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Abstract. Recently (see [11]) R.A.C. Ferreira, D.F.M. Torres proved some linear and nonlinear
Wendroff type inequalities on time scales. Similar results were proved also by D.R. Anderson
([2] and [3]). It is well known (see [9]) that the Wendroff inequality is not the best possible
upper estimate for the solutions of the corresponding integral inequality. The aim of our paper is
to improve the known Wendroff type inequalities on time scales and to give a different proof for
the existing inequalities. This improvement is motivated also by the work of A. Abdeldaim and
M. Yakout (see [1] and [5]). The method we use is based on a variant of the abstract comparison
Gronwall lemma (see [18], [15]) and on the theory of Picard operators ([16]).

1. Introduction

1.1. Time scale analysis

The time scale calculus was founded by Stefan Hilger in his PhD thesis (see [12])
as a unification of the classical real analysis, the q -calculus and the theory of difference
equations. Since then this theory has been extensively studied in order to obtain a
better understanding and a unified viewpoint of mathematical phenomenons occurring
in the theory of difference equations and in the theory of differential equations. For
an excellent introduction to the calculus on time scales and to the theory of dynamic
equations on time scales we recommend the books [7] and [8] by M. Bohner and A.
Peterson. Throughout the paper we use the basic notations from these books.

1.1.1. Wendroff type inequalities on time scales

In what follows we assume that T1 and T2 are time scales with at least two points
and we consider the time scale intervals T̃1 = [a1,∞)∩T1 and T̃2 = [a2,∞)∩T2, for
a1 ∈T1 and a2 ∈T2. Let us denote D = T̃1× T̃2. We also use the notation R

+
0 = [0,∞)

and N0 = N∪{0}, while ep(t,s) denotes the usual exponential function on time scales
with p∈R, where p is a regressive function (see [7]). In [11] the authors obtained the
following results:
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THEOREM 1.1. (Theorem2.1. in [11]) Let u(t1,t2), w(t1,t2), a(t1,t2)∈C(D,R+
0 )

with w(t1, t2) nondecreasing in each of its variables. If

u(t1, t2) � w(t1,t2)+
∫ t1

a1

∫ t2

a2

a(s1,s2)u(s1,s2)Δ1s1Δ2s2, (1.1)

for (t1, t2) ∈ D, then

u(t1,t2) � w(t1,t2)e∫ t2
a2 a(t1,s2)Δ2s2

(t1,a1), (t1,t2) ∈ D. (1.2)

THEOREM 1.2. (Theorem2.2. in [11]) Let u(t1,t2), w(t1,t2), a(t1,t2)∈C(D,R+
0 ) ,

with w(t1, t2) and a(t1,t2) nondecreasing in each of the variables and g(t1,t2,s1,s2) ∈
C(S,R+

0 ), where S = {(t1,t2,s1,s2) ∈ D×D : a1 � s1 � t1,a2 � s2 � t2} and g is
nondecreasing in the first two variables. If u satisfies the condition

u(t1, t2) � w(t1,t2)+a(t1,t2)
∫ t1

a1

∫ t2

a2

g(t1,t2,s1,s2)u(s1,s2)Δ1s1Δ2s2, (1.3)

for (t1, t2) ∈ D, then

u(t1, t2) � w(t1,t2)e∫ t2
a2 a(t1,t2)g(t1,t2,t1,s2)Δ2s2

(t1,a1), ∀(t1,t2) ∈ D. (1.4)

In what follows we improve (1.2) and (1.4). These improved versions imply also
improved bounds in the nonlinear cases (see Theorem 3.1 and 3.2 in [11]). Applying
the same technique we can obtain new (and simple) proofs for the previous theorems
too.

1.2. Picard operators

The Picard operator technique was applied by many authors to study some func-
tional nonlinear integral equations, see for example [4], [15], [16], [17]. We use the
terminologies and notations from [15], [16], [17].

Let (X ,→) be an L-space ([16]), A : X → X an operator. We denote by FA the
fixed points of A. We also denote A0 := 1X , A1 := A, . . . ,An+1 := An ◦A, n ∈ N the
iterate operators of the operator A.

DEFINITION 1.3. ([15], [16], [17]) A is a Picard operator (briefly PO), if there
exists x∗A ∈ X such that:

(i) FA = {x∗A};
(ii) An(x) → x∗A as n → ∞,∀x ∈ X .

In the following we recall two abstract Gronwall lemmas.

LEMMA 1.4. ([15], [16]) (Abstract Gronwall lemma) Let (X ,→,�) be an or-
dered L-space and A : X → X an operator. We assume that:

(i) A is PO;
(ii) A is increasing.
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If we denote by x∗A the unique fixed point of A, then:
(a) x � A(x) ⇒ x � x∗A;
(b) x � A(x) ⇒ x � x∗A.

LEMMA 1.5. ([15], [16]) (Abstract Gronwall-comparison lemma) Let (X ,→,�)
be an ordered L-space and A1,A2 : X → X be two operators. We assume that:

(i) A1 is increasing;
(ii) A1 and A2 are POs;
(iii) A1 � A2 .
If we denote by x∗2 the unique fixed point of A2, then

x � A1(x) ⇒ x � x∗2.

These lemmas are very powerful because once we prove that the operator is a
Picard operator and we have an L-space structure, the Gronwall type inequalities can be
proved without any additional effort (calculation). In many Gronwall type inequalities
the upper bound of the solution is the solution of the correspondingfixed point equation.
These can be proved using Lemma 1.4. This is not the case of the Wendroff type
inequalities, where the upper bound is not the solution of the corresponding fixed point
equation (see [9]). To handle these cases Lemma 1.5 can be used (see [18]). The main
difficulty in using Lemma 1.5 is the construction of the operator A2. To avoid this we
propose the following variant:

LEMMA 1.6. (Abstract Gronwall lemma) Let (X ,→,�) be an orderd L-space
and A : X → X be an operator with the following properties:

(i) A is increasing;
(ii) A is PO;
(iii) there exists x with the property Ax � x.
If for some x ∈ X we have x � Ax, then x � x.

Proof. A is increasing, so the inequality x � Ax implies x � Anx, ∀n ∈ N. Due to
the Picard property of the operator A this implies x � x∗, where x∗ is the unique fixed
point of the operator A. On the other hand the inequality Ax � x implies Anx � x and
so x∗ � x, which completes the proof. �

REMARK 1.7. If the conditions of Lemma 1.4 or 1.5 are satisfied, than the condi-
tions of Lemma 1.6 are also satisfied. From this viewpoint Lemma 1.6 is more general
than Lemma 1.4 and Lemma 1.5. We have to mention that in many cases the inequal-
ity Ax � x can be established by using the operator A2 with the properties A � A2 and
A2x = x. Our result from Theorem 3.2 can not be proved with this technique because the
operator A2 for which A2x = x does not satisfy A � A2. This motivates the necessity
of Lemma 1.6.
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2. Preliminary results

In this section we extend the metric introduced by C.C. Tisdell and A. Zaidi in
[19] to functions with several variables. This allows us to prove that our operators are
Picard operators, in fact they are contractions if we use a well chosen metric. Suppose
that α,β > 0 are real constants and define the functionals

dα ,β :C([a1,σ1(b1)]T1×[a2,σ2(b2)]T2 ,R
n)×C([a1,σ1(b1)]T1×[a2,σ2(b2)]T2 ,R

n))→R

(2.1)
by

dα ,β (u,v) = sup
s1∈[a1,σ1(b1)]T1
s2∈[a2,σ2(b2)]T2

‖u(s1,s2)− v(s1,s2)‖
eα(s1,a1) · eβ (s2,a2)

(2.2)

for all u,v ∈C([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2 ,R
n) and

‖ · ‖α ,β : C([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2 ,R
n) → R (2.3)

‖u‖α ,β = sup
s1∈[a1,σ1(b1)]T1
s2∈[a2,σ2(b2)]T2

‖u(s1,s2)‖
eα(s1,a1) · eβ (s2,a2)

(2.4)

for all u ∈ C([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2 ,R
n), where ‖ · ‖ : R

n → R is a norm on
R

n.

LEMMA 2.1. If α,β > 0, and σ1(b1) < ∞,σ2(b2) < ∞, we have the following
properties:

1. dα ,β is a metric on C([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2 ,R
n);

2. C([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2 ,R
n) is a complete metric space with dα ,β ;

3. ‖ · ‖α ,β is a norm on C([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2 ,R
n) and it is equivalent

to ‖ · ‖0,0.

4. (C([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2 ,R
n),‖ · ‖α ,β ) is a Banach space.

The proof of this lemma is quite straightforward, so we omit it. For the simplic-
ity of notation in what follows we denote C([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2 ,R) by X .
Using this Bielecki type (or “TZ”) metric, we prove the following properties:

THEOREM 2.2. If w,a ∈ X , σ1(b1) < ∞,σ2(b2) < ∞, the operator A1 : X → X
defined by

A1(u)(t1,t2) = w(t1,t2)+
∫ t1

a1

∫ t2

a2

a(s1,s2)u(s1,s2)Δ1s1Δ2s2, (2.5)

is well defined and there exist α,β > 0 such that A1 is a contraction on (X ,dα ,β ).
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THEOREM 2.3. If w,a ∈ X , g is continuous, σ1(b1) < ∞,σ2(b2) < ∞, the oper-
ator A2 : X → X defined by

A2(u)(t1, t2) = w(t1,t2)+a(t1,t2)
∫ t1

a1

∫ t2

a2

g(t1,t2,s1,s2)u(s1,s2)Δ1s1Δ2s2, (2.6)

is well defined and there exist α,β > 0 such that A2 is a contraction on (X ,dα ,β ).

Proof of Theorem 2.2. Denote by M the maximumof a(s1,s2) if s1 ∈ [a1,σ1(b1)]T1

and s2 ∈ [a2,σ2(b2)]T2 . Due to the given conditions M exists and M < ∞.

|A1(u)(t1, t2)−A1(v)(t1,t2)| �
∫ t1

a1

∫ t2

a2

|a(s1,s2)||u(s1,s2)− v(s1,s2)|Δ1s1Δ2s2

�M
∫ t1

a1

∫ t2

a2

|u(s1,s2)−v(s1,s2)|
eα(s1,a1)eβ (s2,a2)

eα(s1,a1)eβ (s2,a2)Δ1s1Δ2s2

�M‖u− v‖α ,β

∫ t1

a1

∫ t2

a2

eα(s1,a1)eβ (s2,a2)Δ1s1Δ2s2

� M
αβ

‖u− v‖α ,βeα(t1,a1)eβ (t2,a2).

The last inequality implies

‖A1(u)−A1(v)‖α ,β � M
αβ

‖u− v‖α ,β , (2.7)

so A1 is a contraction on X if αβ > M. �

REMARK 2.4. The proof of Theorem 2.3 can be done in a similar way by using
the maximum of g on ([a1,σ1(b1)]T1 × [a2,σ2(b2)]T2)

2.

REMARK 2.5. We can obtain the contractive property of a more general nonlinear
operator A3 : X → X defined by

A3(u)(t1, t2) = w(t1,t2)+a(t1,t2)
∫ t1

a1

∫ t2

a2

f (t1,t2,s1,s2,u(s1,s2))Δ1s1Δ2s2,

where f is continuous and has the Lipschitz property in the last variable.

REMARK 2.6. Due to Theorem 2.2 and 2.3 the operators A1 and A2 are Picard
operators.

In the calculations we use the following two properties:

LEMMA 2.7. If f is continuous and is continuously Δ differentiable with respect
to t, then the function

U(t) =
∫ t

a
f (s,t)Δs
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admits a Δ derivative with respect to t and

UΔ(t) =
∫ t

a

∂ f
Δt

(s,t)Δs+ f (t,t).

LEMMA 2.8. If f : E → R is a continuous function, where

E = {(s,t) ∈ T1 ×T2|a � t < b,a � s < t},
then the function g : [a,b) → R, defined by

g(t) =
∫ t

a
f (s,t)Δ1s

is Δ integrable on [a,b) and we have

∫ b

a

∫ t

a
f (s,t)Δ1sΔ2t =

∫ b

a

∫ b

σ(s)
f (s,t)Δ2tΔ1s.

REMARK 2.9. If f : E → R is a continuous function, where

E = {(t1,t2,s1,s2) ∈ (T1 ×T2)2|a1 � s1 < t1,a2 � s2 < t2},
then the function g : [a1,t1)× [a2,t2) → R, defined by

g(s1,s2) =
∫ s1

a1

∫ s2

a2

f (t1,t2,ξ1,ξ2)Δ1ξ1Δ2ξ2

is Δ integrable on [a1,t1)× [a2,t2) and we have
∫ t1

a1

∫ t2

a2

g(s1,s2)Δ1s1Δ2s2

=
∫ t1

a1

∫ t2

a2

∫ t1

σ1(s1)

∫ t2

σ2(s2)
f (ξ1,ξ2,s1,s2)Δ1ξ1Δ2ξ2Δ1s1Δ2s2.

3. Main results

3.1. Linear inequalities

In this section we give new estimates for u and we prove that these are better than
(1.2), (1.4). We use the following lemma

LEMMA 3.1. For the function V : E → R, defined by

V (t1,t2,s1,s2) = e t2∫
s2

a(t1,ξ2)Δ2ξ2

(t1,s1),

where
E = {(t1,t2,s1,s2) ∈ (T1 ×T2)2|a1 � s1 < t1,a2 � s2 < t2}
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we have

a(s1,s2)V (t1,t2,σ1(s1),σ2(s2)) � ∂ 2V
Δ1s1Δ2s2

(t1,t2,s1,s2). (3.1)

and

a(t1,t2)V (t1,t2,s1,s2) � ∂ 2V
Δ1t1Δ2t2

(t1, t2,s1,s2). (3.2)

Proof. The function V is Δ1 differentiable with respect to s1 and we have

∂V
Δ1s1

(t1,t2,s1,s2) = −
t2∫

s2

a(s1,ξ2)Δ2ξ2 ·V(t1,t2,σ1(s1),s2).

Moreover the function ∂V
Δ1s1

is Δ2 differentiable and we have

∂ 2V
Δ1s1Δ2s2

(t1, t2,s1,s2) =
t2∫

s2

a(s1,ξ2)Δ2ξ2

t1∫

σ1(s1)

a(ξ1,s2)Δ1ξ1 ·V (t1,t2,σ1(s1),σ(s2))

+a(s1,s2)V (t1,t2,σ1(s1),σ2(s2)).

Since the function a is nonnegative we obtain

a(s1,s2)V (t1,t2,σ1(s1),σ2(s2)) � ∂ 2V
Δ1s1Δ2s2

(t1,t2,s1,s2).

Using a similar argument we have

∂V
Δ1t1

(t1,t2,s1,s2) =
t2∫

s2

a(t1,ξ2)Δ2ξ2 ·V (t1,t2,s1,s2).

The function ∂V
Δ1t1

is Δ2 differentiable with respect to t2 and we have

∂ 2V
Δ1t1Δ2t2

(t1, t2,s1,s2) =

σ2(t2)∫
s2

a(t1,ξ2)Δ2ξ2

t1∫
s1

a(ξ1,t2)Δ1ξ1 ·V (t1, t2,s1,s2)

+a(t1,t2)V (t1,t2,s1,s2).

Since the function a is nonnegative we obtain

a(t1, t2)V (t1,t2,s1,s2) � ∂ 2V
Δ1t1Δ2t2

(t1, t2,s1,s2). �

THEOREM 3.2. Let u(t1,t2), w(t1,t2), a(t1,t2) ∈C(D,R+
0 ) with w(t1,t2) nonde-

creasing in each of its variables. If u(t1,t2) satisfies

u(t1,t2) � w(t1,t2)+
t1∫

a1

t2∫
a2

a(s1,s2)u(s1,s2)Δ1s1Δ2s2, (3.3)
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for (t1, t2) ∈ D, then

u(t1, t2) � w(t1, t2)+
t1∫

a1

t2∫
a2

a(s1,s2)w(s1,s2)e∫ t2
σ2(s2) a(t1,η)Δ2η (t1,σ1(s1))Δ1s1Δ2s2, (3.4)

for (t1, t2) ∈ D, where σ1 and σ2 are the jump operators on T1 respectively T2.

Proof. The integral operator A : C(D) →C(D) defined by

A(u)(t1,t2) = w(t1,t2)+
∫ t1

a1

∫ t2

a2

a(s1,s2)u(s1,s2)Δ1s1Δ2s2, (3.5)

is a Picard operator (due to Theorem 2.2). Moreover the space (C(D),‖ · ‖) is an
ordered Banach space with the natural ordering

u � v ⇔ u(t1,t2) � v(t1,t2), ∀(t1,t2) ∈ D

and the operator A is an increasing operator, so the inequality u � Au implies u � u∗,
where u∗ is the unique solution of the equation Au = u. On the other hand it is easy to
check that the unique fixed point of A is not the function

u(t1, t2) = w(t1, t2)+
∫ t1

a1

∫ t2

a2

a(s1,s2)w(s1,s2)e∫ t2
σ2(s2) a(t1,η)Δ2η(t1,σ1(s1))Δ1s1Δ2s2,

so by Lemma 1.6 we need to prove Au � u. Using the function V from Lemma 3.1 it
is sufficient to prove

t1∫
a1

t2∫
a2

a(s1,s2)w(s1,s2)Δ1s1Δ2s2 (3.6)

+
t1∫

a1

t2∫
a2

s1∫
a1

s2∫
a2

a(s1,s2)a(ξ1,ξ2)w(ξ1,ξ2)V (s1,s2,σ1(ξ1),σ2(ξ2))Δ1ξ1Δ2ξ2Δ1s1Δ2s2

(3.7)

�
t1∫

a1

t2∫
a2

a(s1,s2)w(s1,s2)V (t1,t2,σ1(s1),σ2(s2))Δ1s1Δ2s2. (3.8)

Changing the order of integration in (3.7) and renaming the variables it is sufficient to
prove

1+
t1∫

σ1(s1)

t2∫

σ2(s2)

a(ξ1,ξ2)V (ξ1,ξ2,σ1(s1),σ2(s2))Δ1ξ1Δ2ξ2 � V (t1,t2,σ1(s1),σ2(s2)).

This can be obtained by integrating (3.2) from σ1(s1) to t1 and than from σ2(s2) to
t2. �
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THEOREM 3.3. If the conditions of Theorem 3.2 are satisfied, the estimation of
the Theorem 3.2 is better than the estimation from Theorem 1.1.

Proof. Integrating inequality (3.1) with respect to s1 and s2 on the rectangle
[a1,t1)T1 × [a2, t2)T2 we deduce

∫ t1

a1

∫ t2

a2

a(s1,s2)V (t1,t2,σ1(s1),σ2(s2))Δ1s1Δ2s2

�
∫ t1

a1

∫ t2

a2

∂ 2V
Δ1s1Δ2s2

(t1,t2,s1,s2)Δ1s1Δ2s2

= V (t1, t2, t1,t2)−V(t1,t2,a1,t2)−V(t1,t2,t1,a2)+V(t1,t2,a1,a2).

But V (t1, t2, t1, t2) = V (t1,t2,a1,t2) = V (t1,t2,t1,a2) = 1, so we obtain

∫ t1

a1

∫ t2

a2

a(s1,s2)V (t1,t2,σ1(s1),σ2(s2))Δ1s1Δ2s2 � V (t1,t2,a1,a2)−1. (3.9)

The function w is nonnegative and nondecreasing in both variables, hence we have

w(t1, t2)+
t1∫

a1

t2∫
a2

a(s1,s2)w(s1,s2)e∫ t2
σ2(s2) a(t1,η)Δ2η(t1,σ1(s1))Δ1s1Δ2s2

� w(t1, t2)

⎛
⎝1+

t1∫
a1

t2∫
a2

a(s1,s2)e∫ t2
σ2(s2) a(t1,η)Δ2η(t1,σ1(s1))Δ1s1Δ2s2

⎞
⎠

� w(t1, t2)V (t1,t2,a1,a2).

This inequality shows that the estimation in Theorem 3.2 is better than the estimation
from Theorem 1.1. �

LEMMA 3.4. For the function W : E → R, defined by

W (t1,t2,s1,s2) = e∫ t2
s2 a(t1,t2)g(t1,t2,t1,η)Δ2η(t1,s1),

where
E = {(t1,t2,s1,s2) ∈ (T1 ×T2)2|a1 � s1 < t1,a2 � s2 < t2}

we have

a(t1, t2)g(t1, t2,s1,s2)W (t1,t2,σ1(s1),σ2(s2)) � ∂ 2W
Δ1s1Δ2s2

(t1,t2,s1,s2) (3.10)

REMARK 3.5. The proof of the Lemma 3.4 is similar to the proof of the Lemma
3.1.
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THEOREM 3.6. Let u(t1,t2), w(t1,t2), a(t1,t2) ∈ C(D,R+
0 ) , with w(t1,t2) and

a(t1,t2) nondecreasing in each of the variables and g(t1,t2,s1,s2) ∈ C(S,R+
0 ), where

S = {(t1, t2,s1,s2) ∈ D×D : a1 � s1 � t1,a2 � s2 � t2} and g is nondecreasing in the
first two variables. If u satisfies the condition

u(t1, t2) � w(t1,t2)+a(t1,t2)
∫ t1

a1

∫ t2

a2

g(t1,t2,s1,s2)u(s1,s2)Δ1s1Δ2s2, (3.11)

for (t1, t2) ∈ D, then

u(t1,t2) � w(t1,t2) (3.12)

+a(t1, t2)
t1∫

a1

t2∫
a2

g(t1,t2,s1,s2)w(s1,s2)W (t1,t2,σ1(s1),σ2(s2))Δ1s1Δ2s2,

for (t1, t2) ∈ D, where σ1 and σ2 are the jump operators on T1 respectively T2.

Proof. We apply the same technique as in [11]. We consider that t∗1 and t∗2 are
fixed and we consider the operator A∗ : C(D) →C(D) defined by

A∗(u)(t1, t2) = w(t1,t2)+a(t∗1 ,t
∗
2 )

∫ t1

a1

∫ t2

a2

g(t∗1 ,t∗2 ,s1,s2)u(s1,s2)Δ1s1Δ2s2. (3.13)

It is clear that if u satisfies the conditions of Theorem 3.6, then u(t1,t2) � A∗(u)(t1,t2),
for t � t∗1 and t2 � t∗2 . t∗1 ,t∗2 beeing fixed, Theorem 3.2 implies

u(t1,t2) � w(t1,t2) (3.14)

+
t1∫

a1

t2∫
a2

a(t∗1 ,t∗2 )g(t∗1 ,t∗2 ,s1,s2)w(s1,s2)H(s1,s2,t1,t2,t
∗
1 ,t∗2 )Δ1s1Δ2s2,

where
H(s1,s2,t1,t2,t

∗
1 ,t∗2 ) = e∫ t2

σ2(s2) a(t∗1 ,t∗2 )g(t∗1 ,t∗2 ,t1,η)Δ2η(t1,σ1(s1))

This inequality is valid for t1 = t∗1 and t2 = t∗2 and t∗1 ,t∗2 are arbitrary, so we obtain
(3.12). �

THEOREM 3.7. If the conditions of Theorem 3.6 are satisfied, the estimation of
the Theorem 3.6 is better than the estimation from Theorem 1.2.

Proof. Integrating inequality (3.10) from a1 to t1 and from a2 to t2 with respect
to s1 and s2 on the rectangle [a1,t1)T1 × [a2,t2)T2 we have

∫ t1

a1

∫ t2

a2

a(t1,t2)g(t1,t2,s1,s2)W (t1,t2,σ1(s1),σ2(s2))Δ1s1Δ2s2

�
∫ t1

a1

∫ t2

a2

∂ 2W
Δ1s1Δ2s2

(t1,t2,s1,s2)Δ1s1Δ2s2

= W (t1, t2, t1,t2)−W(t1,t2,a1,t2)−W(t1,t2,t1,a2)+W(t1,t2,a1,a2).
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But W (t1, t2, t1, t2) = W (t1,t2,a1,t2) = W (t1,t2,t1,a2) = 1, so we obtain

a(t1, t2)
∫ t1

a1

∫ t2

a2

g(t1,t2,s1,s2)W (t1,t2,σ1(s1),σ2(s2))Δ1s1Δ2s2 (3.15)

� W (t1,t2,a1,a2)−1.

The function w is nonnegative and nondecreasing in both variables, hence we have

w(t1, t2)+a(t1,t2)
t1∫

a1

t2∫
a2

g(t1,t2,s1,s2)w(s1,s2)W (t1,t2,σ1(s1),σ2(s2))Δ1s1Δ2s2

� w(t1, t2)

⎛
⎝1+a(t1,t2)

t1∫
a1

t2∫
a2

g(t1,t2,s1,s2)W (t1,t2,σ1(s1),σ2(s2))Δ1s1Δ2s2

⎞
⎠

� w(t1, t2)W (t1, t2,a1,a2).

This inequality shows that the estimation in Theorem 3.6 is better than the estimation
from Theorem 1.2. �

3.2. Nonlinear inequalities

In this subsection we give improved estimations to the recently proved nonlinear
integral inequalities in ([11]) combining the method from ([11]) with Theorem 3.2 and
3.6. First we recall the nonlinear integral inequalities from [11]:

THEOREM 3.8. (Theorem 3.1 in [11]) Let u(t1,t2), w(t1, t2), a(t1,t2)∈C(D,R+
0 )

with w(t1, t2) nondecreasing in each of its variables. If p and q are two positive real
numbers such that p � q and if

up(t1, t2) � w(t1,t2)+
∫ t1

a1

∫ t2

a2

a(s1,s2)uq(s1,s2)Δ1s1Δ2s2 (3.16)

for (t1, t2) ∈ D, then

u(t1, t2) � w
1
p (t1,t2)

[
e∫ t2

a2 a(t1,s2)w
q
p−1(t1,s2)Δ2s2

(t1,a1)
] 1

p

,(t1,t2) ∈ D. (3.17)

THEOREM 3.9. (Theorem3.2 in [11]) Let u(t1,t2), w(t1,t2), a(t1, t2)∈C(D,R+
0 ) ,

with w(t1, t2) and a(t1,t2) nondecreasing in each of the variables and g(t1,t2,s1,s2) ∈
C(S,R+

0 ), where S = {(t1,t2,s1,s2) ∈ D×D : a1 � s1 � t1,a2 � s2 � t2} and g is non-
decreasing in each of its variables. If p and q are two positive real numbers such that
p � q and is u satisfies the condition

up(t1, t2) � w(t1,t2)+a(t1,t2)
∫ t1

a1

∫ t2

a2

g(t1,t2,s1,s2)uq(s1,s2)Δ1s1Δ2s2, (3.18)
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for (t1, t2) ∈ D, then

u(t1, t2) � w
1
p (t1, t2)

[
e∫ t2

a2 a(t1,t2)w
q
p−1(t1,s2)g(t1,t2,t1,s2)Δ2s2

(t1,a1)
] 1

p

, ∀(t1,t2)∈D. (3.19)

In what follows we prove the following improvements of these to theorems:

THEOREM 3.10. Let u(t1,t2), w(t1,t2), a(t1,t2) ∈C(D,R+
0 ) with w(t1,t2) non-

decreasing in each of its variables. If p and q are two positive real numbers such that
p � q and if

up(t1, t2) � w(t1,t2)+
∫ t1

a1

∫ t2

a2

a(s1,s2)uq(s1,s2)Δ1s1Δ2s2 (3.20)

for (t1, t2) ∈ D, then

u(t1, t2) �
[
w(t1,t2)+w(t1,t2)

∫ t1

a1

∫ t2

a2

H(t1,t2,s1,s2)Δ1s1Δ2s2

] 1
p

, (3.21)

where

H(t1, t2,s1,s2) = a(s1,s2)w
q
p−1(s1,s2)e∫ t2

σ(s2 ) a(t1,η)w
q
p−1(t1,η)Δ2η

(t1,σ1(s1)),

(t1,t2) ∈ D.

Proof. Suppose w(t1,t2) > 0, (t1,t2) ∈ D. We denote up by u. If u satisfies the
conditions of the previous theorem, due to the monotonicity of w we obtain

u(t1,t2)
w(t1,t2)

� 1+
∫ t1

a1

∫ t2

a2

a(s1,s2)
w(s1,s2)

u
q
p (s1,s2)Δ1s1Δ2s2,

hence for the function v defined by the right hand side of the previous inequality we
have

∂ 2v
Δ1t1Δ2t2

=
a(t1,t2)
w(t1,t2)

u
q
p (t1,t2) � a(t1,t2)w

q
p−1(t1,t2)v(t1,t2).

Integrating both sides we deduce that the function v satisfies the following inequality:

v(t1, t2) � 1+
∫ t1

a1

∫ t2

a2

a(s1,s2)w
q
p−1(s1,s2)v(s1,s2)Δ1s1Δ2s2.

Aplying Theorem 3.2 for v and using u(t1,t2) � (w(t1,t2)v(t1,t2))
1
p we obtain (3.21).

�

REMARK 3.11. If w � 0, we can replace w with wε = w+ ε and then consider
ε → 0.
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REMARK 3.12. Due to Theorem 3.3 the estimation in Theorem 3.10 is better than
the estimation in Theorem 3.8.

Using the same argument as in the previous theorem we obtain the following re-
sult:

THEOREM 3.13. Let u(t1,t2), w(t1,t2), a(t1,t2) ∈ C(D,R+
0 ) , with w(t1,t2) and

a(t1,t2) nondecreasing in each of the variables and g(t1,t2,s1,s2) ∈ C(S,R+
0 ), where

S = {(t1, t2,s1,s2) ∈ D×D : a1 � s1 � t1,a2 � s2 � t2} and g is nondecreasing in the
first two variables. If p and q are two positive real numbers such that p � q and u
satisfies the condition

up(t1, t2) � w(t1,t2)+a(t1,t2)
∫ t1

a1

∫ t2

a2

g(t1,t2,s1,s2)uq(s1,s2)Δ1s1Δ2s2, (3.22)

for (t1, t2) ∈ D, then

u(t1, t2) � w
1
p (t1, t2)

[
1+a(t1,t2)

∫ t1

a1

∫ t2

a2

g(t1,t2,s1,s2)H(t1,t2,s1,s2)Δ1s1Δ2s2

] 1
p

,

(3.23)
where

H(t1, t2,s1,s2) = w
q
p−1(s1,s2)e∫ t2

σ(s2 ) a(t1,η)g(t1,t2,t1,η)w
q
p−1(t1,η)Δ2η

(t1,σ1(s1)),

(t1,t2) ∈ D.

REMARK 3.14. Due to Theorem 3.7 the estimation of the Theorem 3.13 is better
than the estimation from Theorem 3.9.

REMARK 3.15. Theorem 3.10 and Theorem 3.13 generalize and extend to time
scales Theorem 2.1, Theorem 2.2 and Theorem 2.3. from [10].

3.3. Applications and examples

In what follows we present an application and two examples for Theorem 3.2. Let
us consider the the following partial delta dynamic equation

∂ 2u(t1,t2)
Δ2t2Δ1t1

= F(t1,t2,u(t1,t2)) (3.24)

on the domain D , equipped with the initial conditions

u(t1,a2) = g1(t1), u(a1,t2) = g2(t2),∀t1 ∈ T̃1, t2 ∈ T̃2 (3.25)

where F ∈C(D×R
+
0 ,R+

0 ), g1 ∈C(T̃1,R
+
0 ), g2 ∈C(T̃2,R

+
0 ) and g1 and g2 are non-

decreasing.
If we assume, that F satisfies the inequality

F(t1,t2,u) � f (t1,t2)u, ∀(t1,t2) ∈ D, u ∈C(D,R+
0 ), (3.26)

for a given function f ∈C(D,R+
0 ), which is nondecreasing in both of its variables.
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THEOREM 3.16. If u is the solution of the initial value problem (3.24)–(3.25) and
the previous assumptions hold, then u satisfies the inequality

u(t1,t2) � g1(t1)+g2(t2) (3.27)

+
t1∫

a1

t2∫
a2

f (s1,s2)(g1(s1)+g2(s2))e∫ t2
σ2(s2) f (t1,η)Δ2η(t1,σ1(s1))Δ1s1Δ2s2.

Proof. If u(t1, t2) is a solution of the initial value problem (3.24)–(3.25), then it
satisfies the equation

u(t1, t2) = g1(t1)+g2(t2)+
∫ t1

a1

∫ t2

a2

F(s1,s2,u(s1,s2))Δ1s1Δ2s2.

From (3.26) we have

u(t1, t2) � g1(t1)+g2(t2)+
∫ t1

a1

∫ t2

a2

f (s1,s2)u(s1,s2)Δ1s1Δ2s2.

Hence Theorem 3.2 can be applied for w(t1,t2) := g1(t1)+g2(t2), a(t1,t2) := f (t1,t2),
∀(t1,t2) ∈ D and implies inequality (3.27). �

REMARK 3.17. Using the previous theorem we can study also other properties of
the solutions for the initial value problem (3.24)–(3.25) (existence, uniqueness, conti-
nuity, etc.). Moreover the same technique can be applied to a wide range of problems.
If we replace (3.24)–(3.25) with

∂ 2up(t1,t2)
Δ2t2Δ1t1

= F(t1,t2,u(t1, t2)) (3.28)

on the domain D , and the initial conditions

up(t1,a2) = g1(t1), up(a1,t2) = g2(t2),∀t1 ∈ T̃1, t2 ∈ T̃2 (3.29)

where we assume the same regularity conditions F,g1,g2, and also

F(t1,t2,u) � f (t1,t2)uq, ∀(t1,t2) ∈ D, u ∈C(D,R+
0 ), (3.30)

for a fixed positive real numbers p and q with p � q , we could have a similar esti-
mate for the solution u of the initial value problem (3.28)–(3.29), using our result form
Theorem 3.10.

EXAMPLE 3.18. If T1 := R, T2 = R, a ≡ 1 and w ≡ 1, then by applying Theo-
rem 3.2 we obtain

u(t1,t2) �1+
∫ t1

0

∫ t2

0
exp((t1− s1)(t2− s2))ds2ds1

�
∞

∑
k=1

(t1t2)k+1

(k+1) · (k+1)!
.
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On the other hand, if we use the estimate from Theorem 1.1, we have

u(t1,t2) � exp(t1t2) =
∞

∑
k=0

(t1t2)k

k!
.

It is clear that the difference between the two estimates increases exponentially and the
ratio of the estimates tends to 0 as x tends to ∞ . In order to obtain also a numeri-
cal comparison between the two estimates we calculated numerically the values of the
difference h2(t1, t2)−h1(t1,t2) on a grid with node points

0 = t1,0 < t1,1 < .. . < t1,n−1 < t1,n = 3.5,

0 = t2,0 < t2,1 < .. . < t2,n−1 < t2,n = 3.5,

where Δt1 = Δt2 = 0.5 and

h1(t1,t2) := 1+
∫ t1

0

∫ t2

0
exp((t1 − s1)(t2 − s2))ds2ds1,

h2(t1,t2) := exp(t1t2).

t1 \ t2 0 0.5 1 1.5 2 2.5 3 3.5

0 0 0 0 0 0 0 0 0
0.5 0 0.01 0.07 0.19 0.40 0.70 1.16 1.80
1 0 0.07 0.40 1.16 2.70 5.60 10.82 20.02

1.5 0 0.19 1.16 3.93 10.82 26.90 63.16 143.4
2 0 0.40 2.70 10.82 35.93 109.41 318.81 906.65

2.5 0 0.70 5.60 26.90 109.41 414.74 1520.2 5476.4
3 0 1.16 10.82 63.16 318.81 1520.2 7067 32434

3.5 0 1.80 20.02 143.4 906.65 5476.4 32434 1.9021e+05

These numerical results show that the estimation from Theorem 3.2 are much
sharper than the estimation from Theorem 1.1.

EXAMPLE 3.19. If T1 := Z, T2 = Z and a ≡ 1, w ≡ 1, then for the solution of
the inequality

u(m,n) � 1+
m−1

∑
s=0

n−1

∑
t=0

u(s, t)

we obtain (by applying Theorem 3.2) the estimation

u(m,n) � 1+m ·nm−1.

For the same functions from Theorem 1.1 we deduce

u(m,n) � (1+n)m.

Due to the binomial theorem the first estimation is much sharper than the second one.
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