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CUBIC AND QUARTIC CYCLIC HOMOGENEOUS
INEQUALITIES OF THREE VARIABLES

TETSUYA ANDO

(Communicated by I. Peric)

Abstract. We determine the geometric structures of the families of three variables cubic and
quartic cyclic homogeneous inequalities of certain classes. These structures are determined by
studying some real algebraic surfaces.

1. Introduction

Symmetric or cyclic homogeneous polynomial inequalities are one of the most el-
ementary inequalities. But they are not studied well. We may dare say that we know
only a few even about three variables cyclic homogeneous inequalities. The aim of this
article is to present a geometric method in order to deal with the cubic and quartic cyclic
homogeneous inequalities in three variables. We sketch the history. Articles on poly-
nomial inequalities are very few. One of the most important symmetric homogeneous
inequalities is Muirhead’s inequality published in 1902 ([5]), which says that if

htbh+-Flh=m+my+--+my,
h+b+-+h=>m+m+---~+m ~Vek=1,2,...,n—1),

then the inequality

l ) Iy m m my,
> aéu)aé(z) gy 2 > ac%l)acé) )
ocB, ocB,
holds for any a; > 0,..., a, > 0.
The following Schur’s inequality is also discovered around this age:

(a® + b7 + )+ abe(a? 3+ b3 + 473)
> (@ b+ e+ ¢ a) 4 (@b b 4 ca®T)

holds forall @ > 0, b > 0, ¢ > 0 and integers d > 3.

It is mystery that no generalization of Schur’s inequality is known yet in the case
of more than three variables, except the case of degree three (see [2] p.271 Q4). During
about a hundred years, there is no essential development. Recently, Cirtoaje discovered
some important theorems about three variable homogeneous inequality. One of them is
as the following:
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THEOREM. ([4]) (1) Let f(x, y, z) be a quartic symmetric homogeneous poly-
nomial. Then, f(x, y, z) =0 forany x, y, z €R, if and only if

f(1,0,0) >0 and f(x,1,1)>0 (VxeR).

(2) Let f(x, y, z) be a symmetric homogeneous polynomial with 3 < deg f < 5.
Then, f(x, y, z) =20 forany x, y, z> 0, if and only if

f(x,1,0) >0 and f(x,1,1)>0 (Vx>0).

He also obtained similar theorem for symmetric homogeneous polynomials with
6 < degf < 8. But we omit it because its statement is long. The following theorem is
also fundamental.

THEOREM. ([3]) Let p, q, r be any real numbers. The cyclic inequality

(a* +b*+ ) + (@D + b+ Pd®) + (p+q—r—1)abe(a+b+c)
> p(a®b+bc+Aa) + glab® + beP + ca?)

holds for any a, b, ¢ €R ifand only if 3(1+7r) > p*> + pq+¢*.

We analyze the above theorem using a convex cone. Let

Ry:={xeR |x>0},
f is a cyclic homogeneous polynomial
of degree d, such that
fla, b, ¢) >0 for Va, b, c €R, ’
and that f(1, 1, 1)=0.
f is a cyclic homogeneous polynomial

Cq:=1< fla,b,c)

of degree d, such that

fla, b, c) >0 forVa, b, ceR,y, ’
and that f(1, 1, 1)=0.

Sy={f €%y | [ issymmetric},

S5 ={f€% | fissymmetric}.

¢ =< fla,b,c)

Cirtoaje’s inequality implies that €} is an ellipsoid cone in R*. We can also determine
the structures of .%4 and .%," , using theorems in [3]. .%} is an elliptic cone in R3. The
base of fj is a domain in R? enclosed by a part of the ellipse and two line segments.
These are explained later. Note that 6; = .%; =0 if d is odd. Itis easy to see that

G =6, =S =" =R (&> +b*+c* —bc—ca—ab),

and these are a half line. In this article, we shall determine the structures of ‘Kf, f;r
and %j . As consequences, 5@* is a sector on a plane. %j isaconein R? whose base
is a domain in R? enclosed by a part of quartic curve and a line segment. The base of
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%”j CR* is a domain in R? enclosed by three surfaces, one is a part of the ellipsoid,

the others are parts of ruled surfaces. The following inequalities can be proved as a

direct corollary of this fact. Note that these are analogues of Schur’s inequality.
Leta>0, b >0, c >0, then the following hold:

Ja

T( 3+b3+c3)+(3—\3/4_1)ab02a2b+b20+02a, (L.1)
(@ +b°+)+ % (a®b +b*c+ Pa)

> —V16\/§2+13+1(ab2+b02+ca2)7 (1.2)
(a* 4+ b* 4+ ch) + (gﬁ - 1) abc(a+b+c) > ?(cﬁb—kb%—i—@a), (1.3)
(a* +b* + )+ a(a®b+bc+ Pa) > (o + 1) (ab® + b + ca?), (1.4)

here o = 1.37907443362539958016- - - is a root of

400 +120° — 480" — 1160.° + 240 + 8400 +229 = 0.

(a* +b* +c*) + BV + 2P + Pd®) = (B4 1)(a’b+ bPc+ Pa), (1.5)
here B =2.18452974131524781307 - - - is a root of

4B° +19B* — 3283 +2B% - 368 — 229 =0.

(a* +b* + )+ y(@b+ bc+ Pa) > (y+ 1) (b + b°c* + *a?), (1.6)
here ¥y =5.07790940231978661368 - - - is a root of

490 + ¥ — 687 — 17297 — 1927+ 144 = 0.

These inequalities are located on the boundary of %j . Note that Schur’s inequality is
located on the boundaries of . and %" .
We shall explain the outline of our theory. Let

Sijxla,b,c) = a'blck+bicld + cdal .

Take an index set I, so that the set {S;;x | (i, j, k) € I} is a base of the vector
space {f(a, b, ¢) | f isa cyclic homogeneous polynomial of degree d }. Define the
holomorphic map @;: PL—P¥ (N=#I—1=1[(d+1)(d+2)/6]—1)by ¢(a:b:
¢) = (Sijula, b, c) | (i, j. k) €I). Then X, := @4(P%) is (a closed domain of) a
real projective surface of degree d. Consider X, in an affine space RY with the origin
(1:1:---:1) €P¥, and take the convex cone Dy C RN generated by X;. Then %,
can be identified with the dual convex cone of D,;. It seems that X; is the whole part
of algebraic surfaces, but this is not true for symmetric polynomials. That is, it is only
a closed domain of a surface.

Similarly, let P3:={(a:b:c)€P% |a>0,6>0,c>0}, X :=¢;(P?%), and
D be the convex cone generated by X, . Then 4 can be identified with the dual
convex cone of D(‘;. Thus, if we study an algebraic surface X; or its closed domain
Xj, we can determine the structure of the convex cone %, or €, and we can obtain
the sharpest inequalities.
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It may be possible to determine the structures of ¢, €,, ;" , %, for d > 5.
But the structure of X; or X j is not so simple for d > 5. It may also possible to do
similar observation for more than three variables inequalities, if we study the structure
of higher dimensional projective varieties. Theoretically it will be possible, but the
calculation is complicated. The author tried this in vain, and expects the research in the
future.

2. Main Theorems
We use the same notation as in the section 1, and we denote
S; = Si(a,b,c) :=d +b +',
Sij=Sij(a,b,c) :=a'b) +b'c/ +c'd,
U="U(a,b,c):=abc,
T;; =T, j(a,b,c):=S;j(a,b,c)+S;(a,b,c).
THEOREM 1. Let
fs(a,b,c) == 5S35 — (25° — 1)Sa; + (s* — 25)S1 2
—3(s* =283+ 52 25+ 1)U,
foo(a,b,c) = SLQ —3U.
Then, the following hold.
(1) The boundary of the convex cone ‘5; is
Ry -{f } s€0, o] JU( Ry fot Ry feo).

(2)If f € €5, then we can find 0, B, s €R | such that f = ofg + Bfeo.
(3) Let f(a,b,c) =S3+ pS21+qSi2+rU be a cyclic polynomial such that 3 +
3p+3q+r=0. Then, f € ‘K;r if and only if

4p3 + 443 +27 > p*q* + 18pq,
or“p=20and qg=>0".
(4) 757 =Ry «(To1 —6U)+ Ry -(S3+3U — T ).
Note that S3+3U — T 1 > 0 is Schur’s inequality.

THEOREM 2. Let

Opgla,b,c):=84—pS31—qS13

2 2 2 2
+pq+ +pq+
+<7p I;q d —1>S272+<p+q—7p I;q q)USh

goo(@,b,¢) = gpoo(a,b,c) = geo y(a,b,c) := 82, —US},
h.\'(a,b,c) = S371 +S25173 — 255272 — (S — I)ZUSh
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hoo(a7b7c) = S173 — US],
t(a,b,c):= §2Sy — (2s3 —s1)831 + (s3t —25)S13
+ (s* = 25% + 1)Sp 0+ (s2 —(s— D)X (*+st+ )US;.

Then, the following hold.
(1) €, is an ellipsoid cone whose boundary is

Ri({gpq| (p. 9) €R?}U{g-}).

(2)If f € €4, then we can find p, g €R, and a, B €R.y such that f = agpq+

Bge. (See [3])
(3) The boundary of ‘Kj is

Ri-({gpq | 9p+a) = (p—q)* 26" p+q>0}Ufa})
URy {t |50, 1> 1} U (Ry toa+ Ry {b; | s€[0, o] }).

(4)If f €€, then we canfind o, B, t €R, and s € [0, | such that
S =ab; +ﬁgp(t,x),q(t,s)7

here
Si(t,5,1) (T (t,5,1) = 6U (2,5,1) = 3(t — 5)(s — 1)(1 —1)) L
p(t,s) = 2(S20(t,8,1) = U(t,s5,1)S1(t,s,1)) ’
o Sl(t,s,l)(TZ,l(tvsvl) —6U(Z,S,1) —|—3(Z—S)(S_ l)(l _t)) —1
q(t,s) == 2(8S2.2(t,5,1) = U(t,5,1)81 (1,5, 1)) '

Note that g, , > 0 is Cirtoaje’s inequality.
COROLLARY 3. Use the same notation as Theorem 2, and let
9p = 0pp =S4 —pT31+(p* = 1)S20+ (2p — p2)US).

Then, the following hold.

(1) 4 is an elliptic cone whose boundary is Ry -{g, | p €RU{eo}}. Thus, if
f €Sy, thenwe can find o, B, p €Ry suchthat f = og,+B(S22—US1). (See [3])

(2) The boundary of 5”4+ is

Ry {gp| pell, o] JU( Ry g1+ Ry (T3 —2557))
U ( Ry gt Ry '(T371 —25272)).

Thus, if f € %, , then we can find o, B €R, and p € [0, =] such that f = ag,+
B(T5.1—2822). (See [3])

We shall prove the inequalities (1.1)—(1.6) in the section 1, using above theorems.

1 2—v2v2-1
(1.1) and (1.2) are obtained from f; > 0, putting s = v/2 or s = +v2 V2

2
respectively. (1.3) is obtained from &, > 0 putting (s, t) = (\4/5, 2/\/5) (1.4) is
obtained from &, > 0, eliminating s and ¢ from oo = —(2s+1/s), 41/ =2t=0,
1—(s—1)>(1+1¢/s+1/s%) =0. (1.5) and (1.6) can be obtained by the similar way.
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3. Proof of Theorem 1

Throughout this paper, we fix the following notation.
[P’y := (real projective space).
(xo:xy:---:x,) the system of homogeneous coordinates of P,.
Pl:i={(a:b:c)ePf |a>0,b>0,c>0}.
It is well known that for any a, b, ¢ €R, the inequalities S4 > 31, S4 = S22 > US;
hold. Moreover, if a, b, c €R,, then S3 > 5> > 3U, S31 > USy, T3,1 = 25, hold.
Proof of Theorem 1. (1) (i) Ws shall prove that f; € %f for s > 0.
Since fs(b,a,c) = s4f1/s(a,b,c), we may assume that 0 <a<b<c=1. Let
k:=(1-0)/(1 —a).Since 0 < a < b, we have 0 < k < 1. Then we have
fs(a,b,c) =fs(a,1 —k(1—a),1)
g —a)2{a(1 —ks)2(k+52) + (14 (1 —k)s?) (1 — k — 5)2}
> 0.
Note that f,(0,s,1) = 0. We recommend readers to use computer to check some com-
plicated equalities which appear in this article as the above.

(ii) We shall observe X5 .
Let @3: IP’ZR—JP’?R be the holomorphic map defined by

@3(a:b:c):=(S3(a,b,c): S21(a,b,c): S12(a,b,c):Ula,b,c)),
and let
X = g3(PY),
fols) =s2+1, fils):=s5% fa(s):=s, f3(s):=0,
Cs == {(fo(s): fi(s): fols): f3(s)) € X5 | seRy }
={(g3(0:5:1) e X{ | seRy }.

Note that Cj is the boundary of X;", and C; is a nodal plane cubic curve whose node
isat (1:0:0:0).

(110:0:1/3) (1:0:111/3)

Py=(1:1:1:1/3)

(1:0:0:0) Y/eh
(1:1:0:0)

(1:1:1:0)
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The defining equation of X3 := @3(P%) is
x? +x% + 9x§ — 6x1X2X3 — XoX1X2 + 3x0x§ +x(2)x3 =0, (3.1)
and X3 has a rational double point of the type Aj at P3:=(1:1:1:1/3). Let
V3= {(x0 1 x1 1 x2 1 x3) Py | xo #0} ~R3,

and we choose a system of coordinates (x, y, z) of V* as

X1 X2 x3 1
X=X = __17__17___ .
(xyz) (xo X0 X0 3)

Note that the coordinate of P; is (x, y, z) = (0, 0, 0). Let D;r CR3 be the convex
cone in V3 generated by X5 C V3 =R3.
(iii) We shall show that %;” can be identified with the dual convex cone of D;” ,

ie.
(DY)t :={feR’ | (f-x)>0 for Vxe D7 .}.

Any three variables cyclic cubic homogeneous polynomial can be written as
fla,b,c) = poS3+p1S21+p2S12+p3U, (3po,..., p3 €R).
For this f, we denote
Fy(x0,%1,%2,%3) := poXo + p1X1 + p2aX2 + p3x3,
ns = (p1,p2.p3) ER?.

Assume that f € €5 . Then 3po+3pi+3p2+p3 =0, and po = f(1, 0, 0) > 0.
Let x € X;” C D7, and assume that x corresponds to (xo : xj 1 xp :x3) = @3(a:b:c)
(I(a:b:c)€P?). Since f €C5,

(n 'X) _ Ff(X()7)C17X27)C3) _ f(a7b7c)
! X0 S3(a,b,c) ~

Since X;~ generates D7, (ny-x) >0 for Vx € D . Thus ny € (D7)*, and €;" can
be identified with (D})*, corresponding f to ny.

(iv) We shall show that f; is located on the boundary of %;” .

Let F, be the plane in P}, which tangents to C3 at Qs := @(0:s: 1) = (fo(s) :
S1(8) : f2(s) : f3(s)) and which passes through P5. The defining equation of Fy is given
by.

X0 X1 X2 X3
fo(s)  fils)  fals)  f3(s)
Lhols) Zhls) £hls) £f(s)
1 1 1 1/3
= 52x0 — (287 — D)xp + (s* — 25)xp — 3(s* — 25° + 5% — 25+ 1 )xs.
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This corresponds to fs. By (i), f; € 45" = (D3 )*. Thus f lies on the boundary of %" .
This fact also implies that {Q; | s € [0, o]} C C3 generates D, and

D} ={xeV?| (f;-x) >0 for Vs € [0, =] }.

Let B3 :=R. -{f, | s€ [0, o}, and %5 be the boundary of €, . Above observation
implies that By C 6.

(v) We shall determine %;’b — B3, and shall prove (1).

Note that Qp = Qw is the node of Cs, and Cs is smooth at Q; if s € (0, o).
The boundary of B3 is Ry -foU Ry fe. Let By :==R, -fo+ Ry -fwo. A point on B
corresponds to a surface which tangents X3+ at Qp and which passes through P3. Thus
By C 65, and we conclude that €5 = By U B} . Therefore, we obtain (1).

(2) If f lies on the boundary of %5, then (2) is trivial. Assume that f is an
interior point of %;r. The half line from f.. to f crosses R, B3 at a point 'f;
(3B’ >0, 35 €0, «)). Then, we can write f in the form f = oty + e

253 —1 s*—2s

(3) Eliminate s from p=————, ¢ = 5— , we obtain 27 +4pP +4q® =
s s

p?q*> + 18pq. If observe the graph of this curve, we have the conclusion. Note that
since the dual curve of a plane nodal cubic curve is a quartic curve, B3 is generated by
a part of a plane quartic curve.

(4) Let y3: P%— Z? :=P% be the holomorphic map defined by
y3(a:b:c):=(S3(a,b,c): Tz(a,b,c) : Ula,b,c)),
and let m3: P3,— Z? =P% be the rational map defined by
73 (ot X1 1 xp 1 x3) 1= (X0 1 X1+ X2 0 x3).
Let ¥, := y3(P%) = m3(X5") C Z2, and denote y; :=x1 +x2, y2 := X1 — X2,
M3(x0,y1,%3) := 4xgx3 + 12025 + 363 — 6x3y7 + ¥ — Xoy7.-
Then, (3.1) can be written as 13 (xo,y1,X3) +y%(xo +6x3+3y;) =0. Thus,

+_ o 2 | M3(x0,¥1,%3) <O,
Y3—{(x0.y1.x3)EZ =0, 30, x30. [

Note that 13 (xo,y1,x3) = 0 defines the cubic curve which has the cusp at (1:2:1/3),
and which has a parameterization

((4—6m*+3m’) : (8 — 16m+ 12m* —3m?) : (—4+8m — 5Sm* +m’)),

(1<m<2).
As the above figure,

Y;r C {(X() 1y iX3) ez’ | y1—6x3 >0, xo+3x3—y; ZO}
Thus, the boundary of 5" is Ry (To; —6U )+ Ry +(S34+3U —Tp,). O
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x3/70
1/3 m3(P3)

y1/wo

4. Proof of Theorem 2
Proof of Theorem 2. (1) We denote

Gpq(X0,X1,%2,X3,X4) 1= X0 — PX| — gX2
2 2 2 2
+pq+ +pq+
I S SR Y (RO i S T
3 3
Gw(x07x17x27x37x4) =AX3 Xy
Hy(x0,X1,X2,%3,X4) 1= X1 +5%2x) — 25x3 — (s— 1)2x4.
Hoo(X0,X1,X2,X3,X4) 1= X2 — X4,
Ky (x0,X1,%2,X3,%4) 1= §2x0 — (253 —st)x] + (s3t —25)x)
+(s* =252+ Dxs + (57 — (s — 1)*(s* + st + 1)) xs.

(i) We shall show that g, , € ¢4 for Vp, Vg €R.
As Cirtoaje([3]) had shown,

3gpqla,bc)= Y, (2a* —b* — ¢* — pab + (p + q)bc — gea)® > 0.

cyclic

(ii) We shall show that by, &, € €, for s >0 and 1 > 1.
Since Sy 3 > US; for a, b, c €R,, we have
bs(a,b,c) = s*(S13—USy) —25(Sp0 —US)) + (S5, —US))

 S02-US1\? | USi(S2— 1)
S13—US S13—US$

=(813-US) (S

=0,
P-‘YJ(a;b7c) = 5292.V71/.¥,2/s7s(aabac> +S(t - l)bs(a7bac) € <54Jr'

Note that p(0, s) =2s—1/s, q(0, s) =2/s—s, and

gp(.s‘,t),q(s,t) (Sat7 1) = 07 b-\'(07s7 1) = 0’ ESJ(OaSa 1) = 0

(iii) We shall show that &, ¢ ¢, if 1 <1, s > 0.
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Since &, (b, a, 1) = s4él/sﬁt(a, b, 1), we may assume that 0 < s < 1. Let >0
and p > max{2, 12¢/s}. Then,

b1 (st/p,s,1)
S 32 2 2.5
== (P09 + P20 451 )
+ 0’5+ p2p — 1)’ +2ps’t + psP (1 — ) + (2p — 1)s*?
+ {pz(p —1)s* — p(3p —2)sk — 3p°s*t —ps4t}>.
Since 7 < ps/12 and p/2 < p—1, we have

p(3p—2)s*t +3p°s*t + ps*t = ps’t(3p — 2) + (Bp+ 1)s)
p’s’ s _ 3

Thus €1, (st/p, s, 1) <O0.

(iv) We shall observe Xy .
Let ¢4: P%——P% be the holomorphic map defined by

Qi(a:bic):=(84:831:813:522:U81),
and let X4 := (p4(IP2R) . It is easy to see the following equalities hold.

(S3.1+ 813 +US1)? — (S4+28522) (S22 +2US) =0
(S3.0 4813 —2US81)* +3(S31 —S13)* 4 (S4— 2822+ US))* — (S4—US;)* =0

Thus, the defining equations of the quartic surface Xy is

(x1+x2 —|—)C4)2 — (x0+2x3)(x3+2x4) =0,
(X1 4 x2 — 2x4)2 +3(x; —x2)* 4 (x0 — 2x3 4+ x4)% — (x0 —x4)> = 0. (4.1)

We knows that X4 has a rational double point of the type A} at Py :=(1:1:1:1:1),
from the above equations.

Py=(1:1:1:1:1)

Cy
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Let V4 :={(xo:x1 :x2 1 x3 :x4) €P} | x0 # 0} =R*, and we choose a system of
coordinates (x, v, z, w) of V* as

X X X X
X=(x,y,z,w): <—1—1, —2—17 —3_1, _4_1)
X0 X0 X0 X0

By (4.1), the defining equations of X4NV* are

(x+y+w+3)2—(2z+3)(z+2w+3) =0,
(x4y—2w) 2 +3(x—y)?+(2z—w) —w? =0. (4.2)

Let W3 = {(x, y, 2) | x,y,z€R } be the hyperplane defined by w = —1 in V*, and
let p: Ph— W? be the projection from the center P4. By (4.2), E := p (X3 — {P4})
is an ellipsoid

E={(x,52) €W | (x+y+2)*+3(x—y)*+ (2z+ 1) =1.}.

Let Dy be the convex cone generated by X4 in V*. The boundary of Dy is the cone
whose base is E. By the same argument as (iii) of the proof of Theorem 1, we conclude
that €4 can be identified with the dual convex cone of Dy.

(v) We shall determine the boundary of %4, and shall prove (1).
Let

g()(S,l) = S4(S,l7l)7 gl(s7t) ::S3,1(S7t71)7 g2(svt) = S1,3(S7t71)7
g3(s,1) == S22(s5,1,1),  gals,t) :==U(s,2,1)S1(s,2,1),

and let Gy, (resp. G..) be the hyperplane in IED‘[‘R which tangents to X, at the point
Qq(s 1 :1) = (go(s,t) -+ : ga(s,r)) (resp. (1:0:0:0)) and which passes through Py.
Since

X0 X1 X2 X3 X4
gO(Svt) gl(SJ) gz(s,t) g3(s7t) g4(s7t)
9 9 A 9 9
ang(SJ) asgl(svt) asg2(s7t) 35g3(s7t) asg4(s,t)
%g()(&t) %gl(svt) %82(S7t) %g:”(&t) %84(s7t)
1 1 1 1 1
— —S1(s5,2, 1) (Sa (5,1, 1) =S4 (5,7, 1)) (S22 (5,1, 1) = U 5,2, 1)y (5,1, 1))

X Gp(s,t),q(s,t) (x07x17x27x37x4)7

the defining equation of Gy, is given by Gy(s/) q(ss) = 0. Note that the range of
(p(s,1), q(s,1)) is R? ((s, t) €R?). When s* +1* — oo, defining equation of Gy,
tends to G, = 0. Thus g, , and g.. are on the boundary of ;.

Let y: }P’z]R—> W3 be the rational map defined by

S4— S S4—S S4— S
l//(a:b:c)=< 4—0931 4—S813 4 2,2).

CS.—US;" S4—US,’ S,—US,
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Take any point Q € E. Since ¥ = p o ¢4, we have y(P%) = E. Thus, there exists s,
t€R suchthat w(s:r:1)=Q,or y(1:0:0) = Q. Then Gy, or G.. tangents to E at
Q. Thus, we conclude that

By:=Ry,-({gpq| P 9€R} U{g-})

is the boundary of D =% .
(2) can be obtained by the similar argument as the proof of (2) of Theorem 1.

(3) Let X, := @u(P2), ET := y(P2), and let D} be the convex cone generated
by X4+ . If we obtain the convex closure E = of E+ , we can determine Dj as the convex
cone whose base is E . Let %, be the boundary of %" .

(vi) We shall determine By N€,"™.
Let

k() = o 1 (s = =1, k() = = 1
1 ‘_S4+1 ) 2 '_s4+1 ) 3 '_s4+1 )

I = {(ki(s),k2(s),k3(s)) cew? |seRy}={y(0:s:1) ew? | seR}.

I is the boundary of E™. Note that I" has anode at w(0:0:1) = (-1, —1, —1).
Since

{(p(s,O), q(s,O)) | S€R+} = {(p(O,s),q(O,s)) } SER+}
={(p.q) R’ | 9(p+q)*— (p—q)* =6 and p+¢ >0},

we know that the plane defined by G, 4(0, x, y, z, —1) =0 tangents to E at a point on
I if and only if 9(p +q)?> — (p — q)*> = 6* and p+q > 0. By the above observation,
we know that B4N€,"” is the following B} :

B =Ry -({gpq|9p+a)?—(p—q)?>26%p+q>0}U{g.})
=Ry - (Ry {@p(sa).q(s0) | 571 €ER1 FU{gea}) -

(vii) We shall determine one of the another parts of %jh .
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Let K (s € [0, o] )be the plane in W* which tangents to I" at y(0:s: 1), and
which passes through (—1, —1, —1). The equation of K; is given by

X y Z 1

ki(s) ko (s) ka(s) 1

Lhi(s) %ka(s) Zks(s) O

—1 —1 —1 1
$2

= mHs(O»x7y7Z7_l)~

Thus, we know that b lies on the boundary of E.F, by (ii). Let
bo:={(1-7)(-1,-1,-1)+ 7 y0:s:1) |0<T<1}

be the line segments connecting (—1, —1, —1) and w(0:s: 1), and let E, := U L.
520
The plane defined by H; = 0 tangents E" at the line segment /5 on E;. Thus, the
boundary of E© is E* UE,.
The plane defined by Gy, q(s,r) = O tangents E" at the point y(s:t:1)on ET.
Since
KSI =S G2s 1/s,2/s— s+s(t_ 1) =S G p(0,5),q(0,s) +S(t - I)H\'a

the plane defined by K, = 0 tangents E' atthe point Wy(0:s:1)on I (s>0,7r>1).
Thus, &, (s >0, # > 1) lies on the boundary of &, and

=Ry {t;]s>0,1>1}

is a part of €.

(viii) We shall determine €,"* — (B} UBY), and shall prove (3).
Let BJ", B? be the boundaries of B, , Bj. Note that we can identify €, = £
with €., . Asis shown in the above,

BI” =R {850,405 | $ 20} =Ry -{t1 | >0},
=R, - {f)s’se }U]R+ {Es1|s }
U(Ry -bot+ Ry B 1) U(Ry bt Ry -Eg ).

An element of B} :=Ry -t 1+ Ry -{h, | s € [0, |} corresponds to a plane which

tangents to E' at the point (—1, —1, —1). Thus B} C %”4”’ . Therefore, %4“’ -
B; UB, UB], and we complete the proof of (3).

(4)For s >0, let My: =Ry byt Ry {gp(r5).q) | £ =1}, a0d M : =R -bet Ry

‘g-. By the above observation, we conclude that U M, = ‘54 . Thus, we have
5€[0,09]
@. O
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REMARK 4. The polynomials Hy and K, appear in the defining equation of the
hyperplane which tangents to the boundary of X: .
Let

I(s):=s*+1, Li(s):=5, bL(s):=s, [L(s):=s I4s):=0,
Cy = {(lo(s) le(S) : lz(S) :l4(s)) EP?R } N ER+}
={ps(0:5:1) €P} | s€Ry }.
Cy is the boundary of Xj . Let L C% be a hyperplane which tangents to C4 at
©4(0:5:1) (s >0)and which passes through Py = (1:1:1:1:1). Butthese conditions

do not determine L; uniquely. Moreover we assume that L passes through a point
(fo:t) 21y : 13 : 14). Then the defining equation of Ly is

X0 X1 X2 X3 X4
W) LG B B )
El()(s) Ell(s) %lz(s) %lg(s) El4(s)
1 1 1 1 1
fo 4] %) 13 71
= —S2(I1 +S212 —2st13— (1 — S)214)Gp(075)7q(0’s)
+ {50 + (s —257)t1 + (=25 + )1
+ (1= —(1—s—s*—5° —|—s4)t4}Hv.
Thus the defining equation of Ly can be written as K, (xo, x1, x2, X3, x4) =0, if we
take a suitable 7.
REMARK 5. When we eliminate s and ¢ from

253 — st 3 —2s st—25%+1
= - [ =
p S2 ) q s2 ) s2 )

we obtain
PPa’r? —4p’q + 18p°qr+ 18pg’r — 4p*r —4q*r
—27p* —274* + 161* — 6p*q* — 80pqr?
+ 144p°r + 144¢°r — 192pg — 1287 +256 = 0.

But the singularity of the surface defined by the above equation is so complicated to
state the similar proposition like (3) of Theorem 1.

Proof of Corollary 3. We use the same notation as the above proof.
(1) Let yy: IF’]zR—> 73 = IF’?R be the holomorphic map defined by

l[/4(a b C) = (S4 : T371 2S272 : USl),
and let 74 : IP‘]%—> 73 :IP% be the rational map defined by

7'[4()60 1X] X2 X3 ZX4) = ()C() X1+ X2 X3 IX4).
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Put ¥, := yy(P%) = ma(X4). We choose a system of coordinates of 74(V*) 2R3 as

(2 w) = (M_z, N ﬁ_l)_

X0 X0 X0

Let W? := my(W3) 22R?, and we choose a system of coordinates of W? as (u, z). Note
that
m(E) = {(u,2) e W? | (u+2)*+ (2z+1)*< 1.}

is an ellipse. 74(Dy) is the convex cone in 74(V#) whose base is m4(E) and whose

vertex is (0, 0, 0). Since the line defined by —pu+ (p*>—1)z=2p—p? (resp. z=—1)
2p

77 -2, —sz) (resp. at

(=2, —1)), we conclude that g, (resp. g..) lies on the boundary of .7 = (74 (D4))*

It is easy to see that these surround .%%. Thus R -{g, | p €R U{e}} is the boundary

of .7, and we have (1).

tangents to the ellipse (u+2)?+ (2z+ 1) =1 at (

(2) Let yr: }P’z]R—> W? be the rational map defined by

284 — T S4—S
l[/z(a:b:c)=<— 4— 131 4 2,2)

S,—US; S;—US,

and let Gy := {yp(0:5:1) | s€[0, ] }. Since yo =moy, m(ET) = yr(P?).
Since the defining equation of C, is 2(z+5/4)? — (u+2)? = 1/8, we have that

m(EY) = {(mz) ew?

(u+2)2+(2z4+1)2< 1, }
2(z+5/4)> — (u+2)2<1/8

~1/2

Thus, the convex closure of 4 (E™) is
{(uz) eW? | (u+2?+(2z+1)><landu—2z>0}.

Let D/, be the convex cone generated by m4(E™). By the above observation, we con-
clude that the boundary of the dual convex cove (D),)* = fj is the union of a surface

By =Ry {(—p,p"—1,2p—p°) | pe(l, =]} =Ry {g, | p€[l. 9|},
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and two faces

B/Q ::R+ (_1a0a1)+ IRJr (17_2a0) :R+ g1+ R+ '(T3,1 _2S2,2)a
B/Zl ::R-‘r (07 17_1)+ R+ '(17_270) :R+ oot R+ '(T?a,l _2S2,2)'

Thus we have (2). [0
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