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SHARP MAXIMAL INEQUALITIES FOR

CONTINUOUS–PATH SEMIMARTINGALES

ADAM OSȨKOWSKI

Abstract. Let α � 0 be a fixed number and let X , Y be continuous-path semimartingales such
that Y is α -differentially subordinate to X and X is either a nonnegative supermartingale,
or a nonnegative submartingale. We introduce a method which enables us to derive the best
constants in the inequality between the first moments of Y and the maximal function of X . This
generalizes the previous results of Burkholder and the author. As an application, we obtain sharp
versions of some maximal estimates for stochastic integrals and Itô processes.
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