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APPROXIMATION BY (C,1) AND ABEL–POISSON MEANS

OF FOURIER SERIES ON HEXAGONAL DOMAINS

ALI GUVEN

(Communicated by J. Pečarić)

Abstract. The approximation problems by Cesàro (C,1) means and by Abel-Poisson means of
Fourier series on hexagonal domains are studied. The estimates for the rate of convergence of
these means are obtained for functions in Lipschitz classes.

1. Introduction

Approximation by trigonometric polynomials, or equivalently by complex expo-
nentials, is at the heart of approximation theory. The most important trigonometric
polynomials used in the approximation theory are obtained by linear summation meth-
ods of Fourier series of 2π -periodic functions on the real line (Cesàro means, Abel-
Poisson means, de la Vallèe-Poussin means, etc.). Much of the advance in the theory of
trigonometric approximation is due to the periodicity of the functions. The elegant pre-
sentations of results on trigonometric approximation can be found in the monographs
[7], [1] and [2].

A straightforward extension to several variables is the tensor product type, where
one works with functions that are 2π -periodic in each of their variables. But, in the
case of non tensor-product domain one needs another definition of periodicity. For
such domains there are other definitions of periodicity, and the most notable one is
the periodicity defined by the lattices. A lattice is the discrete subgroup AZd of the
d−dimensional Euclidean space Rd , where A is a nonsingular matrix, and the periodic
function satisfies f (x+Ak) = f (x) for all k ∈ Zd . With such periodicity, one works
with exponentials of the form e2π i〈α ,x〉, where α and x are in proper sets of Rd , not
necessarily the usual trigonometric polynomials.

A theorem of Fuglede ([3]) states that a set tiles Rd by lattice translation if and
only if it has an orthonormal basis of exponentials e2π i〈α ,x〉 with α in the dual lattice.
Such a set is called a spectral set. This Theorem suggests that one can study Fourier
series and approximation problems on a spectral set. For the simplest spectral sets,
cubes in Rd , the Fourier series with respect to the lattice coincides with the classical
Fourier series of functions of d variables. Besides the usual rectangular domain in R2,
the simplest spectral set is the regular hexagon.
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Discrete Fourier analysis on lattices was developed in [4]. In the paper [4], the
case of hexagon lattice was studied in details; in particular, Lagrange interpolation and
cubature formulas by trigonometric functions on a regular hexagon and on an equilat-
eral triangle were studied. In [6], the author studied Cesàro and Abel summability of
Fourier series over the regular hexagon, and deduced compact formulas for the Fejèr
and Poisson kernels of hexagonal Fourier series. Furthermore, in the same paper, the
direct and inverse approximation theorems were established in terms of a modulus of
smoothness. In the same paper the author said that “The purpose of this paper is to
show, using the hexagonal domain as an example, that Fourier series on a spectral set
have a rich structure that permits an extensive theory of Fourier series and approxima-
tion. It is our hope that this work may stimulate further studies in this area.” By this
motivation, as an introductory work, we try to obtain results about the degree of ap-
proximation by Cesàro and Abel-Poisson means of hexagonal Fourier series. We have
to point out that, in our proofs we used the methods of paper [6].

2. Hexagonal Fourier series

In this section, we shall give basic definitions and properties of Fourier series with
respect to the lattices, and as a special case we shall study the hexagonal Fourier series.
More detailed information can be found, as mentioned above, in [4] and [6].

Let A be a d×d matrix whose columns are linearly independent vectors. The set

LA = AZ
d :=

{
Ak : k ∈ Z

d
}

is called the (d−dimensional) lattice generated by A, and A is called the generator
matrix of LA. The lattice generated by the matrix A−tr := (Atr)−1 is called the dual
lattice of LA and is denoted by L⊥

A . It is easy to show that

L⊥
A =

{
x ∈ R

d : 〈x,y〉 ∈ Z for all y ∈ LA

}
,

where 〈x,y〉 is the Euclidean inner product of x and y, that is 〈x,y〉 = xtry.
Let Ω⊂Rd be a bounded set. Ω is said to tile Rd with the lattice LA

(
Ω +LA = Rd

)
if

∑
α∈LA

χΩ (x+ α) = 1, for almost all x ∈ R
d .

The space L2 (Ω) becomes a Hilbert space, where the inner product is defined by

〈 f ,g〉Ω :=
1

m(Ω)

∫
Ω

f (x)g(x)dx, f ,g ∈ L2 (Ω) . (1)

A theorem of Fuglede ([3]) states that an open bounded set Ω ⊂ Rd tiles Rd with the
lattice LA if and only if the set {

e2π i〈α ,x〉 : α ∈ L⊥
A

}
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is an orthonormal basis of L2 (Ω) with respect to the inner product (1).
It is known that if Ω +LA = Rd , then the measure of Ω is m(Ω) = |detA| .
If Ω +LA = Rd then the set Ω is called a spectral set for the lattice LA. In this

case we write ΩA in place of Ω.
Since α ∈ L⊥

A means α = A−trk for some k ∈ Zd , the orthogonality relation be-
comes

1
|detA|

∫
ΩA

e2π i〈A−trk,x〉dx =
{

1, k = 0
0, k �= 0

, k ∈ Z
d . (2)

The Fourier series of a function f ∈ L1 (Ω) is

f (x) ∼ ∑
k∈Zd

cke
2π i〈A−trk,x〉,

where

ck =
1

|detA|
∫
ΩA

f (x)e−2π i〈A−trk,x〉dx, k ∈ Z
d .

For a given lattice LA the spectral set is not unique. We fix Ω such that Ω contains
0 in its interior, and that the tiling

Ω +LA = R
d

holds pointwise and without overlapping:

∑
k∈Zd

χΩ (x+Ak) = 1, ∀x ∈ R
d (3)

and
(Ω +Ak)∩ (Ω +A j) = /0, k �= j. (4)

For example we can take Ω =
[− 1

2 , 1
2

)d
for the standard lattice Zd .

A function defined on Rd is called a periodic function with respect to the lattice
AZd or A-periodic if

f (x+Ak) = f (x) , ∀k ∈ Z
d .

Since the function x→ e2π i〈A−trk,x〉 is periodic with respect to the lattice AZd , the
orthogonality relation (2) is independent of the choice of Ω.

The points x,y ∈ Rd are said to be congruent with respect to the lattice AZd if
x− y ∈ AZd . In this case we write x ≡ y (modA) .

The generator matrix and the spectral set of the hexagonal lattice LH = HZ2 are
given by

H =
[√

3 0
−1 2

]
and

ΩH =

{
(x1,x2) ∈ R

2 : −1 � x2,

√
3

2
x1± 1

2
x2 < 1

}
.
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It is more convenient to use the homogeneous coordinates (t1,t2,t3) that satisfies t1 +
t2 + t3 = 0 ([5], [4]). If we define

t1 := −x2

2
+

√
3x1

2
, t2 := x2, t3 := −x2

2
−

√
3x1

2
, (5)

the hexagon ΩH becomes

Ω =
{
(t1,t2,t3) ∈ R

3 : −1 � t1,t2,−t3 < 1, t1 + t2 + t3 = 0
}

,

which is the intersection of the plane t1 + t2 + t3 = 0 with the cube [−1,1]3 .
We use bold letters t for homogeneous coordinates and we denote by R3

H the
plane t1 + t2 + t3 = 0, that is

R
3
H =

{
t = (t1,t2,t3) ∈ R

3 : t1 + t2 + t3 = 0
}

.

Also we use the notation Z3
H for the set of points in R3

H with integer components, that
is

Z
3
H = Z

3 ∩R
3
H =

{
k = (k1,k2,k3) ∈ Z

3 : k1 + k2 + k3 = 0
}

.

The inner product on the hexagon under homogeneous coordinates becomes

〈 f ,g〉H =
1

m(ΩH)

∫
ΩH

f (x1,x2)g(x1,x2)dx1dx2

=
1
|Ω|
∫
Ω

f (t)g(t)dt,

where |Ω| denotes the area of Ω.
If we use the change of variables x = (x1,x2) → t = (t1,t2,t3) , where t1,t2,t3 are

defined by (5) we get 〈
H−trk,x

〉
=

1
3
〈k, t〉 .

Therefore, introducing the notation

φj (t) := e
2πi
3 〈j,t〉, j ∈ Z

3
H ,

the orthogonality relation (2) becomes

〈
φk,φj

〉
Ω =

{
1, k = j
0, k �= j

, k, j ∈ Z
3
H ,

and as a corollary of Fuglede’s theorem the set
{

φj : j ∈ Z3
H

}
forms an orthonormal

basis for L2 (Ω) .
Under the homogeneous coordinates, x ≡ y (modH) becomes t ≡ s (mod3) ,

where
t ≡ s (mod3) ⇔ t1 − s1 ≡ t2 − s2 ≡ t3 − s3 (mod3) .
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Hence a function f is H -periodic if and only if f (t) = f (t+ j) whenever j ≡ 0
(mod3) . It is clear that the functions φj (t) are H -periodic. If the function f is H -
periodic then ∫

Ω

f (t+ s)dt =
∫
Ω

f (t)dt, s ∈ R
3
H .

For every natural number n, we define two subsets of Z3
H by

H
∗
n :=

{
j = ( j1, j2, j3) ∈ Z

3
H : −n � j1, j2, j3 � n

}
and

Jn := H
∗
n\H

∗
n−1.

H∗
n consists of all integer points inside the hexagon nΩ and Jn is the intersection of

H∗
n with the boundary of nΩ. The elements of the set

H ∗
n := span

{
φj : j ∈ H

∗
n

}
, n ∈ N

are called the trigonometric polynomials over Ω. It is clear that the dimension of H ∗
n

is #H∗
n = 3n2 +3n+1.
The hexagonal Fourier series of an H -periodic function f ∈ L1 (Ω) is

f (t) ∼ ∑
j∈Z3

H

cjφj (t) , (6)

where

cj =
1
|Ω|
∫
Ω

f (t)e−
2πi
3 〈j,t〉dt, j ∈ Z

3
H .

In the study of the summability of hexagonal Fourier series it is more convenient
to write the series (6) as blocks are groupped according to Jn :

f (t) ∼
∞

∑
k=0

∑
j∈Jk

cjφj (t) . (7)

The n th partial sums of the series (6) are defined by

Sn ( f ) (t) := ∑
j∈H∗

n

cjφj (t) =
n

∑
k=0

∑
j∈Jk

cjφj (t) .

It is easy to show that

Sn ( f ) (t) =
1
|Ω|
∫
Ω

f (t− s)Dn (s)ds,

where Dn is the Dirichlet kernel, defined by

Dn (t) := ∑
j∈H∗

n

φj (t) =
n

∑
k=0

∑
j∈Jk

φj (t) .
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It is known that ([5], [4]) the Dirichlet kernel has the compact formula

Dn (t) = Θn (t)−Θn−1 (t) ,

where

Θn (t) =
sin (n+1)(t1−t2)π

3 sin (n+1)(t2−t3)π
3 sin (n+1)(t3−t1)π

3

sin (t1−t2)π
3 sin (t2−t3)π

3 sin (t3−t1)π
3

, t = (t1,t2, t3) ∈ R
3
H .

We denote by CH
(
Ω
)

the Banach space of H−periodic complex valued continu-
ous functions, whose norm is the uniform norm:

‖ f‖∞ = sup
{| f (t)| : t ∈ Ω

}
.

The Lipschitz class Lipα
(
Ω
)
, 0 < α � 1 is defined by

Lipα
(
Ω
)

=
{

f ∈CH
(
Ω
)

: | f (t)− f (s)| � M‖t− s‖α
∞
}

,

where ‖t‖∞ = max{|t1| , |t2| , |t3|} .

3. Approximation by (C,1) means of hexagonal Fourier series

The Cesàro (C,δ ) ,δ � 0 means of the Fourier series (7) are defined by

S(δ )
n ( f ) (t) :=

1
|Ω|
∫
Ω

f (t− s)K(δ )
n (s)ds,

where

K(δ )
n (t) :=

1

Aδ
n

n

∑
k=0

Aδ
n−k ∑

j∈Jk

φj (t) , Aδ
n =
(

n+ δ
n

)
.

It is evident that K(0)
n (t) = Dn (t) , hence S(0)

n ( f ) (t) = Sn ( f ) (t) , where

K(1)
n (t) =

1
n+1

n

∑
k=0

Dk (t) =
1

n+1
Θn (t) .

By orthogonality of φj ’s it follows that

1
|Ω|
∫
Ω

K(1)
n (t)dt = 1.

The famous theorem of Fejèr states that if the function f is 2π−periodic and
continuous, then the sequence of (C,1) means of its Fourier series converges uniformly
to f (see, for example [7, p. 89]).

The analogue of Fejèr’s theorem for hexagonal Fourier series was proved in [6]:
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THEOREM A. If f ∈ CH
(
Ω
)
, then the sequence S(1)

n ( f ) of (C,1) means con-
verges uniformly to f on Ω.

In the case of Classical Fourier series, S. N. Bernstein proved the following theo-
rem about the rate of convergence of (C,1) means (see, for example [1, pp. 80–82]):

THEOREM B. Let f be a 2π−periodic and continuous function. If f ∈ Lipα,
then ∥∥∥ f −S(1)

n ( f )
∥∥∥

∞
=
{

O(n−α) , 0 < α < 1
O
(
n−1 logn

)
, α = 1

for n = 1,2, ... .

In this work we try to obtain similar estimate for (C,1) means of hexagonal
Fourier series. The main theorem of this section is Theorem 1.

THEOREM 1. If f ∈ Lipα
(
Ω
)

then

∥∥∥ f −S(1)
n ( f )

∥∥∥
∞

=

{
O(n−α) , 0 < α < 1

O
(
n−1 (logn)2

)
, α = 1

for n = 1,2, ... .

Proof. Let f ∈ Lipα
(
Ω
)
. Since

f (t)−S(1)
n ( f ) (t) =

1
|Ω|
∫
Ω

( f (t)− f (t− s))K(1)
n (s)ds,

we have ∣∣∣ f (t)−S(1)
n ( f ) (t)

∣∣∣ � 1
|Ω|
∫
Ω

| f (t)− f (t− s)|
∣∣∣K(1)

n (s)
∣∣∣ds (8)

� M
|Ω|
∫
Ω

‖s‖α
∞

∣∣∣K(1)
n (s)

∣∣∣ds

=
M

(n+1)|Ω|
∫
Ω

‖s‖α
∞ |Θn (s)|ds.

So we have to estimate the integral∫
Ω

‖t‖α
∞ |Θn (t)|dt.

But, since ‖t‖α
∞ |Θn (t)| is a symmetric function of t1,t2,t3 it is sufficient to consider

the integral over the triangle

Δ :=
{
t = (t1,t2,t3) ∈ R

3
H : 0 � t1,t2,−t3 � 1

}
= {(t1,t2) : t1 � 0, t2 � 0, t1 + t2 � 1} ,
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which is one of the six equilateral triangles in Ω. If we use the change of variables

s1 :=
t1− t3

3
=

2t1 + t2
3

, s2 :=
t2 − t3

3
=

t1 +2t2
3

(9)

as in [6], the integral

An :=
∫
Δ

‖t‖α
∞ |Θn (t)|dt

becomes

An = 3
∫
Δ̃

(s1 + s2)
α
∣∣∣∣ sin((n+1)πs1)sin ((n+1)πs2) sin((n+1)π (s1 − s2))

sin(πs1) sin(πs2) sin(π (s1 − s2))

∣∣∣∣ds1ds2,

where Δ̃ is the image of Δ in the plane, that is

Δ̃ := {(s1,s2) : 0 � s1 � 2s2, 0 � s2 � 2s1, s1 + s2 � 1} .

Since the integrant is a symmetric function of s1 and s2 we have

An = 6
∫
Δ∗

(s1 + s2)
α
∣∣∣∣ sin((n+1)πs1)sin ((n+1)πs2) sin((n+1)π (s1 − s2))

sin(πs1) sin(πs2) sin(π (s1 − s2))

∣∣∣∣ds1ds2,

where Δ∗ is the half of Δ̃ :

Δ∗ :=
{
(s1,s2) ∈ Δ̃ : s1 � s2

}
= {(s1,s2) : s1 � s2 � 2s1, s1 + s2 � 1} .

The change of variables

s1 :=
u1−u2

2
, s2 :=

u1 +u2

2
(10)

transforms the triangle Δ∗ to another triangle

Γ :=
{
(u1,u2) : 0 � u2 � u1

3
, 0 � u1 � 1

}
,

and hence we get

An = 3
∫
Γ

uα
1 |Θ∗

n (u1,u2)|du1du2,

where

Θ∗
n (u1,u2) :=

sin
(

(n+1)(u1−u2)π
2

)
sin
(

(n+1)(u1+u2)π
2

)
sin((n+1)u2π)

sin
(

(u1−u2)π
2

)
sin
(

(u1+u2)π
2

)
sin(u2π)

.

We need the well known inequalities ∣∣∣∣ sinnt
sin t

∣∣∣∣� n (11)
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and

sin t � 2
π

t, 0 � t � π
2

(12)

to estimate the last integral.
We can write

An = 3

⎛⎝∫
Γ1

+
∫
Γ2

+
∫
Γ3

⎞⎠uα
1 |Θ∗

n (u1,u2)|du1du2,

where

Γ1 :=
{

(u1,u2) ∈ Γ : u1 � 3
n

}
,

Γ2 :=
{

(u1,u2) ∈ Γ :
3
n

� u1, u2 � 1
n

}
,

Γ3 :=
{

(u1,u2) ∈ Γ :
3
n

� u1,
1
n

� u2

}
.

Let 0 < α < 1.
By (11),

∫
Γ1

uα
1 |Θ∗

n (u1,u2)|du1du2 � (n+1)3
∫
Γ1

uα
1 du1du2 = (n+1)3

1/n∫
0

⎛⎝3/n∫
3u2

uα
1 du1

⎞⎠du2

=
3α+1

α +1
(n+1)3

1/n∫
0

(
1

nα+1 −uα+1
2

)
du2

=
3α+1

α +1

(
1− 1

α +2

)
(n+1)3

1
nα+2 � c1 (α)n−α+1.

Since
2u1

3
� u1−u2 � π

2
, u1 � u1 +u2 � π

2
,

by (12) we get

∫
Γ2

uα
1 |Θ∗

n (u1,u2)|du1du2 =

1/n∫
0

⎛⎜⎝ 1∫
3/n

uα
1 |Θ∗

n (u1,u2)|du1

⎞⎟⎠du2

=

1/n∫
0

⎛⎜⎝ 1∫
3/n

uα
1

∣∣∣∣∣∣
sin
(

(n+1)(u1−u2)π
2

)
sin
(

(n+1)(u1+u2)π
2

)
sin
(

(u1−u2)π
2

)
sin
(

(u1+u2)π
2

)
∣∣∣∣∣∣du1

⎞⎟⎠∣∣∣∣ sin((n+1)u2π)
sin(u2π)

∣∣∣∣du2

�
1/n∫
0

⎛⎜⎝ 1∫
3/n

uα
1

du1∣∣∣sin( (u1−u2)π
2

)
sin
(

(u1+u2)π
2

)∣∣∣
⎞⎟⎠∣∣∣∣sin((n+1)u2π)

sin (u2π)

∣∣∣∣du2
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� 3
2

1/n∫
0

⎛⎜⎝ 1∫
3/n

uα−2
1 du1

⎞⎟⎠∣∣∣∣sin((n+1)u2π)
sin (u2π)

∣∣∣∣du2

=
3
2

1
1−α

(
3

nα−1 −1

)1/n∫
0

∣∣∣∣sin((n+1)u2π)
sin (u2π)

∣∣∣∣du2.

If we use (11) again, we obtain∫
Γ2

uα
1 |Θ∗

n (u1,u2)|du1du2 � c2 (α)n−α+1.

By the inequality (12) we obtain

∫
Γ3

uα
1 |Θ∗

n (u1,u2)|du1du2 =

1/3∫
1/n

⎛⎝ 1∫
3u2

uα
1 |Θ∗

n (u1,u2)|du1

⎞⎠du2

=

1/3∫
1/n

⎛⎝ 1∫
3u2

uα
1

∣∣∣∣∣∣
sin
(

(n+1)(u1−u2)π
2

)
sin
(

(n+1)(u1+u2)π
2

)
sin
(

(u1−u2)π
2

)
sin
(

(u1+u2)π
2

)
∣∣∣∣∣∣du1

⎞⎠∣∣∣∣ sin((n+1)u2π)
sin(u2π)

∣∣∣∣du2

�
1/3∫
1/n

⎛⎝ 1∫
3u2

uα
1

du1∣∣∣sin( (u1−u2)π
2

)
sin
(

(u1+u2)π
2

)∣∣∣
⎞⎠ du2

|sin(u2π)|

� 3
2

1/3∫
1/n

⎛⎝ 1∫
3u2

uα−2
1 du1

⎞⎠ du2

u2
=

3
2

1
1−α

1/3∫
1/n

(
(3u2)

α−1−1
) du2

u2

� 3α

2
1

1−α

1/3∫
1/n

uα−2
2 du2 � c3 (α)n−α+1.

Therefore, combining these three estimates and (8) we get∣∣∣ f (t)−S(1)
n ( f ) (t)

∣∣∣� c4 (α)n−α , t ∈ Ω.

Now let α = 1. We have to estimate

An = 3

⎛⎝∫
Γ1

+
∫
Γ2

+
∫
Γ3

⎞⎠u1 |Θ∗
n (u1,u2)|du1du2.

By inequality (11),
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∫
Γ1

u1 |Θ∗
n (u1,u2)|du1du2 � (n+1)3

∫
Γ1

u1du1du2 = (n+1)3
1/n∫
0

⎛⎝3/n∫
3u2

u1du1

⎞⎠du2

=
9
2

(n+1)3
1/n∫
0

(
1
n2 −u2

2

)
du2 = 3

(n+1)3

n3 � 24.

By using (12) and (11) we obtain,

∫
Γ2

u1 |Θ∗
n (u1,u2)|du1du2 =

1/n∫
0

⎛⎜⎝ 1∫
3/n

u1 |Θ∗
n (u1,u2)|du1

⎞⎟⎠du2

=

1/n∫
0

⎛⎜⎝ 1∫
3/n

u1

∣∣∣∣∣∣
sin
(

(n+1)(u1−u2)π
2

)
sin
(

(n+1)(u1+u2)π
2

)
sin
(

(u1−u2)π
2

)
sin
(

(u1+u2)π
2

)
∣∣∣∣∣∣du1

⎞⎟⎠∣∣∣∣ sin((n+1)u2π)
sin(u2π)

∣∣∣∣du2

�
1/n∫
0

⎛⎜⎝ 1∫
3/n

u1
du1∣∣∣sin( (u1−u2)π

2

)
sin
(

(u1+u2)π
2

)∣∣∣
⎞⎟⎠∣∣∣∣ sin((n+1)u2π)

sin(u2π)

∣∣∣∣du2

� 3
2

1/n∫
0

⎛⎜⎝ 1∫
3/n

du1

u1

⎞⎟⎠
∣∣∣∣∣∣
sin
(

(n+1)u2π
2

)
sin
( u2π

2

)
∣∣∣∣∣∣du2 =

3
2

(logn− log3)

1/n∫
0

∣∣∣∣sin((n+1)u2π)
sin(u2π)

∣∣∣∣du2

� 3
2

n+1
n

logn � 3logn.

By inequality (12),

∫
Γ3

u1 |Θ∗
n (u1,u2)|du1du2 =

1/3∫
1/n

⎛⎝ 1∫
3u2

u1 |Θ∗
n (u1,u2)|du1

⎞⎠du2

=

1/3∫
1/n

⎛⎝ 1∫
3u2

u1

∣∣∣∣∣∣
sin
(

(n+1)(u1−u2)π
2

)
sin
(

(n+1)(u1+u2)π
2

)
sin
(

(u1−u2)π
2

)
sin
(

(u1+u2)π
2

)
∣∣∣∣∣∣du1

⎞⎠∣∣∣∣sin((n+1)u2π)
sin(u2π)

∣∣∣∣du2

� 3
2

1/3∫
1/n

⎛⎝ 1∫
3u2

du1

u1

⎞⎠
∣∣∣∣∣∣
sin
(

(n+1)u2π
2

)
sin
( u2π

2

)
∣∣∣∣∣∣du2 =

3
2

1/3∫
1/n

(− log3u2)
∣∣∣∣ sin((n+1)u2π)

sin(u2π)

∣∣∣∣du2

� 3
2

1/3∫
1/n

(− log3u2)
u2

du2 � 3
4

(logn)2 .
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Hence we obtain the estimate∣∣∣ f (t)−S(1)
n ( f ) (t)

∣∣∣� c
(logn)2

n
, t ∈ Ω,

which completes the proof. �

REMARK. It is interesting that in the case α = 1, the quantity logn in Theorem B
is replaced by (logn)2 . It is known that the estimate in Theorem B is best possible (see,
for example [1, pp. 106–108]. Naturally one can ask that “is the estimate in Theorem
1 best possible, or not?”. We think that this estimate is the best possible, but, however
we couldn’t find a function f ∈ Lip1

(
Ω
)

such that

∥∥∥ f −S(1)
n ( f )

∥∥∥
∞

� c
(logn)2

n
.

4. Approximation by Abel-Poisson means of hexagonal Fourier series

The Abel-Poisson means of an H -periodic function f ∈ L1 (Ω) are defined by

Ur ( f ) (t) :=
1
|Ω|
∫
Ω

f (t− s)Pr (s)ds,

where

Pr (t) :=
∞

∑
k=0

∑
j∈Jk

rkφj (t) , 0 � r < 1

is the Poisson kernel. It is clear that if the function f has the Fourier series (7) then

Ur ( f ) (t) =
∞

∑
k=0

∑
j∈Jk

rkcjφj (t) .

The Poisson kernel is nonnegative, satisfies

1
|Ω|
∫
Ω

Pr (t)dt = 1,

and has the compact formula

Pr (t) =
(1− r)3

(
1− r3

)
qr

(
2π(t1−t2)

3

)
qr

(
2π(t2−t3)

3

)
qr

(
2π(t3−t1)

3

) +
r (1− r)2

qr

(
2π(t1−t2)

3

)
qr

(
2π(t2−t3)

3

)
+

r (1− r)2

qr

(
2π(t2−t3)

3

)
qr

(
2π(t3−t1)

3

) +
r (1− r)2

qr

(
2π(t3−t1)

3

)
qr

(
2π(t1−t2)

3

) ,
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where qr (t) = 1−2rcost + r2 (see [6]). The Poisson kernel satisfies

Pr (t) � 2(1− r)2

qr

(
2π(t1−t2)

3

)
qr

(
2π(t2−t3)

3

) +
2(1− r)2

qr

(
2π(t2−t3)

3

)
qr

(
2π(t3−t1)

3

) (13)

+
2(1− r)2

qr

(
2π(t3−t1)

3

)
qr

(
2π(t1−t2)

3

)
for all t ∈ R3

H .
It is clear that

(1− r)2

qr (t)qr (s)
=

1

(1+ r)2
Pr (t)Pr (s) , (14)

where

Pr (t) =
1− r2

qr (t)

is the classical Poisson kernel.
The Poisson kernel Pr (t) is an even function and satisfies the inequalities ([7, pp.

96–97])

Pr (t) � 2
1− r

, 0 � t � π , 0 � r < 1 (15)

and

Pr (t) � c
1− r
t2

, 0 < t � π , 0 � r < 1. (16)

It is known that the Abel-Poisson means of a 2π -periodic continuous function con-
verge uniformly to this function ([7, p. 97]). This property is also valid for H -periodic
continuous functions:

THEOREM C. ([6]) If f ∈CH
(
Ω
)
, then the Abel-Poisson means Ur ( f ) converge

uniformly to f on Ω as r → 1− .

The rate of convergence of Abel-Poisson means of 2π -periodic functions was
given as follows ([1, p. 110]):

THEOREM D. Let f be a 2π−periodic continuous function. If f ∈ Lipα, then

‖ f −Ur ( f )‖∞ =
{

O
(
(1− r)α) , 0 < α < 1

O((1− r) |log(1− r)|) , α = 1

for r → 1− .

For the Abel-Poisson means of H -periodic continuous functions we obtained the
following theorem:

THEOREM 2. If f ∈ Lipα
(
Ω
)

then

‖ f −Ur ( f )‖∞ =

{
O
(
(1− r)α) , 0 < α < 1

O
(
(1− r)(log(1− r))2

)
, α = 1
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for r → 1− .

Proof. Let f ∈ Lipα
(
Ω
)
.

f (t)−Ur ( f ) (t) =
1
|Ω|
∫
Ω

( f (t)− f (t− s))Pr (s)ds,

hence

| f (t)−Ur ( f ) (t)| � 1
|Ω|
∫
Ω

| f (t)− f (t− s)|Pr (s)ds

� M
|Ω|
∫
Ω

‖s‖α
∞ Pr (s)ds.

By (13),

| f (t)−Ur ( f ) (t)| � M
|Ω|
∫
Ω

‖s‖α
∞ Qr (s)ds, (17)

where

Qr (s) :=
2(1− r)2

qr

(
2π(s1−s2)

3

)
qr

(
2π(s2−s3)

3

) +
2(1− r)2

qr

(
2π(s2−s3)

3

)
qr

(
2π(s3−s1)

3

)
+

2(1− r)2

qr

(
2π(s3−s1)

3

)
qr

(
2π(s1−s2)

3

) .

Hence we shall estimate ∫
Ω

‖t‖α
∞ Qr (t)dt.

Since ‖t‖α
∞ Qr (t) is a symmetric function of t1,t2,t3 it is sufficient to consider the

integral over the triangle Δ as in the proof of Theorem 1.
By (14),

Qr (t) � 2Pr

(
2π (t1 − t2)

3

)
Pr

(
2π (t2 − t3)

3

)
+2Pr

(
2π (t2 − t3)

3

)
Pr

(
2π (t3− t1)

3

)
+2Pr

(
2π (t3− t1)

3

)
Pr

(
2π (t1− t2)

3

)
.

If we use this inequality and the transformations (9) and (10), we obtain∫
Δ

‖t‖α
∞ Qr (t)dt � 6

∫
Γ

uα
1 Q∗

r (u1,u2)du1du2,

where

Q∗
r (u1,u2) := Pr (π (u1 +u2))Pr (2πu2)+Pr (π (u1−u2))Pr (π (u1 +u2))

+Pr (π (u1−u2))Pr (2πu2)
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and Γ =
{
(u1,u2) : 0 � u2 � u1

3 ,0 � u1 � 1
}

, as in the proof of Theorem 1.

We can write Γ = Γ′
1 ∪Γ′

2∪Γ′
3 , where

Γ′
1 := {(u1,u2) ∈ Γ : u1 � 1− r} ,

Γ′
2 :=

{
(u1,u2) ∈ Γ : 1− r � u1, u2 � 1− r

3

}
,

Γ′
3 :=

{
(u1,u2) ∈ Γ : 1− r � u1,

1− r
3

� u2

}
.

Let 0 < α < 1.

By (15),

∫
Γ′

1

uα
1 Q∗

r (u1,u2)du1du2 =

1−r
3∫
0

⎛⎝1−r∫
3u2

uα
1 Q∗

r (u1,u2)du1

⎞⎠du2

� 12

(1− r)2

1−r
3∫
0

⎛⎝1−r∫
3u2

uα
1 du1

⎞⎠du2

=
12

(1+ α)(1− r)2

1−r
3∫
0

(
(1− r)1+α − (3u2)

1+α
)

du2

= c5 (α) (1− r)α .

By inequalities (15) and (16),

∫
Γ′

2

uα
1 Q∗

r (u1,u2)du1du2 =

1−r
3∫
0

⎛⎝ 1∫
1−r

uα
1 Q∗

r (u1,u2)du1

⎞⎠du2

� c

1−r
3∫
0

⎧⎨⎩
1∫

1−r

uα
1

(
1

π2 (u1 +u2)
2 +

1

π2 (u1−u2)
2

)
du1

⎫⎬⎭du2

� c

1−r
3∫
0

⎛⎝ 1∫
1−r

uα−2
1 du1

⎞⎠du2

= c6 (α) (1− r)α ,

since u1−u2 � 2
3u1 and u1 +u2 � u1.
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By the inequality (16),

∫
Γ′

3

uα
1 Q∗

r (u1,u2)du1du2 =

1/3∫
1−r
3

⎛⎝ 1∫
3u2

uα
1 Q∗

r (u1,u2)du1

⎞⎠du2

� c(1− r)2
1/3∫
1−r
3

⎛⎝ 1∫
3u2

uα
1

1

u2
1u

2
2

du1

⎞⎠du2

= c
(1− r)2

1−α

1/3∫
1−r
3

(
(3u2)

α−1−1
) 1

u2
2

du2

� c7 (α) (1− r)α .

Combining these estimates and considering (17) we get

| f (t)−Ur ( f ) (t)| � c8 (α)(1− r)α , t ∈ Ω.

Now let α = 1.
By (15),

∫
Γ′

1

u1Q
∗
r (u1,u2)du1du2 =

1−r
3∫
0

⎛⎝1−r∫
3u2

u1Q
∗
r (u1,u2)du1

⎞⎠du2

� 12

(1− r)2

1−r
3∫
0

⎛⎝1−r∫
3u2

u1du1

⎞⎠du2

= c(1− r) .

By (15) and (16),

∫
Γ′

2

u1Q
∗
r (u1,u2)du1du2 =

1−r
3∫
0

⎛⎝ 1∫
1−r

u1Q
∗
r (u1,u2)du1

⎞⎠du2

� c

1−r
3∫
0

⎧⎨⎩
1∫

1−r

u1

(
1

π2 (u1 +u2)
2 +

1

π2 (u1−u2)
2

)
du1

⎫⎬⎭du2

� c

1−r
3∫
0

⎛⎝ 1∫
1−r

1
u1

du1

⎞⎠du2

= c(1− r)(− log(1− r)) .
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Using (16) again,

∫
Γ′

3

u1Q
∗
r (u1,u2)du1du2 =

1/3∫
1−r
3

⎛⎝ 1∫
3u2

u1Q
∗
r (u1,u2)du1

⎞⎠du2

� c(1− r)2
1/3∫
1−r
3

⎛⎝ 1∫
3u2

1

u1u2
2

du1

⎞⎠du2

= c(1− r)2
1/3∫
1−r
3

(− log3u2)
1

u2
2

du2

� c(1− r)(log(1− r))2 .

Hence
| f (t)−Ur ( f ) (t)| � c(1− r)

(
1− log(1− r)+ (log(1− r))2

)
for t ∈ Ω. �
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