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COMPLETE INTERPOLATION OF MATRIX
VERSIONS OF HERON AND HEINZ MEANS

RUPINDERIJIT KAUR AND MANDEEP SINGH

(Communicated by Josip Pecaric)

Abstract. The interpolation and comparison of a matrix version of Heron mean, Fy(a,b) =
(1—o)Vab+ tx#7 0< o<1, ab€R" is considered by R. Bhatia in [1]. We shall discuss
the complete interpolation and comparison of matrix version of such means by extending the
range of « from [0,1] to R". We shall also discuss some more results involving Heinz means.

1. Introduction

In what follows, the capital letters A,B,C,... denote the n X n (n arbitrary but
fixed) matrices over the algebra of complex numbers, i.e. elements of M, . By P, and
Sn, we denote the set of positive definite and the set of positive semidefinite matrices
respectively. The Schur product of two matrices A = (a;;);,; and B = (b;;); ; in M, is
defined to be the matrix Ao B whose i, j—entry is a;;b;;. For any matrix A € M,;, 6(A)
denotes the set of singular values of A i.e. eigenvalues of (A*A)!/2. The symbol |||.|||
denotes unitarily invariant norms throughout this paper.

Heron and Heinz means are two families of means defined respectively as,

Fala,b) = (1— a)Wab+ a®2 (1.1)
l—ao opl—a
Hel(a,b) = 2" Fa"0 (1.2)

2

for 0 < o <1 and a, b € R*. The first family is clearly the linear interpolant between
arithmetic and geometric mean and satisfies Fo, < Fg whenever oo < 8 and o, 8 € R*.
Using simple arguments it is proved in [1] that

Hy(a,b) < Fy(y)(a,b) (1.3)

for a(v)=(2v—1)?and 0 < v < 1.
There is yet, another mean of interest in several branches of science like geometry,
statistics and thermodynamics, the logarithmic mean, defined as

1

Lap) = —2=0  _ /a’bl”dt. (1.4)
loga —logb J
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In [1], R. Bhatia proved that f(o) < f(1/2) for a € [0,1/2], while f(c) is an increas-
ing function of a on [1/2,1] with f(e) as one of the possible matrix version of (1.1)

and is defined as follows
0 =fu-ama o (2522

3 , (1.5)

for A, B€ P, and X € M,,.

For the matrix version of (1.2) and (1.4), and more about these, the reader may
refer to [2],[4] and [5]. In this note, we shall prove f(a) < f(1/2) for 0 < o0 < 1/2
and f(o) is an increasing function for o € [1/2,0). This is in fact the generalization of
monotonic property of matrix version of (1.1) as in the case of a € R™ of Fy(a,b) for
a,b € RT. As an outcome of above result we shall also present a possible generalized
matrix analogue of (1.3) i.e.

AX +XB
|\|AVXB1 VaAls VXBV|<H| a)A'2XB'/? + (L)Hl (1.6)

for 1/4<v<3/4 and o € [1/2,0).
A comparison of possible matrix version of (1.4) i.e.

/ A'XB'"dt

for A, B€ P,, X € M, and (1.5) for o € [1/2,0) is established. Some more gen-
eral results are indicated. We shall further conclude similar result for another linear
interpolant matrix version of the Heinz and the arithmetic mean, i.e.

o (O U G |

2. Main results
We shall use the following Theorem (2.1) and Lemma (2.2) in the sequel.
THEOREM 2.1. For A,B € M,, with A as positive semidefinite, we have
1|40 B||| < max a |[| B[]

where a;;’s for i = 1,2,--- n are the diagonal entries of matrix A.

LEMMA 2.2. Let 01,02, --,0;, be positive numbers, —1 <r <1, and =2 <t <

2. Then the n X n matrix
B o/ +0;
-~ \ 6?+t0i0;+ 07
i 2] J

is positive semidefinite.
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For a proof of Theorem (2.1) reader may refer to Horn and Johnson ([6], p. 343)
and for Lemma (2.2), Bhatia and Parthasarthy [3] and Zhan ([8], p. 75-76).

THEOREM 2.3. For A,B € P, and X € M, and |||.||| any unitarily invariant
norm, the function

= flr - (S|
2

is increasing for o € [1/2,00) and f(a) < f(1/2) for a € [0,1/2].

Proof. We first prove the result for & >0 and A =B, i.e.,
AX + XA
:H'(l—a)AlﬁXAl/z—i—a(i; )'H:%p(a),

where, p(a) = ||| (h(a)A'/2XAY? + AX +XA) ||| and h(r) =2(a~' — 1). We may
assume without loss of generality, A = diag(A;,A2--+,4,), A; > 0, (due to unitarily
invariant property of ||.|||). Then

h(0)AY2XAY? 4 AX + XA
:(<h 1/2 Uz-l—l-l—l)m;),,

( o)X AL 4 iy
~ Zo

o (h(ﬁ)Al/zXAl/z +AX +XA>

h(B)A 1/2 1/2+7L+7L .

h A1/2XA1/2+AX+XA>
where
(o)A 1) 4 di+ 2y

Z:
hB)APA 4 A+ 4y

i.j
Now the matrix Z can be written as
2 2
()b BN AN [ me)-hB) i
B2 P A A nBIA A P Ay )

i.j ij

which will be positive semidefinite if the matrix,

h(et) —h(B)
hB)APA 4+ A+ 4y

i,J

is positive semidefinite. By Lemma (2.2), the later matrix is positive semidefinite if and
only if i(ct) > h(B) and 2 > h(B) > —2. Since h(a) =2(a~' — 1), so continuously
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decreasing function on positive half line from [1/2,0) — (—2,2]. Hence h(a) > h(B)
for all B > o. Using Theorem (2.1), we get p(a) < (%) p(B). This proves the
result for A= B and o € [1/2,00).

For o € (0,1/2], we have 2 < h(or) <eo and h(cx) > h(1/2) =2 and so the matrix
Z with B =1/2 is positive semidefinite using Lemma (2.2). The case o = 0 trivially
holds, since by Lemma (2.2) the matrix

1/241/2
7%/ xj/ 1/2 1 2172
AP A A A\ )

ij i,J

is positive semidefinite. This gives us the desired result for this case, i.e. op(o) <
1p(1/2). Equivalently saying that f(ot) < f(1/2) forall o € [0,1/2].

The general case follows on replacing A by (g g) and X by (8 ﬁ) .o

COROLLARY 2.4. Let A,B,X € M, with A,B positive definite. Then for any uni-
tarily invariant norm |||.||| and a matrix monotone increasing function f : (0,00) —

(0,00) with f*(x) = x((x)) ",
lHlA”“( (AV)XFH(BY2) + fH(AV )X p(BY2)B|
o2

holds for o € [1/2,00).

Proof. For oo = 1/2, (2.1) has already been proved in Singh and Vasudeva ([7],
Theorem 1.1, p. 622). Now, using Theorem (2.3), we get the desired result. [

REMARK 2.5. We remark here that above corollary (2.4) is one of the possible
generalizations of an inequality by Zhan ([8] Th.4.24, p. 76).

Now we shall settle the claim to prove (1.6) as assured earlier.

COROLLARY 2.6. Let A,B,X € M, with A,B positive definite. Then for any uni-
tarily invariant norm |||.|||, 1/4< v <3/4 and o € [1/2,0),

AX +XB
\HAVXBl VAT vXBV||<M a)A'2XB'/? + (%)ll‘

Proof. Choosing f(x) =x?~1/2 in corollary (2.4), we get the desired result. [J
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COROLLARY 2.7. Let A,B,X € M,, with A, B positive definite. Then for any uni-
tarily invariant norm |||.||| and a matrix monotone increasing function f : (0,e0) —

(0,%0)
3700 )|\|A1/4( FAYHX +XF(B?)B|
< 'H(l — o)A 2xB' 4 o (@) 'H (22)

holds, where A = min{c(A),c(B)} and o € [1/2,).

Proof. For oo = 1/2, (2.2) has already been proved in Singh and Vasudeva ([7],
Corollary 2.5, p. 622). Again, using Theorem (2.3), we get the desired result. [l

COROLLARY 2.8. Let A,B,X € M,, with A, B positive definite. Then for any uni-

tarily invariant norm |||.||| and A = min{c(A),c(B)},
A
——————|||AY*(log (1 + AY*)X + Xlog(1 + B'/?))B"/*
o141 oe(d-+A X + Xlog(r + B2
IH o)A X B2+ (AL;XB)HI (2.3)

holds for a. € [1/2,e0).
Proof. Taking f(x) =log(1+x) in corollary (2.7), we get the desired result. [

COROLLARY 2.9. Let A,B,X € M,, with A, B positive definite. Then for any uni-
tarily invariant norm |||.|||,

V2812 < |\|/AXBI al< a-amre o (222 |

(2.4)
holds for a. € [1/2,00) (c.f. [2], Th. 5.4.7, p. 163).

Proof. For o = 1/2, (2.4) has already been proved in Hiai and Kosaki ([5], p
924). Further, using Theorem (2.3), we get the desired result. [

THEOREM 2.10. For A,B € P, and X € My, and |||.||| any unitarily invariant
norm, the function

=lo-grexa e arayea (S|

is increasing for o € [1/2,0) and g(ot) < g(1/2) for a €0,1/2].
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Proof. Once again following the same lines of the proof of Theorem (2.3), we
shall prove the result for oo > 0, A = B and A = diag(A;,42--- ,4,).
Suppose

H' A2/3xAl/3 A1/3xA2/3) T <%> 'H = %q(a)’

“maeﬂa)zHmmamﬂﬁXAUihMBXAﬂ%+Ax+xmumﬁhma):2m4—L
hi(o)(AYPXAV3 4 AV3XAY3) + AX + XA
:(@g@@ﬂ%ﬂﬁJﬂ%ﬂ%+%+zom%J
~Yo (hl(B)(A2/3XA1/3 +A3xA%3) +AX+XA) .
Now the matrix Y can be written as
hi (o)A 4 4P+ ai oy
m(BYA A+ A PA) - a Ay

(hi(0) — hi(B))A AL

1

(hi(B)— 1)A; P2} 277 122

|
_|_

i,J

(@) = h(p) 4173
((B)— DA P2} aP a2 )

1/3
=)+ A /
i7j

Again by Lemma (2.2), the later matrix is positive semidefinite if and only if
hi(e) = hi(B) and 2 > hy(B) —1 > —2. Since h(a) = hy(a) — 1 = (2~ —2), so
continuously decreasing function on positive half line and from [1/2,0) — (—2,2].
Hence as in Theorem (2.3) we have h(o) > k() and so hy (o) > hy(B) forall B > o.

Using Theorem (2.1), we get g(o) < <21E§gﬂ> q(B). This proves the result for
A=Band o € [1/2,e0).

For o € (0,1/2], we have 3 =h;(1/2) < hi(0) < e and so the matrix ¥ with
B = 1/2 is positive semidefinite using Lemma (2.2). The case ¢ = 0 can easily be seen

. . . . 1/3 1/3
by the positive semidefiniteness of the matrix (li/ < YU 1 73 ikz T /3> JLj/ )ij
which is so, using Lemma (2.2). This gives us the desired result for this case, i.e.
aq(a) < 3g(1/2). Equivalently saying that g(cr) < g(1/2) forall o € [0,1/2].

The general case follows on replacing A by (g g) and X by (8 ﬁ) .0

COROLLARY 2.11. Let A,B,X € M, with A,B positive definite and f(a) and
g(o) are same as taken in Theorem (2.3) and (2.10) respectively. Then

58(0) < f(a) 2.5

ﬂ®<2
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for o € [1/2,00), or equivalently, for any unitarily invariant norm |||.||| and =2 <t <
2,

1 1
[[|AY2XBY?||| < E||\A2/3x31/3+Al/3x32/3||\ < 2—_H||\AX+XB+tA1/2XBl/2||\.

Proof. For the first inequality in (2.5) see [1] and for the second inequality take

v =2/3 in corollary (2.6) and o = %H O
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