = α−1
n−i+1 ◦ϕ−1 , it fol-

lows that (β1 · · ·βn−k)
1/p (βn−k+1 · · ·βn)

−1/q is bounded uniformly on N if and only if
(α1 · · ·αk)

−1/q (αk+1 · · ·αn)
1/p is bounded uniformly on M . Therefore, this inequality

can also be written as

∥∥(α1 · · ·αn−k)
−1/p (αn−k+1 · · ·αn)

1/q∥∥−1
∞ ‖η‖p

� ‖ϕ∗η‖p �
∥∥(α1 · · ·αk)

−1/q (αk+1 · · ·αn)1/p∥∥
∞ ‖η‖p .
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