
Mathematical
Inequalities

& Applications

Volume 16, Number 1 (2013), 69–92 doi:10.7153/mia-16-05

SHARP MAXIMAL INEQUALITIES FOR

CONTINUOUS–PATH SEMIMARTINGALES

ADAM OSȨKOWSKI

(Communicated by Neven Elezović)

Abstract. Let α � 0 be a fixed number and let X , Y be continuous-path semimartingales such
that Y is α -differentially subordinate to X and X is either a nonnegative supermartingale,
or a nonnegative submartingale. We introduce a method which enables us to derive the best
constants in the inequality between the first moments of Y and the maximal function of X . This
generalizes the previous results of Burkholder and the author. As an application, we obtain sharp
versions of some maximal estimates for stochastic integrals and Itô processes.

1. Introduction

Let (Ω,F ,P) be a complete probability space, filtered by a nondecreasing right-
continuous family (Ft )t�0 of sub-σ -fields of F . Assume in addition, that F0 con-
tains all the events of probability 0. Let X = (Xt)t�0 , Y = (Yt)t�0 be adapted real-
valued right-continuous semimartingales with limits from the left. Let [X ,Y ] stand
for the quadratic covariance process of X and Y (see e.g. [12] for details) and let
X∗ = supt�0 |Xt | be the maximal function of X . We will also use the notation X∗

t =
sup0�s�t |Xs| for the truncated maximal function of X . We say that Y is differentially
subordinate to X , if the process ([X ,X ]t − [Y,Y ]t)t�0 is nonnegative and nondecreasing
as a function of t . This notion was originally introduced in the discrete-time setting by
Burkholder and the above continuous-time definition is due to Wang [19] and Bañuelos
and Wang [4]. As an example, take a semimartingale X , let H = (Ht)t�0 be a pre-
dictable process taking values in [−1,1] and assume that Y is the Itô integral of H
with respect to X :

Yt =
∫ t

0
HsdXs, t � 0.

Then Y is differentially subordinate to X : this is an immediate consequence of the
equality [X ,X ]t − [Y,Y ]t =

∫ t
0(1−H2

s )d[X ,X ]s . The differential subordination implies
many interesting martingale inequalities in the discrete-time: see e.g. [5], [6], [7] and
for some recent results in this direction, [15] and [18]. As shown by Wang in [19], there
is a method of transferring such estimates to the continuous-time case. The obtained
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inequalities can be applied to the study of Riesz transforms and Beurling-Ahlfors op-
erator (see [2], [3], [4] and [13]) as well as to a wider class of Fourier multipliers, see
[1].

Let us state here the famous result of Burkholder (see [5] for discrete and [19] for
continuous time version): if X and Y are martingales and Y is differentially subordi-
nate to X , then we have the sharp estimate

||Y ||p � (p∗ −1)||X ||p, 1 < p < ∞, (1.1)

where p∗ = max{p, p/(p−1)} . Here ||X ||p = supt�0 ||Xt ||p denotes the p -th moment
of X and by sharpness we mean that for any γ < p∗ −1 there is a pair X , Y as above
such that ||Y ||p > γ||X ||p . This result can be extended to a wider class of processes.
For any general semimartingales X and Y , let

X = X0 +M +A, Y = Y0 +N +B (1.2)

be the corresponding Doob-Meyer decompositions (which, in general, may not be
unique). Fix a nonnegative number α . Following Wang [19] and the author [16],
we say that Y is α -differentially subordinate to X (in short, Y is α -subordinate to X ),
if Y is differentially subordinate to X and there are decompositions (1.2) such that the
process (α|A|t − |B|t)t�0 is nonnegative and nondecreasing as a function of t . Here
|A|t denotes the total variation of A on the interval [0, t] , t � 0. To give an example,
suppose that W = (Wt)t�0 is a standard one-dimensional Brownian motion and X , Y
are Itô processes of the following form. For any t � 0,

Xt = X0 +
∫ t

0+
φsdWs +

∫ t

0+
ψsds,

Yt = Y0 +
∫ t

0+
ζsdWs +

∫ t

0+
ξsds,

(1.3)

where φ , ψ , ζ and ξ are predictable processes satisfying the usual assumptions (see
e.g. [14]). Now, we have that if |ζs| � |φs| and |ξs| � α|ψs| for all s , then Y is
α -subordinate to X . This domination allows to generalize the inequality (1.1) to the
submartingale setting. Precisely, it was shown in [16] that if X is a nonnegative sub-
martingale and Y is α -subordinate to X , for some α � 0, then

||Y ||p � (p∗α −1)||X ||p, 1 < p < ∞, (1.4)

where p∗α = max{(α +1)p, p/(p−1)} . The inequality is sharp provided α � 1. The
original discrete-time version of this result was established by Choi in [10].

For p = 1, the inequalities (1.1) and (1.4) do not hold with any finite constant and
there is a natural question about their substitutes in this limit case. It turns out that the
first moment of Y can be compared to the first moment of the maximal function of
X . In [8], Burkholder introduced a general method of proving inequalities of this type
in the case when Y is a stochastic integral with respect to X . Though formulated in
the martingale setting, the technique can be easily extended so that it works for wider
classes of processes. Roughly speaking, the method translates the problem of proving
a given inequality to that of finding a special function, which has certain convex-type
properties. Using this tool, Burkholder established the following interesting result.
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THEOREM 1.1. If X is a martingale and Y is an Itô integral, with respect to X ,
of a certain predictable process with values in [−1,1] , then

||Y ||1 � γ||X∗||1. (1.5)

Here γ = 2.536 . . . is the unique solution of the equation

γ −3 = −exp

(
1− γ

2

)
.

The inequality is sharp.

In the present paper we impose the assumption that the dominating process X has
continuous paths. As shown in Lemma 2.1 below, the subordination implies that Y also
has this property. It turns out that this additional condition on the trajectories does not
change the constants in (1.1) and (1.4) (see [5] and [11]). However, it does affect the
constant γ appearing in (1.5). To be more precise, let us state here a result, proved by
the author in [17].

THEOREM 1.2. If X and Y are continuous-path martingales such that Y is dif-
ferentially subordinate to X , then we have

||Y ||1 �
√

2||X∗||1. (1.6)

The constant
√

2 is the best possible even in the setting of stochastic integrals.

The objective of this paper is to study corresponding inequalities when X is a
nonnegative super- or submartingale. Our main results are the following.

THEOREM 1.3. Let α be a fixed nonnegative number. Assume that X is a non-
negative continuous-path supermartingale and Y is α -subordinate to X . Then

||Y ||1 � β ||X∗||1, (1.7)

where β = β (possup) = α +1+((2α +1)e)−1 . The constant is the best possible, even
if we restrict ourselves to Itô processes of the form (1.3).

THEOREM 1.4. Let α be a fixed nonnegative number. Assume that X is a non-
negative continuous-path submartingale and Y is α -subordinate to X . Then

||Y ||1 � β ||X∗||1, (1.8)

where β = β (possub) = α +
(

2α+2
2α+1

)1/2
. The constant is the best possible, even if we

restrict ourselves to Itô processes of the form (1.3).

As an application, we obtain a sharp result for stochastic integrals. Note that if H
is predictable and [−1,1]-valued, and Yt =

∫ t
0 HsdXs , then Y is 1-subordinate to X .

Consequently, the previous theorems immediately yield the following corollary.
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THEOREM 1.5. Assume that X is a nonnegative continuous-path semimartingale
and Y is an Itô integral as above. Then

(i) if X is a supermartingale, then

||Y ||1 � (2+(3e)−1)||X∗||1,
(ii) if X is a submartingale, then

||Y ||1 �
(

1+
2
√

3
3

)
||X∗||1.

Both inequalities are sharp.

The paper is organized as follows. In the next section we present a method which
enables us to establish sharp maximal inequalities for continuous super- or submartin-
gales. Namely, we show that validity of a given moment estimate is equivalent to the
existence of upper solutions to certain corresponding nonlinear problems. Then, in Sec-
tion 3 and Section 4 we apply this method and establish Theorem 1.3 and Theorem 1.4
there.

2. On the method of proof

Burkholder’s technique, invented in [8], is an effective tool of studying maximal
inequalities for stochastic integrals. However, in the present paper we deal with α -
subordination and, furthermore, the processes we consider have continuous paths. This
raises a question about the refinement of the method so that it works properly in this
new setting. We will address it now.

Throughout this section, α is a fixed nonnegative number and D denotes the set
[0,∞)×R× (0,∞) . We are interested in the best constant β in the inequality

||Y ||1 � β ||X∗||1, (2.1)

provided that one of the following conditions hold:

(sup) X is a nonnegative continuous-path supermartingale and Y is α -subordinate to
X ,

(sub) X is a nonnegative continuous-path submartingale and Y is α -subordinate to X .

Our starting point is to show that α -subordination implies regularity of the trajec-
tories of Y .

LEMMA 2.1. Suppose that (sup) or (sub) holds. Then Y has continuous paths.

Proof. Let X = X0 +M +A , Y = Y0 +N +B be the decompositions coming from
α -subordination (in fact, the first of them is unique, but we will not need this). We
have that M and A are continuous. Therefore, it is clear that B also has this property:
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otherwise the process α|A|− |B| would not be nondecreasing. Let Nc be the unique
continuous local martingale part Nc of N , satisfying

[N,N]t = [Nc,Nc]t + ∑
0<s�t

|ΔNs|2 = [N,N]ct + ∑
0<s�t

|ΔNs|2

for all t � 0. Since [M,M] is continuous and [M,M]− [N,N] is nondecreasing, the
jump part ∑0<s�t |ΔNs|2 must vanish for all t . This proves the claim. �

Now we turn to the inequality (2.1). Clearly, this estimate is equivalent to saying
that

EVβ (Xt ,Yt ,X
∗
t ∨ ε) � 0 for all ε > 0 and t � 0. (2.2)

Here Vβ : D → R is given by the formula Vβ (x,y,z) = |y|−β z . The key object in the
study of this problem is the class of special functions, denoted by U = U sup(Vβ ) . It
consists of those functions U : D → R , which satisfy the conditions (2.3)–(2.7) below:

U � Vβ on D, (2.3)

U(x,y,z1) � U(x,y,z2) if (x,y,zi) ∈ D and z1 � z2 � x, (2.4)

U(x, ·,z) : y �→U(x,y,z) is convex for any fixed 0 � x � z, z > 0. (2.5)

The next property is that for all ε ∈ {−1,1} , λ1, λ2 ∈ (0,1) , x ∈ [0,z] , y ∈ R , z > 0
and t1, t2 ∈ [−x,z− x] such that λ1 + λ2 = 1 and λ1t1 + λ2t2 = 0,

U(x,y,z) � λ1U(x+ t1,y+ εt1,z)+ λ2U(x+ t2,y+ εt2,z). (2.6)

The final condition is that

U(x,y,z) � U(x−d,y±αd,z) if x � z and 0 < d � x, (2.7)

In the submartingale setting, we consider an analogous class U = U sub(Vβ ) , where
the properties (2.3)–(2.6) remain unchanged and (2.7) is replaced by

U(x,y,z) � U(x+d,y±αd,z) if 0 � x < x+d � z. (2.8)

Before we proceed, let us comment on the condition (2.6). It simply means that for
fixed z > 0, the function U(·, ·,z) is diagonally concave on [0,z]×R , that is, concave
along any line segment of slope ±1 contained in [0,z]×R .

For any function U on D , let b(U) ∈ (−∞,∞] be given by

b(U) = sup{U(x,y,z) : |y| � x � z}.

Finally, for any class C of real functions defined on D , let

b(C ) = inf{b(U) : U ∈ C },

with the convention inf /0 = ∞ . The main result of this section can be stated as follows.
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THEOREM 2.2. (i) The inequality (2.2) holds for any X , Y satisfying (sup) if and
only if b(U sup(Vβ )) � 0 .

(ii) The inequality (2.2) holds for any X , Y satisfying (sub) if and only if b(U sub(Vβ ))
� 0 .

This theorem will be proved in a sequence of lemmas below. For the reader’s con-
venience, let us sketch the main idea. First we deal with the implication from the right to
the left. Namely, we show that any function U ∈U , where U ∈{U sup(Vβ ),U sub(Vβ )} ,
can be appropriately approximated by a C∞ element of the class. Next we prove that
if U is smooth, then the conditions from the definition of U can be rewritten as some
differential inequalities. Finally, to establish (2.2), we apply Ito’s formula to U and
use these differential estimates to control the finite variation terms. To get the reverse
implication of Theorem 2.2, we provide certain non-explicit formulas for elements of
U . It turns out that they yield finite functions if (2.2) is valid.

Let us turn to the rigorous proof.

LEMMA 2.3. Let U ∈ {U sup,U sub} and let U ∈ U be an arbitrary function.
Then for any κ > 0 there is U = U

κ ∈ U , which is of class C∞ and satisfies b(U) �
b(U)+ κ .

Proof. The reasoning does not depend on whether U = U sup or U = U sub . Let
g : R

3 → [0,∞) be a C∞ function, supported on a ball of center (0,0,0) and radius 1,
satisfying

∫
R3 g = 1 and

g(r,s,t) = g(r,−s,t) = g(r,s,−t) for all r, s and t. (2.9)

Let δ = κ/(5β ) > 0 and let U = U
κ

: D → R be given by

U(x,y,z) =
∫

[−1,1]3
U(x+2δ − rδ ,y− sδ ,z+5δ − tδ )g(r,s,t)drdsdt + κ .

We will show that this function has the desired properties. Clearly, U if of class C∞ . To
prove that U satisfies (2.3), we use the fact that U enjoys this majorization and hence,
by the symmetry condition (2.9),

U(x,y,z) � y−β (z+5δ )+ δ
∫

[−1,1]3
(−s+ β t)g(r,s, t)drdsdt +5β δ = y−β z.

The inequality U(x,y,z) � −y−β z is established in the same manner. The remaining
properties (2.4), (2.5), (2.6) and (2.7) follow immediately from the definition of U .
Finally, note that if |y| � x � z , then

|y− sδ |� x+2δ − rδ � z+5δ − tδ ,

for any r,s, t ∈ [−1,1] . Thus, for such x, y, z ,

U(x,y,z) �
∫

[−1,1]3
b(U)g(r,s,t)drdsdt + κ = b(U)+ κ .

The proof is complete. �
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LEMMA 2.4. If U ∈ U is of class C∞ , then we have the following.
(i) For any x > 0 and y ∈ R ,

Uz(x,y,x) � 0. (2.10)

(ii, U = U sup(Vβ )) For any (x,y,z) ∈ D, 0 < x � z, we have

Ux(x,y,z)−α|Uy(x,y,z)| � 0. (2.11)

(ii, U = U sub(Vβ )) For any (x,y,z) ∈ D, 0 < x � z, we have

Ux(x,y,z)+ α|Uy(x,y,z)| � 0. (2.12)

(iii) For all (x,y,z) ∈ D with 0 < x � z there is c = c(x,y,z) � 0 such that if h ,
k ∈ R , then

Uxx(x,y,z)h2 +2Uxy(x,y,z)hk+Uyy(x,y,z)k2 � c(k2−h2). (2.13)

Proof. The property (i) follows from (2.4), while (ii) is an immediate consequence
of the corresponding condition (2.7) or (2.8). To show (iii), note that by (2.5),

Uyy(x,y,z) � 0 if 0 < x � z, y ∈ R. (2.14)

By (2.6), for any fixed z the function U(·, ·,z) is concave along any line segment of
slope ±1, contained in [0,z]×R . Therefore,

Uxx(x,y,z)±2Uxy(x,y,z)+Uyy(x,y,z) � 0 for 0 < x � z, y ∈ R.

In particular this implies that Uxx(x,y,z)+Uyy(x,y,z) � 0 and hence, by (2.14),

Uxx(x,y,z) � 0 if 0 < x � z, y ∈ R. (2.15)

Consequently, if h, k ∈ R , then

Uxx(x,y,z)h2 +2Uxy(x,y,z)hk+Uyy(x,y)k2

� Uxx(x,y,z)h2 − (Uxx(x,y,z)+Uyy(x,y,z))
h2 + k2

2
+Uyy(x,y)k2

=
Uyy(x,y,z)−Uxx(x,y,z)

2
(k2 −h2).

Hence, by (2.14) and (2.15), (iii) holds and we are done. �

Now we are able to show the first part of Theorem 2.2.

LEMMA 2.5. Let U ∈ {U sup(Vβ ),U sub(Vβ )} . The inequality b(U ) � 0 implies
(2.2) for all X , Y satisfying the corresponding assumption (sup) or (sub).



76 A. OSȨKOWSKI

Proof. We will only prove the assertion in the supermartingale setting; the sub-
martingale case can be handled in a similar manner. Fix ε > 0 and t � 0. We start with
some reductions. First, let X = X0 +M +A and Y = Y0 +N +B be the Doob-Meyer
decompositions of X and Y . By standard localizing procedure we may and do assume
that M , N and the two stochastic integrals appearing in I1 below are martingales. The
second observation is that adding a small η > 0 to X if necessary (this does not affect
the subordination), we may restrict ourselves to those X , for which

P(Xs > 0 for all s � 0) = 1.

Introduce the process Zs = (Xs,Ys,X∗
s ∨ ε) , s ∈ [0,t] . By the definition of b(U ) and

Lemma 2.3, for any κ > 0 there is a C∞ function U = Uκ ∈ U satisfying b(U) <
b(U )+κ � κ . The main step of the proof is to show that EU(Zt) � b(U) for all t . To
do this, apply Itô’s formula to U and Z to obtain

U(Zt) = I0 + I1 + I2 + I3 +
1
2
I4, (2.16)

where

I0 = U(Z0) = U(X0,Y0,X0∨ ε) � b(U),

I1 =
∫ t

0+
Ux(Zs)dMs +

∫ t

0+
Uy(Zs)dNs,

I2 =
∫ t

0+
Ux(Zs)dAs +

∫ t

0+
Uy(Zs)dBs,

I3 =
∫ t

0+
Uz(Zs)d(X∗ ∨ ε)s,

I4 =
∫ t

0+
Uxx(Zs)d[X ,X ]s +2

∫ t

0+
Uxy(Zs)d[X ,Y ]s +

∫ t

0+
Uyy(Zs)d[Y,Y ]s.

Next we observe that EI1 = 0, by the properties of stochastic integrals. Furthermore,
we have I2 � 0, by α -subordination and property (ii) from Lemma 2.4. Indeed, −A
and −αA−|B| are nondecreasing (recall that we study the supermartingale setting), so

I2 �
∫ t

0+
Ux(Zs)dAs +

∫ t

0+
|Uy(Zs)|d|B|s �

∫ t

0+
(Ux(Zs)−α|Uy(Zs)|)dAs � 0.

The next step is to observe that I3 � 0, in virtue of (2.10). To see this, note that the
support of d(X∗ ∨ ε)s is concentrated on the set {s : Xs = X∗

s � ε} , on which Uz is
nonpositive. It remains to deal with the term I4 ; it is done by standard approximation
argument, see e.g. Wang [19]. Specifically, let 0 � s0 < s1 � t . For any j � 0, let
(η j

i )1�i�i j be a sequence of nondecreasing finite stopping times with η j
0 ≡ s0, η j

i j
≡

s1 satisfying the condition lim j→∞ max1�i�i j−1 |η j
i+1 −η j

i | = 0. Keeping j fixed, we
apply, for each i = 0, 1, 2, . . . , i j , the property (iii) from Lemma 2.4 to x = Xs0 , y =Ys0 ,
z = X∗

s0 ∨ε and h= h j
i =Xη j

i+1
−Xη j

i
, k = k j

i =Yη j
i+1

−Yη j
i
. Summing the obtained i j +1

inequalities and letting j → ∞ yields

Uxx(Zs0)[X ,X ]s1s0 +2Uxy(Zs0)[X ,Y ]s1s0 +Uyy(Zs0)[Y,Y ]s1s0
� c(Zs0)([Y,Y ]s1s0 − [X ,X ]s1s0) � 0,
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in virtue of differential subordination. Here we have used the notation [S,T ]s1s0 =
[S,T ]s1 − [S,T ]s0 . Thus I4 � 0, simply by approximating this term by discrete sums.
Plugging all the above facts about Ii ’s into (2.16) gives EU(Zt) � b(U) . In view of
(2.3) and the inequality b(U) � κ (which is guaranteed by the choice of U ), we obtain

EVβ (Xt ,Yt ,X
∗
t ∨ ε) � κ .

Since κ > 0 was arbitrary, (2.2) follows. �

We turn to the reverse implication of Theorem 2.2. Let us first distinguish certain
classes of processes. Namely, for a fixed α � 0, x � 0 and y ∈ R , let I sup

α (x,y)
(respectively, I sub

α (x,y)) denote the class of all pairs (X ,Y ) of bounded Itô processes
of the form (1.3), satisfying the following properties:

a) (X0,Y0) = (x,y),

b) X is a nonnegative supermartingale (resp., nonnegative submartingale),

c) |ζs| = |φs| and |ξs| = α|ψs| for all s � 0.

Here the filtration may vary, as well as the probability space. Since X is bounded, the
limit X∞ = limt→∞ Xt exists almost surely. It is not difficult to show that the condition
c) implies that Y∞ = limt→∞ Yt exists with probability 1 as well. If α = 1, this follows
from the escape inequalities of Theorem 5.2 and Theorem 9.2 in [9]; for other values
of the parameter α the reasoning is similar.

Let us introduce the functions Usup, Usub : D → (−∞,∞] by the formulas

Usup(x,y,z) = sup{EVβ (X∞,Y∞,X∗ ∨ z) : (X ,Y ) ∈ I sup
α (x,y)} (2.17)

and, similarly,

Usub(x,y,z) = sup{EVβ (X∞,Y∞,X∗ ∨ z) : (X ,Y ) ∈ I sub
α (x,y)}. (2.18)

Now we are ready to complete the proof of Theorem 2.2. In fact, we state here a
stronger fact, which will allow us to claim that the best constant in (2.2) is already the
best possible if we restrict ourselves to Itô processes.

LEMMA 2.6. Let β > 0 be fixed.
(i) Suppose that inequality (2.2) holds for any ε > 0 and any Itô processes (1.3)

which satisfy (sup). Then Usup ∈ U sup(Vβ ) and b(Usup) � 0 .
(ii) Suppose that inequality (2.2) holds for any ε > 0 and any Itô processes (1.3)

which satisfy (sub). Then Usub ∈ U sub(Vβ ) and b(Usub) � 0 .

Proof. As previously, we focus on the supermartingale setting; the reasoning in
the submartingale case is the same. For simplicity, we will write I (x,y) instead of
I sup

α (x,y) , and U instead of Usup .
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The first thing which needs to be checked is the finiteness of U . This is straightfor-
ward: if (x,y,z) ∈ D and (X ,Y ) ∈ I (x,y) , then Y − y is α -subordinate to X ; hence,
by the triangle inequality and (2.2),

EVβ (Xt ,Yt ,X
∗ ∨ z) � |y|+EVβ(Xt ,Yt − y,X∗ ∨ z) � |y|.

Since (X ,Y ) ∈ I (x,y) and t � 0 were arbitrary, we obtain Usup(x,y) � |y| < ∞ . Let
us now verify that U satisfies the properties from the definition of U sup(Vβ ) . To
show (2.3), it suffices to note that the constant pair (x,y) belongs to the class I (x,y) .
The condition (2.4) follows directly from the definition of U and the fact that Vβ also
has this property. To prove (2.5), fix (x,y1,z) , (x,y2,z) ∈ D , λ ∈ (0,1) and let y =
λy1 +(1−λ )y2 . Take (X ,Y ) from I (x,y) . Since (X ,y1− y+Y ) and (X ,y2− y+Y )
belong to I (x,y1) and I (x,y2) , respectively, we have, by the triangle inequality,

EVβ (X∞,Y∞,X∗ ∨ z) � λEVβ (X∞,y1 − y+Y∞,X∗ ∨ z)

+ (1−λ )EVβ(X∞,y2− y+Y∞,X∗ ∨ z)

� λU(x,y1,z)+ (1−λ )U(x,y2,z).

Now it suffices to take supremum over X and Y and (2.5) follows.
We turn to (2.6). In fact, we will prove the following stronger version, which

allows one of ti ’s to take values larger than z−x . Namely, for all ε ∈ {−1,1} , λ1, λ2 ∈
(0,1) , x ∈ [0,z] , y ∈ R , z > 0 and t1 < 0 < t2 such that λ1 + λ2 = 1, λ1t1 + λ2t2 = 0
and x+ t1 � 0,

U(x,y,z) � λ1
[
U(x+ t1,y+ εt1,z)−β (x+ t2− z)+

]
+ λ2U(x+ t2,y+ εt2,z).

(2.19)

This more general statement will be needed in the proof of the optimality of the constant
β (possub) . We will prove (2.19) only for ε = 1, the argumentation for ε = −1 is
similar. Let xi = x + ti , yi = y + ti and take two pairs (X1,Y 1) and (X2,Y 2) from
I (x1,y1) and I (x2,y2) , respectively. Let ψ i , φ i , ζ i and ξ i denote the corresponding
predictable processes in the decompositions of Xi and Y i . We may and do assume
that these processes are given on the same probability space equipped with the same
filtration and are driven by the same Brownian motion W . Enlarging the probability
space if necessary, we may assume that there is a Brownian motion B starting from x ,
which is independent of W . It will be used to ”glue” (X1,Y 1) and (X2,Y 2) into one
Itô process (X ,Y ) . Precisely, introduce the stopping time τ = inf{t : Bt ∈ {x1,x2}} and
set

Xt =

{
Bt if t � τ,

Xi
t−τ if t > τ and Bτ = xi,

and

Yt =

{
y− x+Bt if t � τ,

Y i
t−τ if t > τ and Bτ = xi.
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Then (X ,Y ) ∈ I (x,y) , with

φt =

{
1 if t � τ,

φ i
t−τ if t > τ and Bτ = xi,

ψt =

{
0 if t � τ,

ψ i
t−τ if t > τ and Bτ = xi

and

ζt =

{
1 if t � τ,

ζ i
t−τ if t > τ and Bτ = xi,

ξt =

{
0 if t � τ,

ξ i
t−τ if t > τ and Bτ = xi.

We have, with probability 1,

Y∞ = Y 1
∞1{Bτ=x1} +Y 2

∞1{Bτ=x2} (2.20)

and, since x1 < x < x2 ,

(X∗ ∨ z)1{Bτ=x1} � (X1∗ ∨ x2∨ z)1{Bτ=x1}
�
[
(X1∗ ∨ z)+ (x2− z)+

]
1{Bτ=x1},

(X∗ ∨ z)1{Bτ=x2} = (X2∗ ∨ z)1{Bτ=x2}.

(2.21)

Therefore, we get

U(x,y,z) � E|Y∞|−βE(X∗ ∨ z)

� −β (x2− z)+P(Bτ = x1)+
2

∑
i=1

(
E|Y i

∞|−βE(Xi∗ ∨ z)
)
P(Bτ = xi)

= −λ1β (x2− z)+ +
2

∑
i=1

λi(E|Y i
∞|−βE(Xi∗ ∨ z)).

Now take supremum on the right-hand side over the classes I (x1,y1) and I (x2,y2)
to obtain (2.19).

Next we establish (2.7). Take (X ,Y ) ∈ I (x−d,y−αd) and consider the process
(X ′,Y ′) defined by the formula

(X ′,Y ′)t =

{
(x− t,y−αt) if t � d,

(Xt−d ,Yt−d) if t > d,

with respect to the filtration (F ′
t ) = (F(t−d)∨0). It is easy to see that (X ′,Y ′)∈I (x,y) ,

(X∞,Y∞) = (X ′
∞,Y ′

∞) and (X ′)∗ ∨ z = X∗ ∨ z , so

EVβ (X∞,Y∞,X∗ ∨ z) = EVβ (X ′
∞,Y ′

∞,(X ′)∗∞) � U(x,y,z).

Take supremum over (X ,Y ) to get U(x− d,y−αd,z) � U(x,y,z) . Finally, we will
show that b(Usup) � 0. Suppose that the point (x,y,z) ∈ D satisfies |y| � x � z . The
first inequality implies that for any (X ,Y ) ∈ I (x,y) , the process Y is α -subordinate
to X , so

EVβ (Xt ,Yt ,X
∗
t ∨ z) � 0.
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In consequence, b(Usup) � 0 and the proof is complete. �
We end this section proving two additional properties of Usup and Usub . First,

these functions are symmetric with respect to the variable y , that is,

Usup(x,y,z) = Usup(x,−y,z), Usub(x,y,z) = Usub(x,−y,z) on D. (2.22)

This follows immediately from the equality Vβ (x,y,z) = Vβ (x,−y,z) and the fact that
(X ,Y )∈I (x,y) if and only if (X ,−Y )∈I (x,−y) . The second property is that for any
z > 0 and x ∈ [0,z] , Usup(x, ·,z) and Usub(x, ·,z) are 1-Lipschitz. Indeed, if y1, y2 ∈
R and (X ,Y ) ∈ I sup

α (x,y1) , then (X ,Y − y1 + y2) ∈ I sup
α (x,y2) , so, by the triangle

inequality,

EVβ (X∞,Y∞,X∗ ∨ z) � |y2− y1|+EVβ (X∞,Y∞,X∗ ∨ z) � |y2− y1|+Usup(x,y2,z).

Taking supremum over (X ,Y ) gives

Usup(x,y1,z)−Usup(x,y2,z) � |y1− y2|
and, by symmetry, Usup(x,y2,z)−Usup(x,y1,z) � |y1 − y2| , which yields the claim.
The reasoning for Usub is the same.

3. Proof of Theorem 1.3

We split this section into two parts. The first of them is devoted to the proof of
(1.7), while the second concerns the optimality of the constant β (possup) . Throughout,
α is a fixed nonnegative number.

3.1. Proof of (1.7)

Let
β = β (possup) = α +1+((2α +1)e)−1.

By Theorem 2.2, we see that it suffices to construct a function U ∈U sup(Vβ ) satisfying
the condition b(U) � 0. To do this, let us consider the following subsets of [0,1]×R :

D1 =
{

(x,y) : x � α +1
2α +1

� x+ |y|
}

,

D2 =
{

(x,y) : x >
α +1
2α +1

, |y|− x � − α +1
2α +1

}
,

D3 = ([0,1]×R)\ (D1∪D2).

First we introduce an auxiliary function u : [0,1]×R→ R , given by

u(x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αx+ |y|+ exp
[− 2α+1

α+1

(
x+ |y|− α+1

2α+1

)]
x−β on D1,

αx+ |y|+ exp
[− 2α+1

α+1

(−x+ |y|+ α+1
2α+1

)](
2α+2
2α+1 − x

)−β on D2,

2α+1
2α+2(|y|2− x2)+ (α +1)x+ α+1

2(2α+1) −β on D3.
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It can be easily verified that u is of class C1 in the interior of the strip [0,1]×R : simply
check that the partial derivatives match at the common boundaries of D1 , D2 and D3 .
The desired function U is defined by

U(x,y,z) = (x∨ z)u
(

x
x∨ z

,
y

x∨ z

)
, (x,y,z) ∈ D. (3.1)

LEMMA 3.1. The function U satisfies the properties (2.3)–(2.7) and b(U) � 0 .

Proof. We start with the property (2.5), which is equivalent to the convexity of
u(x, ·) for any fixed x ∈ [0,1] . However, this is immediate from the formulas for u on
D1 , D2 , D3 and the fact that u is of class C1 . Next we turn to (2.6), which amounts to
saying that u is diagonally concave on in its domain. Since u is of class C1 , this can
we rephrased in the form

2|uxy(x,y)|+ Δu(x,y) � 0 (3.2)

for all (x,y) lying in the interior of D1, D2 or D3 . It is straightforward to check that in
each of these three cases both sides are equal. Now let us verify the majorization (2.3).
By homogeneity of U and Vβ , it is equivalent to

u(x,y) � |y|−β for x ∈ [0,1], y ∈ R. (3.3)

By the diagonal concavity of u , it suffices to prove this inequality for x ∈ {0,1} . If
x = 0 and |y| � (α +1)/(2α +1) , we get equality. For x = 0 and remaining y’s, the
estimate can be transformed into(

|y|− α +1
2α +1

)2

� 0.

If x = 1 and |y| � α/(2α +1) , then the inequality reads

α + exp

[
−2α +1

α +1

(
|y|− α

2α +1

)]
1

2α +1
� 0,

which is obvious. Finally, for x = 1 and |y| � α/(2α +1) , (3.3) takes the form

2α +1
2α +2

(
|y|− α +1

2α +1

)2

+ α +
1

2α +2
� 0,

which is also true. The next step is to prove (2.4). Clearly, it suffices to show that
Uz(x,y,z) � 0 for 0 < x < z and y ∈ R . In terms of u , this can be rewritten as

u(x,y)− xux(x,y)− yuy(x,y) � 0 on (0,1)×R. (3.4)

If (x,y) ∈ D1 , the inequality takes the form

x · 2α +1
α +1

(x+ |y|)exp

[
−2α +1

α +1

(
x+ |y|− α +1

2α +1

)]
−β � 0,
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which follows from x � 1 � β and an elementary bound sexp(−s+1) � 1, applied to
s = (2α +1)(x+ |y|)/(α +1) . For (x,y) ∈ D2 , the desired estimate reads

exp(−s−1)
[
s

(
2α +2
2α +1

− x

)
+

2α +2
2α +1

]
−β � 0, (3.5)

where s = (2α +1)(−x+ |y|)/(α +1) � −1. To prove it, note that if s � 0, then the
left hand side does not exceed

exp(−s−1)
[

s
2α +1

+
2α +2
2α +1

]
−β ,

which, as a function of s , is nonincreasing on [−1,0] and equal to 1− β � 0 for
s = −1. On the other hand, if s � 0, the left hand side of (3.5) is not larger than

α +1
2α +1

exp(−s−1)(s+2)−β ,

which is a nonincreasing function of s ∈ [0,∞) , equal to 2α+2
2α+1e−1 −β < 0. Finally, if

(x,y) ∈ D3 , then (3.4) becomes

−2α +1
2α +2

(y2− x2)+
α +1

2(2α +1)
−β � 0.

It suffices to note that the left hand side attains its maximum for x = 1 and y = 0; this
maximum is easily checked to be nonpositive.

Now let us prove (2.7). This condition is equivalent to ux(x,y)−α|uy(x,y)| � 0
on (0,1)×R . A little calculation shows that ux(x,y)−α|uy(x,y)| equals⎧⎪⎪⎪⎨

⎪⎪⎪⎩
exp
[− 2α+1

α+1

(
x+ |y|− α+1

2α+1

)](
1− 2α+1

α+1 x+ 2α+1
α+1 αx

)
on D1,

exp
[− 2α+1

α+1

(−x+ |y|+ α+1
2α+1

)]
(2α +1)(1− x) on D2,

− 2α+1
α+1 (x+ |y|α)+ α +1 on D3

and all the expressions are easily seen to be nonnegative. Finally, we will prove that
b(U) � 0: this is equivalent to

u(x,y) � 0 for |y| � x.

However, u(x,y) � u(x,x) � u(1,1) = 0: here in the first passage we have used the
convexity of u(x, ·) and the equality u(x,x) = u(x,−x) , while in the second we have
exploited the diagonal concavity of u and the inequality

lim
x↑1

[ux(x,x)+uy(x,x)] = α +1− e−1 � 0.

The proof is complete. �
Before we proceed to the optimality of the constant β (possub) , let us make here

an important and interesting remark. There is a natural question whether there is only
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one function U satisfying the requirements of Lemma 3.1. Another problem one may
think of is whether U coincides with the function Usup defined by (2.17). The an-
swer to both these questions is negative. The reason is very simple: Usup satisfies
Usup(0,y) = |y|−β for all y ∈ R , since the class I sup

α (0,y) consists of only one pair
(X ,Y ) ≡ (0,y) . However, one can say more, namely, the explicit formula for Usup is
the following. Let D1, D2 , D3 be as above and consider the sets

D−
3 = D3∩

{
(x,y) : x � α +1

2α +1

}
, D+

3 = D3 \D−
3 .

Then we have Usup(x,y,z) = (x∨ z)u0(x/(x∨ z),y/(x∨ z)) , where u0 = u on D1 ∪D2

and

u0(x,y) =

⎧⎨
⎩
−x log

[ 2α+1
α+1 (x+ |y|)]+(α +1)x+ |y|−β on D−

3 ,

c1 + c2(1− x+ |y|)1/(α+1)(−(α +1)(1− x)+ |y|) on D+
3 .

Here the parameters c1 and c2 are given by

c1 = − 2α(α +1)
(2α +1)(α +2)

− 1
(2α +1)e

and

c2 =
(2α +1)1/(α+1)αα/(α+1)

α +2
.

We omit further details in this direction.

3.2. Sharpness

Let β > 0 be fixed and suppose that we have

||Y ||1 � β ||X∗||1
for any nonnegative continuous X and any Y which is α -subordinate to X . Let U
be the function given by (2.17) and let u(x,y) = U(x,y,1) for x ∈ [0,1] and y ∈ R .
We will also use the notation B(y) = u(1,y) for y ∈ R . By Lemma 2.6, U belongs to
U sup(Vβ ) and satisfies b(U) � 0. In consequence, we have

u(1,1) � b(U) � 0, (3.6)

u(x,y) � |y|−β for all x ∈ [0,1], y ∈ R, (3.7)

u(x,y) � u(x−d,y−αd) for 0 � x−d � x � 1 and y ∈ R (3.8)

and
u is diagonally concave. (3.9)

Furthermore, by (2.22), u satisfies

u(x,y) = u(x,−y) for all x ∈ [0,1] and y ∈ R . (3.10)
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We will show that the existence of u : [0,1]×R → R satisfying these properties
implies β � β (possup) . We consider two cases.

The case α = 0 . Here the calculations are relatively simple. Take small δ > 0 (in
fact, δ ∈ (0,1) is enough) and use (3.8) with x = 1, y ∈ R and d = δ to obtain

B(y) = u(1,y) � u(1− δ ,y).

Next apply (3.9) to get

u(1−δ ,y) � δu(0,y+1−δ )+(1−δ )u(1,y−δ )= δu(0,y+1−δ )+(1−δ )B(y−δ ).

Combine the two estimates above with the following consequence of (3.7):

u(0,y+1− δ ) � (y+1− δ )−β .

As the result, we obtain

B(y) � δ (y+1− δ −β )+ (1− δ )B(y− δ ),

which can be rewritten in the form

B(y)− (y−β ) � (1− δ )
[
B(y− δ )− (y− δ −β )

]
. (3.11)

Write this estimate twice, with y = δ and y = 0:

B(δ )− (δ −β ) � (1− δ )(B(0)+ β ),
B(0)+ β � (1− δ )(B(−δ )− (−δ −β )).

But, by (3.10), B is an even function, so B(−δ ) = B(δ ) . Thus, combining the above
two estimates yields

(B(0)+ β )(2δ − δ 2) � 2δ (1− δ ).

Dividing throughout by δ and letting δ → 0 gives

B(0)+ β � 1. (3.12)

Now we come back to (3.11). By induction, we get, for any integer N ,

B(y)− (y−β ) � (1− δ )N[B(y−Nδ )− (y−Nδ −β )
]
.

Let y = 1 and δ = 1/N . If we pass with N to infinity and use (3.12), we get

B(1)− (1−β ) � e−1(B(0)+ β ) � e−1.

It suffices to apply (3.6) to get β � 1+ e−1 , as claimed.

The case α > 0 . Here the calculations are more involved. For y � α/(2α + 1) ,
denote

C(y) = u

(
α +1
2α +1

,y− α
2α +1

)
.
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It is convenient to split the proof into a few intermediate parts. Throughout, δ is a
sufficiently small positive number.

Step 1. We will show that for any y � α/(2α +1) ,

B(y) � δ (2α +1)
α

C(y+(α +1)δ )+
α − δ (2α +1)

α
B(y+(α +1)δ ). (3.13)

To prove this, note that by (3.8) we have

B(y) = u(1,y) � u(1− δ ,y+ αδ )

and, by (3.9),

u(1− δ ,y+ αδ ) �δ (2α +1)
α

u

(
α +1
2α +1

,y− α
2α +1

+(α +1)δ
)

+
α − δ (2α +1)

α
u(1,y+(α +1)δ )

=
δ (2α +1)

α
C(y+(α +1)δ )+

α − δ (2α +1)
α

B(y+(α +1)δ ).

Combining these two facts yields (3.13).
Step 2. Next we show that for y � α/(2α +1) ,

C(y+(α +1)δ ) � δ (2α +1)
2+ δ (2α +1)

(
y+

1
2α +1

−β
)

+
(α +1)(2α +1)δ
α(2+ δ (2α +1))

B(y)+
2α − (α +1)(2α +1)δ

α(2+ δ (2α +1))
C(y).

(3.14)

The proof is similar to that of (3.13). By (3.9), we have

C(y+(α +1)δ ) � δ (2α +1)
2+ δ (2α +1)

u

(
0,y+

1
2α +1

+(α +1)δ
)

+
2A

2+ δ (2α +1)
,

where

A = u

(
α +1
2α +1

+
(α +1)δ

2
,y− α

2α +1
+ αδ − (α +1)δ

2

)
.

Furthermore, again by (3.9),

A � (α +1)(2α +1)δ
2α

B(y)+
2α − (α +1)(2α +1)δ

2α
C(y).

In addition, by (3.7),

u

(
0,y+

1
2α +1

+(α +1)δ
)

� y+
1

2α +1
+(α +1)δ −β .

Combining the three inequalities above gives (3.14).
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Step 3. Multiply both sides of (3.14) by

λ+ =
2α +3+

√
(2α +1)2−4δ (α +1)(2α +1)

2(α +1)

and add it to (3.13). After some lengthy but straightforward computations we get

C(y+(α +1)δ )− pα ,δB(y+(α +1)δ ) �qα ,δ
(
C(y)− pα ,δB(y)

)
+ rα ,δ

(
y+

1
2α +1

−β
)

,
(3.15)

where

pα ,δ =
α − δ (2α +1)

λ+α − δ (2α +1)
,

qα ,δ =
λ+(2α − (α +1)(2α +1)δ )

(2+ δ (2α +1))(λ+α − δ (2α +1))
,

rα ,δ =
λ+α(2α +1)δ

(2+ δ (2α +1))(λ+α − δ (2α +1))
.

By induction, (3.15) gives that for any positive integer N ,

C(y+N(α +1)δ )− pα ,δ B(y+N(α +1)δ ) � I1 + I2, (3.16)

where
I1 = qN

α ,δ
(
C(y)− pα ,δB(y)

)
and

I2 = rα ,δ

N−1

∑
k=0

qN−1−k
α ,δ

(
y+ k(α +1)δ +

1
2α +1

−β
)

.

Now take y1 > y2 � α/(2α +1) , put y = y2 , δ = (y1− y2)/(N(α +1)) in (3.16), and
let N → ∞ . One easily checks that then pα ,δ → 1/2 and

qα ,δ = 1− δ (2α +1)+o(δ ) = 1− 2α +1
α +1

y1 − y2

N
+o(N−1),

so

I1 → exp

(
−2α +1

α +1
(y1− y2)

)(
C(y)− B(y)

2

)
.

Furthermore, rα ,δ = (2α +1)δ/2+o(δ ) and

I2 =
(2α +1)δ

2

[(
y2 +

1
2α +1

−β
) qN

α ,δ −1

qα ,δ −1

+(α +1)δ
(N−1)q−2

α ,δ −Nq−1
α ,δ +qN−2

α ,δ
(qα ,δ −1)2

]
+o(1)

→ 1
2

[
exp

(
−2α +1

α +1
(y1 − y2)

)
−1

](
−y2 + β +

α
2α +1

)
+

y1− y2

2
.
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Putting all these facts into (3.16) and working a little bit yields

C(y1)− B(y1)
2

− y1

2
+

β
2

+
α

2(2α +1)

�exp

[
−2α +1

α +1
(y1− y2)

](
C(y2)− B(y2)

2
− y2

2
+

β
2

+
α

2(2α +1)

)
.

(3.17)

Step 4. Similarly, we multiply both sides of (3.14) by

λ− =
2α +3−√(2α +1)2−4δ (α +1)(2α +1)

2(α +1)
,

add it to (3.13) and proceed as in the previous step. What we obtain is that for all
y1 > y2 � α/(2α +1) ,

C(y1)− (α +1)B(y1)+ αy1 +
2α3

2α +1
+ α −β α

� exp

[
2α +1

2α(α +1)
(y1− y2)

](
C(y2)− (α +1)B(y2)+ αy2 +

2α3

2α +1
+ α −β α

)
.

Note that this implies

C(y)− (α +1)B(y)+ αy+
2α3

2α +1
+ α −β α � 0 (3.18)

for all y � α/(2α + 1) . Indeed, if this estimate is not valid for some y , then use
the preceding inequality with y1 > y2 = y and let y1 → ∞ . As the result, we get that
C− (α + 1)B has exponential growth at infinity. However, this is impossible: both B
and C are Lipschitz functions (see the end of Section 2).

Step 5. This is the final part. By (3.9) and then (3.6) we have

C

(
α

2α +1

)
� α +1

2α +1
B

(
α

2α +1

)
+

α
2α +1

u

(
0,− α +1

2α +1

)

� α +1
2α +1

B

(
α

2α +1

)
+

α
2α +1

(
α +1
2α +1

−β
)

.

(3.19)

Combining this with (3.18), applied to y = α/(2α + 1) , yields, after some manipula-
tions,

B(
α

2α +1
)+ β � 1

2(2α +1)
+

2α +1
α

. (3.20)

Now, use (3.17) with y1 = 1 and y2 = α/(2α +1) and plug the two estimates above to
get

C(1)− B(1)
2

− 1
2

+
β
2

+
α

2α +1
� e−1

(
B( α

2α+1)+ β
2(2α +1)

+
α(α +1)
(2α +1)2

)
� (2e)−1,
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or

C(1)− B(1)
2

� 1
2
− β

2
− α

2(2α +1)
+ (2e)−1.

On the other hand, by (3.18) applied to y = 1, and by (3.6),

C(1)− B(1)
2

� (α +
1
2
)B(1)−2α − 2α3

2α +1
+ β α � −2α − 2α3

2α +1
+ β α.

Combining this with the previous inequality gives β � α + 1+((2α + 1)e)−1 , as de-
sired.

4. Proof of Theorem 1.4

4.1. Proof of (1.8)

First we introduce auxiliary parameters

γ =
(

2(α +1)
2α +1

)1/2

, γ = γ − 1
2α +1

, λ =
γ
2

exp

(
−1+

2
γ

)

and let
β = β (possub) = α + γ.

Consider the subsets D1, D2, D3 of [0,1]×R , defined by

D1 =
{

(x,y) : x � α
2α +1

, x+ |y|� γ
}

,

D2 =
{

(x,y) : x >
α

2α +1
, −x+ |y|� γ −1

}
,

D3 = ([0,1]×R)\ (D1∪D2).

As previously, first we introduce an auxiliary function u : [0,1]×R → R . This time it
is defined as follows. On the set D1 , put

u(x,y) = −αx+ |y|+ α + λ exp

[
−2α +1

α +1

(
x+ |y|− α

2α +1

)](
x+

1
2α +1

)
−β .

If (x,y) ∈ D2 , then set

u(x,y) = −αx+ |y|+ α + λ exp

[
−2α +1

α +1

(
−x+ |y|+ α

2α +1

)]
(1− x)−β .

Finally, on D3 , let

u(x,y) =
|y|2 − x2−1

2γ
− (α − α

γ(2α +1)
)x.
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One easily verifies that u is of class C1 on (0,1)×R . The special function U : D → R

corresponding to (1.8) is given by the formula

U(x,y,z) = (x∨ z)u
(

x
x∨ z

,
y

x∨ z

)
.

LEMMA 4.1. The function U belongs to U sub(Vβ ) and satisfies b(U) � 0 .

Proof. This can be established exactly in the same manner as in the supermartin-
gale setting. We omit the tedious calculations. �

In analogy to the previous section, one can ask about the explicit formula for the
function Usub . We have been unable to answer this question. What we could prove is
that Usub coincides with U defined above on the set{

(x,y,z) ∈ D :

(
x

x∨ z
,

y
x∨ z

)
∈ D1∪D2 or x+ |y|= x∨ z

}
.

Fortunately, we do not need Usub : the function U is sufficient for our purposes.

4.2. Sharpness

As in the supermartingale case, one has to consider two possibilities: α = 0 and
α > 0. We will focus on the second case, and leave the details of the first to the reader.
So, fix positive α , β and assume that

||Y ||1 � β ||X∗||1
for any nonnegative continuous submartingale X and any semimartingale Y which is
α -subordinate to X . Let U be given by (2.18) and set u(x,y)=U(x,y,1) . Furthermore,
let B(y) = u(0,y) and C(y) = u( α

2α+1 ,y− α
2α+1) for y � α/(2α +1) . The function u

satisfies (3.6), (3.7), (3.9) and the following analogue of (3.8):

u(x,y) � u(x+d,y+ αd) for 0 � x � x+d � 1 and y ∈ R. (4.1)

We split the proof into a few parts.
Step 1. Observe that the ”reflected” function u : [0,1]×R→ R given by u(x,y) =

u(1− x,y) satisfies the conditions (3.6)–(3.10). In consequence, all the calculations
from Subsection 3.2 are valid for this function. In particular, (3.18) yields

C(y)− (α +1)B(y)+ αy+
2α3

2α +1
+ α −β α � 0,

where B and C are the corresponding restrictions of u . Coming back to u , B , C just
defined above, the latter inequality becomes

C(y)− (α +1)B(y)+ αy+
2α3

2α +1
+ α −β α � 0. (4.2)
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Step 2. Here we will use a new argument. Applying (2.19) and the homogeneity
of U , we get

u(1,0) = U(1,0,1)

� 2δ
γ +2δ

u
(
1− γ

2
,

γ
2

)
− 2β δ 2

γ +2δ
+

γ
γ +2δ

U(1+ δ ,−δ ,1+ δ )

=
2δ

γ +2δ
u
(
1− γ

2
,

γ
2

)
+

γ(1+ δ )
γ +2δ

u

(
1,

δ
1+ δ

)
− 2β δ 2

γ +2δ
.

(4.3)

Moreover, by (3.9),

u

(
1,

δ
1+ δ

)
� 2δ

γ(1+ δ )+ δ
u

(
1− γ

2
+

δ
2(1+ δ )

,
γ
2

+
δ

2(1+ δ )

)

+
γ(1+ δ )− δ
γ(1+ δ )+ δ

1+2δ
1+ δ

u(1,0),

and

u
(
1− γ

2
,

γ
2

)
� γ(2α +1)

2(α +1)
C(γ)+

2(α +1)− γ(2α +1)
2(α +1)

u(1,γ)

� γ(2α +1)
2(α +1)

C(γ)+
2(α +1)− γ(2α +1)

2(α +1)
(γ −β ),

(4.4)

where the first passage above was allowed due to γ < 2(α +1)/(2α +1) and the second
follows from (3.7). Plug these two estimates into (4.3) and combine the result with the
following consequence of (3.9):

u

(
1− γ

2
+

δ
2(1+ δ )

,
γ
2

+
δ

2(1+ δ )

)
�(γ(1+ δ )+ δ )(2α +1)

2(α +1)(1+ δ )
C(γ)

+
(

1− (γ(1+ δ )+ δ )(2α +1)
2(α +1)(1+ δ )

)
(γ −β ).

What we get is a rather complicated estimate of the form

u(1,0) � a1C(γ)+a2(γ −β )+a3u(1,0)− 2β δ 2

γ +2δ
, (4.5)

where the coefficients a1, a2 and a3 depend on α and δ . We will not derive the
explicit formulas for these; we will only need their asymptotic behavior as δ → 0:

a1 =
2α +1
α +1

δ +o(δ ), a2 =
2(α +1)− γ(2α +1)

γ(α +1)
δ +o(δ )

and

a3 = 1+
γ −2

γ
δ +o(δ ).
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These equations can be easily derived from the above estimates. Now, subtracting
u(1,0) from both sides of (4.5), dividing throughout by δ and letting δ → 0 gives

0 � 2α +1
α +1

C(γ)+
2(α +1)− γ(2α +1)

γ(α +1)
(γ −β )+

γ −2
γ

u(1,0). (4.6)

Step 3. We use (3.9) to obtain

C(γ) � γ(2α +1)
γ(2α +1)+2α

B(γ)+
2α

γ(2α +1)+2α
u

(
γ
2

+
α

2α +1
,

γ
2
− α +1

2α +1

)

and

u

(
γ
2

+
α

2α +1
,

γ
2
− α +1

2α +1

)
� 2(α +1)− γ(2α +1)

γ(2α +1)
u
(
1− γ

2
,

γ
2

)

+
2γ(2α +1)−2(α +1)

γ(2α +1)
u(1,0).

Combining these two estimates and applying the lower bounds for u(1− γ
2 , γ

2 ) and
u(1,0) coming from (4.4) and (4.6), we obtain, after tedious, but straightforward com-
putations,

(α +1)(2α +1)(2− γ)
α(2(α +1)− γ(2α +1))

(C(γ)− (α +1)B(γ)) � (γα + α +1)(γ −β ).

However, γ < 2(α +1)/(2α +1) < 2 and, by (4.2),

C(γ)− (α +1)B(γ) � −αγ − 2α3

2α +1
−α + β α.

Therefore, the preceding inequality yields

β � γ +
2α(2− γ)(α +1)2

(α +1)(2− γ)(2α +1)+ (γα + α +1)(2(α +1)− γ(2α +1))
,

or, after some calculation, β � γ + α . This completes the proof.
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[15] A. OSȨKOWSKI, Sharp LlogL inequalities for differentially subordinated martingales, Illinois J. Math.

52 Vol. 3 (2008), 745–756.
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