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Abstract. The interpolation and comparison of a matrix version of Heron mean, Fα(a,b) =
(1−α)

√
ab+α a+b

2 , 0 � α � 1, a,b ∈ R
+ is considered by R. Bhatia in [1]. We shall discuss

the complete interpolation and comparison of matrix version of such means by extending the
range of α from [0,1] to R

+. We shall also discuss some more results involving Heinz means.

1. Introduction

In what follows, the capital letters A,B,C, . . . denote the n× n (n arbitrary but
fixed) matrices over the algebra of complex numbers, i.e. elements of Mn . By Pn and
Sn, we denote the set of positive definite and the set of positive semidefinite matrices
respectively. The Schur product of two matrices A = (ai j)i, j and B = (bi j)i, j in Mn is
defined to be the matrix A◦B whose i, j−entry is ai jbi j. For any matrix A∈Mn, σ(A)
denotes the set of singular values of A i.e. eigenvalues of (A∗A)1/2. The symbol |||.|||
denotes unitarily invariant norms throughout this paper.

Heron and Heinz means are two families of means defined respectively as,

Fα(a,b) = (1−α)
√

ab+ α
a+b

2
(1.1)

Hα(a,b) =
a1−αbα +aαb1−α

2
(1.2)

for 0 � α � 1 and a, b ∈ R
+. The first family is clearly the linear interpolant between

arithmetic and geometric mean and satisfies Fα � Fβ whenever α � β and α,β ∈ R
+.

Using simple arguments it is proved in [1] that

Hν (a,b) � Fα(ν)(a,b) (1.3)

for α(ν) = (2ν −1)2 and 0 � ν � 1.
There is yet, another mean of interest in several branches of science like geometry,

statistics and thermodynamics, the logarithmic mean, defined as

L(a,b) =
a−b

loga− logb
=

1∫
0

atb1−tdt. (1.4)
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In [1], R. Bhatia proved that f (α) � f (1/2) for α ∈ [0,1/2], while f (α) is an increas-
ing function of α on [1/2,1] with f (α) as one of the possible matrix version of (1.1)
and is defined as follows

f (α) =
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XB1/2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ , (1.5)

for A, B ∈ Pn and X ∈ Mn.
For the matrix version of (1.2) and (1.4), and more about these, the reader may

refer to [2],[4] and [5]. In this note, we shall prove f (α) � f (1/2) for 0 � α � 1/2
and f (α) is an increasing function for α ∈ [1/2,∞). This is in fact the generalization of
monotonic property of matrix version of (1.1) as in the case of α ∈ R

+ of Fα(a,b) for
a,b ∈ R

+. As an outcome of above result we shall also present a possible generalized
matrix analogue of (1.3) i.e.

1
2
|||AνXB1−ν +A1−νXBν ||| �

∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XB1/2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ (1.6)

for 1/4 � ν � 3/4 and α ∈ [1/2,∞).
A comparison of possible matrix version of (1.4) i.e.∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣

1∫
0

AtXB1−tdt

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

for A, B ∈ Pn, X ∈ Mn and (1.5) for α ∈ [1/2,∞) is established. Some more gen-
eral results are indicated. We shall further conclude similar result for another linear
interpolant matrix version of the Heinz and the arithmetic mean, i.e.

g(α) =
∣∣∣∣
∣∣∣∣
∣∣∣∣(1− α

2
)(A2/3XB1/3 +A1/3XB2/3)+ α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ .

2. Main results

We shall use the following Theorem (2.1) and Lemma (2.2) in the sequel.

THEOREM 2.1. For A,B ∈ Mn with A as positive semidefinite, we have

|||A◦B|||� max aii |||B|||
where aii ’s for i = 1,2, · · · ,n are the diagonal entries of matrix A.

LEMMA 2.2. Let σ1,σ2, · · · ,σn be positive numbers, −1 � r � 1, and −2 < t �
2. Then the n×n matrix

W =

(
σ r

i + σ r
j

σ2
i + tσiσ j + σ2

j

)

is positive semidefinite.
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For a proof of Theorem (2.1) reader may refer to Horn and Johnson ([6], p. 343)
and for Lemma (2.2), Bhatia and Parthasarthy [3] and Zhan ([8], p. 75–76).

THEOREM 2.3. For A,B ∈ Pn and X ∈ Mn and |||.||| any unitarily invariant
norm, the function

f (α) =
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XB1/2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣

is increasing for α ∈ [1/2,∞) and f (α) � f (1/2) for α ∈ [0,1/2].

Proof. We first prove the result for α > 0 and A = B, i.e.,

f (α) =
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XA1/2 + α

(
AX +XA

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣= α

2
p(α),

where, p(α) = |||(h(α)A1/2XA1/2 +AX +XA
) ||| and h(α) = 2(α−1 − 1). We may

assume without loss of generality, A = diag(λ1,λ2 · · · ,λn), λi > 0, (due to unitarily
invariant property of |||.|||). Then

h(α)A1/2XA1/2 +AX +XA

=
((

h(α)λ 1/2
i λ 1/2

j + λi + λ j

)
xi j

)
i, j

=

⎛
⎝h(α)λ 1/2

i λ 1/2
j + λi + λ j

h(β )λ 1/2
i λ 1/2

j + λi + λ j

⎞
⎠

i, j

◦
(
h(β )A1/2XA1/2 +AX +XA

)

= Z ◦
(
h(β )A1/2XA1/2 +AX +XA

)
,

where

Z =

⎛
⎝h(α)λ 1/2

i λ 1/2
j + λi + λ j

h(β )λ 1/2
i λ 1/2

j + λi + λ j

⎞
⎠

i, j

.

Now the matrix Z can be written as⎛
⎝1+

(h(α)−h(β ))λ 1/2
i λ 1/2

j

h(β )λ 1/2
i λ 1/2

j +λi+λ j

⎞
⎠

i, j

= (1)i, j +

⎛
⎝λ 1/2

i

⎛
⎝ h(α)−h(β )

h(β )λ 1/2
i λ 1/2

j +λi + λ j

⎞
⎠λ 1/2

j

⎞
⎠

i, j

,

which will be positive semidefinite if the matrix,⎛
⎝ h(α)−h(β )

h(β )λ 1/2
i λ 1/2

j + λi + λ j

⎞
⎠

i, j

,

is positive semidefinite. By Lemma (2.2), the later matrix is positive semidefinite if and
only if h(α) � h(β ) and 2 � h(β ) > −2. Since h(α) = 2(α−1 −1), so continuously
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decreasing function on positive half line from [1/2,∞)→ (−2,2]. Hence h(α) � h(β )
for all β � α. Using Theorem (2.1), we get p(α) �

(
h(α)+2
h(β )+2

)
p(β ). This proves the

result for A = B and α ∈ [1/2,∞).
For α ∈ (0,1/2], we have 2 � h(α) < ∞ and h(α) � h(1/2)= 2 and so the matrix

Z with β = 1/2 is positive semidefinite using Lemma (2.2). The case α = 0 trivially
holds, since by Lemma (2.2) the matrix

⎛
⎝ λ 1/2

i λ 1/2
j

λ 1/2
i λ 1/2

j + λi + λ j

⎞
⎠

i, j

=

⎛
⎝λ 1/2

i

⎛
⎝ 1

λ 1/2
i λ 1/2

j + λi + λ j

⎞
⎠λ 1/2

j

⎞
⎠

i, j

is positive semidefinite. This gives us the desired result for this case, i.e. α p(α) �
1
2 p(1/2). Equivalently saying that f (α) � f (1/2) for all α ∈ [0,1/2].

The general case follows on replacing A by

(
A 0
0 B

)
and X by

(
0 X
0 0

)
. �

COROLLARY 2.4. Let A,B,X ∈ Mn with A,B positive definite. Then for any uni-
tarily invariant norm |||.||| and a matrix monotone increasing function f : (0,∞) →
(0,∞) with f⊥(x) = x( f (x))−1,

1
2
|||A1/4( f (A1/2)X f⊥(B1/2)+ f⊥(A1/2)X f (B1/2))B1/4|||

�
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XB1/2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ (2.1)

holds for α ∈ [1/2,∞).

Proof. For α = 1/2, (2.1) has already been proved in Singh and Vasudeva ([7],
Theorem 1.1, p. 622). Now, using Theorem (2.3), we get the desired result. �

REMARK 2.5. We remark here that above corollary (2.4) is one of the possible
generalizations of an inequality by Zhan ([8] Th.4.24, p. 76).

Now we shall settle the claim to prove (1.6) as assured earlier.

COROLLARY 2.6. Let A,B,X ∈ Mn with A,B positive definite. Then for any uni-
tarily invariant norm |||.||| , 1/4 � ν � 3/4 and α ∈ [1/2,∞),

1
2
|||AνXB1−ν +A1−νXBν ||| �

∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XB1/2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ .

Proof. Choosing f (x) = x2ν−1/2 in corollary (2.4), we get the desired result. �
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COROLLARY 2.7. Let A,B,X ∈ Mn with A,B positive definite. Then for any uni-
tarily invariant norm |||.||| and a matrix monotone increasing function f : (0,∞) →
(0,∞)

λ
2 f (λ )

|||A1/4( f (A1/2)X +X f (B1/2))B1/4|||

�
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XB1/2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ (2.2)

holds, where λ = min{σ(A),σ(B)} and α ∈ [1/2,∞).

Proof. For α = 1/2, (2.2) has already been proved in Singh and Vasudeva ([7],
Corollary 2.5, p. 622). Again, using Theorem (2.3), we get the desired result. �

COROLLARY 2.8. Let A,B,X ∈ Mn with A,B positive definite. Then for any uni-
tarily invariant norm |||.||| and λ = min{σ(A),σ(B)},

λ
2 log(1+ λ )

|||A1/4(log(I +A1/2)X +X log(I +B1/2))B1/4|||

�
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XB1/2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ (2.3)

holds for α ∈ [1/2,∞).

Proof. Taking f (x) = log(1+ x) in corollary (2.7), we get the desired result. �

COROLLARY 2.9. Let A,B,X ∈ Mn with A,B positive definite. Then for any uni-
tarily invariant norm |||.|||,

|||A1/2XB1/2||| � |||
1∫

0

AtXB1−tdt||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣(1−α)A1/2XB1/2 + α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣
(2.4)

holds for α ∈ [1/2,∞) (c.f. [2], Th. 5.4.7, p. 163).

Proof. For α = 1/2, (2.4) has already been proved in Hiai and Kosaki ([5], p.
924). Further, using Theorem (2.3), we get the desired result. �

THEOREM 2.10. For A,B ∈ Pn and X ∈ Mn and |||.||| any unitarily invariant
norm, the function

g(α) =
∣∣∣∣
∣∣∣∣
∣∣∣∣(1− α

2
)(A2/3XB1/3 +A1/3XB2/3)+ α

(
AX +XB

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣

is increasing for α ∈ [1/2,∞) and g(α) � g(1/2) for α ∈ [0,1/2].
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Proof. Once again following the same lines of the proof of Theorem (2.3), we
shall prove the result for α > 0, A = B and A = diag(λ1,λ2 · · · ,λn).

Suppose

g(α) =
∣∣∣∣
∣∣∣∣
∣∣∣∣(1− α

2
)(A2/3XA1/3 +A1/3XA2/3)+ α

(
AX +XA

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣= α

2
q(α),

where q(α) = |||h1(α)(A2/3XA1/3 +A1/3XA2/3)+AX +XA||| and h1(α) = 2α−1−1.

h1(α)(A2/3XA1/3 +A1/3XA2/3)+AX +XA

=
((

h1(α)(λ 2/3
i λ 1/3

j + λ 1/3
i λ 2/3

j )+ λi + λ j

)
xi j

)
i, j

= Y ◦
(
h1(β )(A2/3XA1/3 +A1/3XA2/3)+AX +XA

)
.

Now the matrix Y can be written as⎛
⎝h1(α)(λ 2/3

i λ 1/3
j + λ 1/3

i λ 2/3
j )+ λi + λ j

h1(β )(λ 2/3
i λ 1/3

j + λ 1/3
i λ 2/3

j )+ λi + λ j

⎞
⎠

i, j

=

⎛
⎝1+

(h1(α)−h1(β ))λ 1/3
i λ 1/3

j

(h1(β )−1)λ 1/3
i λ 1/3

j + λ 2/3
i + λ 2/3

j

⎞
⎠

i, j

= (1)i, j +

⎛
⎝λ 1/3

i

⎛
⎝ h1(α)−h1(β )

(h1(β )−1)λ 1/3
i λ 1/3

j + λ 2/3
i + λ 2/3

j

⎞
⎠λ 1/3

j

⎞
⎠

i, j

.

Again by Lemma (2.2), the later matrix is positive semidefinite if and only if
h1(α) � h1(β ) and 2 � h1(β )− 1 > −2. Since h(α) = h1(α)− 1 = (2α−1 − 2), so
continuously decreasing function on positive half line and from [1/2,∞) → (−2,2].
Hence as in Theorem (2.3) we have h(α) � h(β ) and so h1(α) � h1(β ) for all β � α.

Using Theorem (2.1), we get q(α) �
(

h1(α)+1
h1(β )+1

)
q(β ). This proves the result for

A = B and α ∈ [1/2,∞).
For α ∈ (0,1/2], we have 3 = h1(1/2) � h1(α) < ∞ and so the matrix Y with

β = 1/2 is positive semidefinite using Lemma (2.2). The case α = 0 can easily be seen

by the positive semidefiniteness of the matrix

(
λ 1/3

i

(
1

2λ 1/3
i λ 1/3

j +λ 2/3
i +λ 2/3

j

)
λ 1/3

j

)
i, j

which is so, using Lemma (2.2). This gives us the desired result for this case, i.e.
αq(α) � 1

2q(1/2). Equivalently saying that g(α) � g(1/2) for all α ∈ [0,1/2].

The general case follows on replacing A by

(
A 0
0 B

)
and X by

(
0 X
0 0

)
. �

COROLLARY 2.11. Let A,B,X ∈ Mn with A,B positive definite and f (α) and
g(α) are same as taken in Theorem (2.3) and (2.10) respectively. Then

f (0) � 1
2
g(0) � f (α) (2.5)
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for α ∈ [1/2,∞), or equivalently, for any unitarily invariant norm |||.||| and −2 < t �
2,

|||A1/2XB1/2||| � 1
2
|||A2/3XB1/3 +A1/3XB2/3||| � 1

2+ t
|||AX +XB+ tA1/2XB1/2|||.

Proof. For the first inequality in (2.5) see [1] and for the second inequality take
ν = 2/3 in corollary (2.6) and α = 2

2+t . �
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