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Abstract. In the present paper, Hermite-Hadamard inequality for point-wise convex maps is
given. Jensen type inequality for the Legendre-Fenchel conjugation is also established. Ap-
plications are given to the case of quadratic functionals and positive operators.

1. Introduction

Let Ω be a μ -measurable set such that |Ω| > 0. Let D be a nonempty convex
subset of R and f : D−→R be a convex function. Let φ ∈L1(Ω) be such that φ(x)∈D
almost everywhere and f ◦φ ∈ L1(Ω) . Then, we have the integral Jensen inequality

f

(
1
|Ω|

∫
Ω

φ(x)dμ(x)
)

� 1
|Ω|

∫
Ω

f (φ(x)dμ(x), (1.1)

which provides a large utility in various mathematical contexts. As consequence, the
following double inequality

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
, (1.2)

is known as Hermite-Hadamard inequality for convex functions f : [a,b] −→ R . Such
inequality is very useful in many mathematical contexts and contributes as a tool for
establishing some interesting estimations, [1, 2, 3]. For instance, several mean inequal-
ities can be obtained via inequality (1.2). The following examples explain this latter
situation.

EXAMPLE 1.1. Let a,b > 0 with a �= b . The following double inequalities(
a+b

2

)−1

� log a− log b
a−b

� a−1 +b−1

2
,
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√
ab � 1

e

(
bb

aa

) 1
b−a

� a+b
2

,

known, respectively, as the arithmetic-logarithmic-harmonic and arithmetic-identric-
geometric mean inequalities can be deduced from the Hermite-Hadamard inequality by
choosing f (x) = 1/x and f (x) = − log x , respectively.

As well known, inequality (1.2) has an extension for real-valued convex map-
ping with variables in a linear vector space E in the following sense: Let C ⊂ E be
a nonempty convex subset of E and φ : C −→ R be a convex mapping, then for all
x,y ∈C there holds

f

(
x+ y

2

)
�
∫ 1

0
f
(
(1− t)x+ ty

)
dt � f (x)+ f (y)

2
. (1.3)

In particular, in every linear normed space (E,‖.‖) , we have∥∥∥∥x+ y
2

∥∥∥∥p

�
∫ 1

0
‖(1− t)x+ ty‖pdt � ‖x‖p +‖y‖p

2
, (1.4)

for all x,y ∈ E and every real number p � 1.
Now, let H be a real or complex Hilbert space with its inner product 〈., .〉 and the

associated norm ‖.‖ . A real function F defined on an interval J is said to be operator
monotone increasing if for all bounded self-adjoint operators A and B , defined from H
into itself, with spectra in J ,

A � B =⇒ F(A) � F(B),

for the Löwner partial ordering: A � B if and only if B−A is positive semi-definite.
The operator convexity and concavity of F are defined in a similar way.
With this, analogue of inequality (1.3) from scalar convex mapping to operator convex
one can be obtained for particular cases. Let us observe the following example.

EXAMPLE 1.2. Let A and B be as in the above. Inequality (1.4) with x = Au ,
y = Bu , u ∈ H and p = 2 yields∥∥∥∥Au+Bu

2

∥∥∥∥2

�
∫ 1

0
‖(1− t)Au+ tBu‖2dt � ‖Au‖2 +‖Bu‖2

2
.

This, with the fact that ‖u‖2 = 〈u,u〉 for all u ∈ H , can be written as〈(
A+B

2

)2

u,u

〉
�
∫ 1

0

〈(
(1− t)A+ tB

)2
u,u

〉
dt �

〈(
A2 +B2

2

)
u,u

〉
,

or in terms of Löwner operator order(
A+B

2

)2

�
∫ 1

0

(
(1− t)A+ tB

)2
dt � A2 +B2

2
,

which is an analogue of inequality (1.3) for the convex operator map A �−→ A2 .
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2. Point-wise convexity

We preserve the same notations as in the previous section. The notation R
H

refers
to the space of all functions defined from H into R = R∪{−∞,+∞} equipped with
the point-wise partial ordering,

∀ f , g ∈ R
H
, f � g ⇐⇒ ∀u ∈ H f (u) � g(u),

where we extend the structure of R on R by setting

∀ x ∈ R, −∞ � x � +∞, (+∞)+ x = +∞, 0.∞ = ∞.

With this, let C be a nonempty convex subset of R
H

and Φ : C −→ R
H

be a map. We
say that Φ is point-wise convex if for all f ,g ∈ C and all real t ∈]0,1[ there holds

Φ
(
(1− t) f + tg

)
� (1− t)Φ( f )+ tΦ(g).

The point-wise concavity and point-wise monotonicity notions can be defined in a sim-
ilar manner.

Let R̃ := R∪{+∞} and f : H −→ R̃ , the notation f ∗ stands for the Legendre-
Fenchel conjugate of the functional f defined by

∀u∗ ∈ H f ∗(u∗) := sup
u∈H

{Re〈u,u∗〉− f (u)} = sup
u∈dom f

{Re〈u,u∗〉− f (u)},

where dom f refers to the effective domain of f defined by

dom f := {u ∈ H, f (u) < +∞}.

The bi-conjugate duality f �−→ f ∗∗ := ( f ∗)∗ is defined similarly. It is well known that
f = f ∗∗ if and only if f ∈ Γ0(H) , where the notation Γ0(H) refers to the cone of all
convex lower semi-continuous functionals that are not identically equal to +∞ . We
denote by σ = (1/2)‖.‖2 the unique self-conjugate convex functional.

An important and typical example of R̃
H− functional having good properties is fA

defined by

∀u ∈ H fA(u) = (1/2)Re〈Au,u〉,
where A is a bounded linear operator defined from H into itself. The functional fA is
quadratic in the sense fA(λu) = |λ |2 fA(u) for all u ∈ H and all complex number λ .
It is easy to see that the conjugate operation preserves the quadratic character, i.e. if
f is quadratic so is f ∗ and every continuous quadratic functional can be written in the
form fA . For further details about the above notions, we refer the reader to [4, 11] for
instance.

Now, we will state some examples of mappings involving functional variables and
having some interesting properties.
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EXAMPLE 2.1. The first important example of mapping with functional variable
is the conjugate duality map f −→ f ∗ . It is well-known that if A is a positive definite
operator then, f ∗A takes the explicit form,

∀u∗ ∈ H f ∗A(u∗) = (1/2)〈A−1u∗,u∗〉.
In another way, the conjugate operation can be interpreted as an inverse in the sense

( fA)∗ = fA−1 ,

for every positive definite operator A defined from H into itself. Further, it is well-
known that the map f �−→ f ∗ is point-wise convex.

EXAMPLE 2.2. For f ∈ Γ0(H) and u ∈ H , we set

L ( f )(u) =
∫ 1

0

σ(u)−
(
(1− t)σ + t f

)∗
(u)

t
dt,

which is the Logarithm of the functional f in convex analysis introduced in [6]. This
functional logarithm extends the logarithm of a positive definite operator A in the sense
that

L ( fA) = flog A.

As studied in [6], the map f �−→ L ( f ) has analogue properties of that A �−→ log A .
In particular, f �−→ L ( f ) is point-wise concave and L ( f ∗) = −L ( f ) . This justifies
again that the conjugate operation can be interpreted as an inverse in some sense.

EXAMPLE 2.3. Let f ∈ Γ0(H) and 0 < m < 1, for u ∈ H define

f (m)(u) =
sin(mπ)

π

∫ +∞

0

tm−1

1+ t

(
1

1+ t
σ +

t
1+ t

f ∗
)∗

(u)dt, (2.1)

which is the convex better m-iterate of f introduced in [7]. When m = 1/n , n � 2
integer, f (1/n) is said the convex n-th root of f . As shown in [7], the functional f (m)

is a reasonable extension of Am from the case that the variable A is a positive operator
to the case that the variable is a convex functional in the following sense

( fA)(m) = fAm .

Further, f �−→ f (m) is point-wise concave.

Now, we will observe the following question: what should be the analogue of (1.1)
and (1.2) when the scalar-valued convex function f is a functional-valued point-wise
convex map Φ and the scalar variables a and b are functional variables f and g .

The fundamental goal of this paper is to give an analogue of inequality (1.1) for
the point-wise convex duality map and analogue of (1.2) for a point-wise convex map.
As consequence we deduce that of f �−→ f ∗ , f �−→ L ( f ) and f �−→ f (m) . In the
quadratic case, we immediately obtain those of operators.
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3. Hermite-Hadamard inequality for point-wise convex maps

Our first main result is recited in the following.

THEOREM 3.1. Let C be a nonempty convex subset of R̃
H and Φ : C −→ R̃

H

be a point-wise convex map. Then the functional double inequality

Φ
(

f +g
2

)
�
∫ 1

0
Φ
(
(1− t) f + tg

)
dt � Φ( f )+ Φ(g)

2
(3.1)

holds for all f ,g ∈ C .
If Φ is point-wise concave then the above functional inequalities are reversed.

Proof. First, we notice that the functional variables f and g of the map Φ can
take the value +∞ and so the functional equalities f − f = 0 and f −g = −(g− f ) are
not always true. For the same, the functional inequalities f � g and f −g � 0 are not,
in general, equivalent. With this, it is easy to verify that

f +g =
(
(1− t) f + tg

)
+
(
t f +(1− t)g

)
,

for all f ,g ∈ R̃
H and t ∈]0,1[ . By the point-wise convexity of Φ we then have

Φ
(

f +g
2

)
� 1

2

(
Φ
(
(1− t) f + tg

)
+ Φ

(
t f +(1− t)g

))
� Φ( f )+ Φ(g)

2
(3.2)

Integrating the three sides of (3.2) and remarking that∫ 1

0
Φ
(
(1− t) f + tg

)
dt =

∫ 1

0
Φ
(
t f +(1− t)g

)
dt,

we deduce the desired result. �
If we apply Theorem 3.1 for the point-wise convex map f �−→ f ∗ on R̃

H we
obtain the following result.

COROLLARY 3.2. Let f ,g ∈ R̃
H then there holds(

f +g
2

)∗
�
∫ 1

0

(
(1− t) f + tg

)∗
dt � f ∗ +g∗

2
. (3.3)

Now, applying successively the above theorem for the point-wise concave maps
f �−→ L ( f ) and f �−→ f (m) on Γ0(H) , we immediately obtain the following.

COROLLARY 3.3. Let f ,g ∈ Γ0(H) and 0 < m < 1 be a real number. Then we
have the following

L ( f )+L (g)
2

�
∫ 1

0
L
(
(1− t) f + tg

)
dt � L

(
f +g

2

)
.

f (m) +g(m)

2
�
∫ 1

0

(
(1− t) f + tg

)(m)
dt �

(
f +g

2

)(m)

.
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REMARK 3.1. The double functional inequality (3.3) implies that(
f ∗ +g∗

2

)∗
�
(∫ 1

0

(
(1− t) f + tg

)∗
dt

)∗
� f +g

2
.

Setting

H ( f ,g) :=
(

f ∗ +g∗

2

)∗
, L ( f ,g) :=

(∫ 1

0

(
(1− t) f + tg

)∗
dt

)∗
,

which are respectively the harmonic and logarithmic functional means of f and g , we
obtain the arithmetic-logarithmic-harmonic functional mean inequality, [8]

H ( f ,g) � L ( f ,g) � A ( f ,g) :=
f +g

2
.

In particular, choosing f ,g : R−→R such that f (x) = (1/2)ax2, g(x) = (1/2)bx2 with
a > 0, b > 0, we find again the statement of Example 1.1.

As application for bounded linear operators, Theorem 3.1 when combined with
Examples 2.1, 2.2, 2.3 yields the following result.

COROLLARY 3.4. Let A and B be two positive definite operators defined from H
into itself. Then one has(

A+B
2

)−1

�
∫ 1

0

(
(1− t)A+ tB

)−1
dt � A−1 +B−1

2
. (3.4)

log A+ log B
2

�
∫ 1

0
log
(
(1− t)A+ tB

)
dt � log

(
A+B

2

)
. (3.5)

Am +Bm

2
�
∫ 1

0

(
(1− t)A+ tB

)m
dt �

(
A+B

2

)m

.

Various operator mean inequalities can be deduced from the above. As examples,
we may state the following.

EXAMPLE 3.1. Since the map X �−→ X−1 is operator decreasing (on the convex
cone of positive invertible operators) then inequality (3.4) implies that(

A−1 +B−1

2

)−1

�
(∫ 1

0

(
(1− t)A+ tB

)−1
dt

)−1

� A+B
2

,

Setting

H (A,B) :=
(

A−1 +B−1

2

)−1

= 2A(A+B)−1B,

L (A,B) :=
(∫ 1

0
((1− t)A+ tB)−1 dt

)−1

,
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A (A,B) :=
A+B

2
,

which are, respectively the harmonic, logarithmic and arithmetic monotone operator
means, we obtain

H (A,B) � L (A,B) � A (A,B),

called the arithmetic-logarithmic-harmonic operator mean inequality, see [8]. In the
scalar case, the above double inequality is reduced to

2ab
a+b

� b−a
log b− log a

� a+b
2

, a �= b.

EXAMPLE 3.2. The double operator inequality (3.5) is equivalent to

exp
log A+ log B

2
� exp

∫ 1

0
log
(
(1− t)A+ tB

)
dt � A+B

2
,

where � is the chaotic partial ordering defined by, A � B if and only if log A � log B .
In terms of operator means we obtain

CG (A,B) � CI (A,B) � A (A,B),

which is the arithmetic-chaotic identric-chaotic geometric operator mean inequality,
with

CG (A,B) := exp
(1

2
log A+

1
2

log B
)

is the chaotic geometric operator mean of A and B , [5], and

CI (A,B) := exp
∫ 1

0
log
(
(1− t)A+ tB

)
dt

is the chaotic identric operator mean of A and B , [9, 10].

We end this section by stating another application for bounded linear operators.
In what previous we have seen that if A is a positive definite operator then ( fA)∗ =
fA−1 . In the case where the operator A is only positive semi-definite, i.e. not necessary
invertible, and A1/2 denotes the square root of A (i.e. the unique positive semi-definite
operator X such that X2 = A) then it is well known that

( fA)∗(u) = (1/2)‖(A1/2)+u‖2 if u ∈ ran A1/2, ( fA)∗(u) = +∞ else, (3.6)

where (A1/2)+ refers to the pseudo-inverse of A1/2 . It follows that, A � B if and only
if ran A1/2 ⊂ ran B1/2 and ‖(B1/2)+u‖ � ‖(A1/2)+u‖ for all u ∈ ran A1/2 . This when
combined with Theorem 3.1 yields the following result.

THEOREM 3.5. Let A and B be two positive semi-definite operators defined from
H into itself. Then

ran A1/2∩ ran B1/2 ⊆ ran
(
(1− t)A+ tB

)1/2 ⊆ ran

(
A+B

2

)1/2

(3.7)
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holds for all t ∈ [0,1] almost everywhere, and∥∥∥∥∥
((

A+B
2

)1/2
)+

u

∥∥∥∥∥
2

�
∫ 1

0

∥∥∥∥∥
((

(1− t)A+ tB
)1/2

)+

u

∥∥∥∥∥
2

dt

� 1
2
‖(A1/2)+u‖2 +

1
2
‖(B1/2)+u‖2

holds for all u ∈ ran A1/2∩ ran B1/2 .

The above theorem has many interesting consequences. For instance, the double
inclusion (3.7) gives us new good information. More precisely, the following result
holds.

COROLLARY 3.6. Let A and B be two positive semi-definite operators defined
from H into itself. Then one has

max
0�t�1

ran
(
(1− t)A+ tB

)1/2
= ran

(
A+B

2

)1/2

,

where the maximum is taken with respect to the set-inclusion partial ordering, i.e. M ⊂
H,N ⊂ H, M � N if and only if M ⊂ N .

4. Jensen inequality for Legendre-Fenchel conjugation

Let T be a nonempty set and H a Hilbert space. For fixed t ∈ T , let F(t, .) :
H −→ ĨR which we will briefly write Ft . The functional F∗

t : H −→ ĨR denotes the
conjugate of Ft for fixed t ∈ T . Now, we are in a position to state the integral Jensen
type inequality, recited in the following.

THEOREM 4.1. Let dν(t) be a probability measure on T and (Ft)t∈T be a fam-
ily of measurable functions with respect to dν(t) . Then, the following inequality holds(∫

T
Ftdν(t)

)∗
�
∫

T
F∗

t dν(t).

Proof. By definition, we can write for all u∗ ∈ H(∫
T

Ftdν(t)
)∗

(u∗) = sup
u∈H

∫
T

(
Re〈u∗,u〉−Ft(u)

)
dν(t),

or again (∫
T

Ftdν(t)
)∗

(u∗) �
∫

T
sup
u∈H

(
Re〈u∗,u〉−Ft(u)

)
dν(t).

The desired inequality follows, thus completes the proof. �
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Theorem 4.1 has many consequences involving interesting functional inequalities.
For instance, the Hermite-Hadamard type inequalities proved in the above section can
be again deduced from the above theorem by setting

Ft = (1− t) f + tg, T = [0,1], dν(t) = dt.

Further, we have also the following results.

COROLLARY 4.2. Let (Ft)t∈T be a family of Γ0(H)-functionals. Then, we have
the following inequality

L

(∫
T

Ftdν(t)
)

�
∫

T
L (Ft)dν(t).

Proof. For s ∈]0,1[ we can write

σ −
(

(1− s)σ + s
∫

T
Ftdν(t)

)∗
= σ −

(∫
T

(
(1− s)σ + sFt

)
dν(t)

)∗
.

According to Theorem 4.1, we have

σ −
(

(1− s)σ + s
∫

T
Ftdν(t)

)∗
�
∫

T

(
σ − ((1− s)σ + sFt

)∗)
dν(t).

By Example 2.2 and Fubini Theorem we deduce the desired result. �

COROLLARY 4.3. Let (Ft)t∈T be as in the above, then the following inequality
holds (∫

T
Ftdν(t)

)(m)

�
∫

T
F (m)

t dν(t).

Proof. Similar to that of the above corollary. We omit the routine details. �
As application for linear operators, Theorem 4.1 combined respectively with Ex-

amples 2.1, 2.2, 2.3 gives the next result.

COROLLARY 4.4. Let (At)t∈T be a family of positive definite operators defined
from H into itself. Then the following operator inequality holds(∫

T
At dν(t)

)−1

�
∫

T
A −1

t dν(t).

log

(∫
T

Atdν(t)
)

�
∫

T
logAt dν(t).(∫

T
Atdν(t)

)m

�
∫

T
A m

t dν(t).

REMARK 4.1. With some precautions, the above notions and their related results
can be extended from the case of a Hilbert space to the case of a locally convex linear
space.
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