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INTERPOLATIONS OF SCHWAB–BORCHARDT MEAN

ALFRED WITKOWSKI

(Communicated by J. Sándor)

Abstract. For two means M,N satisfying M(x,y) � N(x,y) we apply the ’borchardtisation’
process to obtain a new mean

SBM,N =

√
N2 −M2

arccos(M/N)
.

We use some geometric ideas to prove inequalities between the three means. In particular some
new inequalities for Seiffert means are established.

1. Introduction

For positive numbers x , y the pair of sequences

xn+1 =
xn + yn

2
, yn+1 =

√
yn

xn + yn

2
, x0 = x, y0 = y, (1)

converges to a common limit called the Schwab-Borchardt mean

SB(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
y2− x2

arccos(x/y)
, x < y,√

x2− y2

arccosh(x/y)
, y < x,

x x = y.

The algorithm (1) was known to Gauss but has been rediscovered by Borchradt and
named after him ([1, 6]).

Two means introduced by Seiffert in [13]

P(x,y) =

⎧⎨
⎩

x− y

2arcsin x−y
x+y

x �= y,

x x = y,

and in [15]

T (x,y) =

⎧⎨
⎩

x− y

2arctan x−y
x+y

x �= y,

x x = y,
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are of great interest for many mathematicians. In [6] Neuman and Sándor proved that
both are particular cases of the Schwab-Borchardt means, namely

P(x,y) = SB

(√
xy,

x+ y
2

)
and T (x,y) = SB

(
x+ y

2
,

√
x2 + y2

2

)
.

Interesting inequalities between P , T , arithmetic, geometric, logarithmic, identric and
power means were obtained by many authors (see the bibliography) using analytic ap-
proach or properties of the Schwab-Borchardt algorithm. Especially the sequential
method developed by Sándor ([8, 9, 10, 6]) provides a way for further refinements.

In this paper we use geometric properties of the ’upper’ part of SB to generalise
those results and to obtain some new, optimal estimates. The word "optimal" does not
mean here that the estimates cannot be improved, rather that the results presented are
the best possible in the class (obvious from the statement of theorems) of inequalities.

2. Notation and definitions

We shall be using the following notation: x,y are always positive. For real t we
denote by At(x,y) the power mean of order t

At = At(x,y) =

⎧⎪⎨
⎪⎩
(

xt + yt

2

)1/t

t �= 0,

√
xy t = 0.

We also use standard notation G = A0, A = A1 and Q = A2 for geometric, arithmetic
and the root mean square means.

We write a ∼= b to indicate that a and b are of the same sign.

DEFINITION 2.1. If two means N(x,y) and M(x,y) satisfy M(x,y) � N(x,y) for
all x,y , then we define their borchardtisation by

SBM,N(x,y) = SB(M(x,y),N(x,y)).

With this terminology we have

SB = SBmin,max, P = SBG,A, T = SBA,Q.

Consider a right triangle ΔABC (see Fig. 1) with sides

|AB| = N, |BC| = M, |AC| =
√

N2 −M2,

and let P be the intersection point of AB and the circle of radius |BC| centered at B .

In the middle of
�
PC draw a tangent line that meets BA at F and BC at E .

We shall denote by β the radial measure of ∠B

β = arccos
M
N

.
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Figure 1.

Thus

SBM,N =
|AC|

β
=

|AC||BC|
| �
PC|

. (2)

DEFINITION 2.2. As x,y vary, the angle β varies as well between 0 and α ,
where

α = αM,N = sup
x,y

arccos
M(x,y)
N(x,y)

.

We call αM,N the angle between M and N .

Note that αmin,max = αG,A = π
2 (fix y and make x small), while αA,Q = π

4 , because

|AC|= |x−y|
2 < x+y

2 = |AB| . In general, the reader can easily show that for 0 < r < s the
angle between power means equals αAr ,As = arccos21/s−1/r.

Observe that

sin
β
2

=

√
1− cosβ

2
=

√
|AB|− |BC|

2|AB| =
|AC|

2
√
|AB| |AB|+|BC|

2

, (3)

tan
β
2

=

√
1− cosβ
1+ cosβ

=

√
|AB|− |BC|
|AB|+ |BC| =

|AC|
|AB|+ |BC| , (4)

and therefore (2) enables us to write the identities

| �
PC| = |BC|β =

SBM,N |
�
PC|

SBM,N
, (5)

|PQ| = |BC|sinβ =
SBM,N |

�
PC|

N
, (6)

|AC| = |BC| tanβ =
SBM,N |

�
PC|

M
, (7)

|PC| = 2|BC|sinβ/2 =
SBM,N |

�
PC|√

N M+N
2

, (8)
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|EF| = 2|BC| tanβ/2 =
SBM,N |

�
PC|

M+N
2

. (9)

This in turn leads to identities

SBM,N ·β = N sinβ = M tanβ = 2

√
N

M +N
2

sinβ/2 = 2
M +N

2
tanβ/2, (10)

that we shall explore in the next sections.

3. Obvious inequalities

The inequalities in this section between the means M,N and their borchardtisa-
tion follow immediately from (10) and monotonicity of functions sinx

x and tanx
x . The

geometric interpretation shows that the constants are optimal.

THEOREM 3.1. The inequalities hold

M � SBM,N � tanα
α

M, (11)

(in case α = π
2 this indicates lack of the upper bound)

sinα
α

N � SBM,N � N, (12)

sinα/2
α/2

√
N

M +N
2

� SBM.N �
√

N
M +N

2
, (13)

M +N
2

� SBM.N � tanα/2
α/2

· M +N
2

. (14)

Let us apply this result to Seiffert means: the inequality (15) was established first
by Seiffert in [16]. The right-hand sides of (16), (18) and the left-hand sides of (17) and
(19) follow also immediately from the monotonicity of sequences defining Schwab-
Borchardt means (see Sándor’s papers [9, 10]). The right-hand side of (17) was proved
by P. Hästö in [3, Cor. 1.11].

COROLLARY 3.1. The Seiffert mean P satisfies the inequalities

G � P,

2
π

A � P � A, (15)

2
√

2
π

√
A

A+G
2

� P �
√

A
A+G

2
, (16)

A+G
2

� P � 4
π
· A+G

2
. (17)
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COROLLARY 3.2. The Seiffert mean T satisfies the inequalities

A � T � 4
π

A,

2
√

2
π

Q � T � Q,

4
√

2−√
2

π

√
Q

Q+A
2

� T �
√

Q
Q+A

2
, (18)

Q+A
2

� T � 8(
√

2−1)
π

· Q+A
2

. (19)

4. Arithmetic interpolations

The set of obvious inequalities

|PQ| < |PC| < |
�
PC| < |EF| < |AC| (20)

allows us to consider different kind of interpolations, like |
�
PC|− t|PQ|− (1− t)|AC| ,

|
�
PC|−|PC|t |EF|1−t etc. and look for these t for which the interpolations preserve sign.
As we shall see, the formulas (5)–(9) will turn them into optimal bounds for SBM,N in
terms of arithmetic, geometric or harmonic interpolations of surrounding means.

In most cases we shall face the situation similar to the one described in the next
lemma (monotonicity and convexity may vary).

LEMMA 4.1. Suppose ft : [0,π/2]→ R, t ∈ [0,1] is a family of functions satisfy-
ing the following assumptions:

– ft increases with t ,

– ft(0) = f ′t (0) = 0 for every t ,

– there exists t0 such that ft (x) are concave in x for every t � t0 ,

– if t > t0 , then ft (x) is convex for small x and has at most one inflection point.

Let 0 < α � π/2 . Then

– ft(x) � 0 holds for all x ∈ [0,α] if and only if t � t0

– ft(x) � 0 holds for all x ∈ [0,α] if and only if ft(α) � 0 . In particular, if
ftα (α) = 0 , then ft is nonnegative for all t � tα .

We leave its simple proof (draw a picture and look) to the reader.

THEOREM 4.1. We have the following optimal bounds

(1−h(α))N +h(α)M � SBM.N � 2
3
N +

1
3
M,

where h(x) = x−sinx
x(1−cosx) .
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Proof. Using (10) we obtain

SBM.N − (1− t)N− tM ∼= 1
β
− 1− t

sinβ
− t

tanβ

=
1

β sinβ
(sinβ − (1− t)β − tβ cosβ ).

The functions ϕt(x) = sinx− (1− t)x− txcosx satisfy ϕt(0) = ϕ ′
t (0) = 0 and

ϕ ′′
t (x) = t sinx

(
x

tanx
− 1−2t

t

)
.

Note that ϕt increases in t . Since x
tanx decreases from 1 to 0, we see that for t � 1/3

the function ϕt is concave and therefore negative. We also see that for t > 1/2 it is
convex in (0,π/2) . In case 1/2 < t < 2/3, ϕt is convex for small x and has one
inflection point, so by Lemma 4.1, SBM.N � (1− t)N + tM holds for t � 1

3 and since
the right-hand side decreases in t , it attains its best bound at t = 1/3.

On the other hand, the condition ϕt(α) � 0 is equivalent to

t � α − sinα
α(1− cosα)

= h(α).

This gives the left-hand side of our statement. �

COROLLARY 4.1. For Seiffert means we have

2
π

A+
π −2

π
G � P � 2

3
A+

1
3
G, (21)

(1− r1)Q+ r1A � T � 2
3
Q+

1
3
A, (22)

where r1 =
2(π −2

√
2)

(2−√
2)π

≈ .340341385 .

The right-hand sides of (21) and (22) are due to Sándor ([9, 10]).

THEOREM 4.2. The constants in the inequalities below are optimal

(1−h(α/2))

√
N

M +N
2

+h(α/2)
M+N

2
� SM,N � 2

3

√
N

M +N
2

+
1
3

M +N
2

where h(x) is defined in Theorem 4.1.

Proof. We use (10) to obtain

SBM.N − (1− t)

√
N

M +N
2

− t
M +N

2
∼= 1

β
− 1− t

2sinβ/2
− t

2tanβ/2

=
1

β sinβ/2
ϕt(β/2),

where ϕ is the function defined in the proof of Theorem 4.1. The proof concludes as
above. �
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COROLLARY 4.2.

(1− r1)

√
A

A+G
2

+ r1
A+G

2
� P � 2

3

√
A

A+G
2

+
1
3

A+G
2

, (23)

(1− r2)

√
Q

Q+A
2

+ r2
Q+A

2
� T � 2

3

√
Q

Q+A
2

+
1
3

Q+A
2

, (24)

where r1 is the same as in the previous corollary and r2 = π−8sin(π/8)
π(1−cos(π/8)) ≈ 0.335056 .

The right-hand side inequality in (23) was proved by Sándor in [9]. Note that the
right-hand side of (24) can be obtained from (23) using methods described in [10].

5. Geometric interpolations

Next two theorems provide the best bounds by weighted geometric means.

THEOREM 5.1. The inequalities hold

N2/3M1/3 � SBM,N � N1−k(α)Mk(α),

where k(x) = logsinx−logx
logcosx . The constants cannot be improved.

Proof. Equations (10) imply that

SBM.N −N1−tMt ∼= 1
β
− 1

sin1−t β tant β

=
1

β sinβ tant β
(
sinβ cos−t β −β

)
.

The functions ξt(x)= sinxcos−t x−x, t > 0 satisfy ξt(0)= ξ ′
t (0)= 0 and increase

in t . Their second derivative equals

ξ ′′
t (x) = −(1− t)2 sinxcos−t−2 x

(
cos2 x− t(t +1)

(1− t)2

)
.

The quotient t(t+1)
(1−t)2 is greater than 1 if t > 1/3, which yields convexity of ξt(x) .

On the other hand, for 0 < t < 1/3 the expression in brackets is positive for small x
and changes sing once as x varies, therefore, by slight modification of Lemma 4.1 we
conclude that SBM.N � N2/3M1/3 for t � 1/3, and SBM.N � N1−tMt on (0,α) if and
only if sinα cos−t α −α � 0, which is equivalent to

t <
logsinα − logα

logcosα
= k(α). �
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COROLLARY 5.1. The Seiffert means satisfy

A2/3G1/3 � P, (25)

Q2/3A1/3 � T � Q1−r3Ar3 , (26)

where r3 =
log π2

8

log2
≈ .302992259 .

The left-hand sides of (25) and (26) are due to Sándor ([9, 10]).

THEOREM 5.2. The inequalities hold

N1/3
(

M +N
2

)2/3

� SBM,N � N
1−k(α/2)

2

(
M +N

2

) 1+k(α/2)
2

,

where k(x) is defined in Theorem 5.1. The constants cannot be improved.

Proof. Let 0 < t < 1. Again by (10) we have

SBM,N −N1−t
(

M +N
2

)t
∼= 1

β
− 1

2t sin1−t β tant β/2

=
1

β sinβ/2cos1−2t β/2
ξ2t−1(β/2),

where ξt is defined in the proof of previous theorem, and we conclude that SBM,N −
N1−t

(
M+N

2

)t
is positive if t � 2/3 and negative if t < 1+k(α/2)

2 . �

COROLLARY 5.2. For the Seiffert means we have

A1/3
(

A+G
2

)2/3

� P � Ar3

(
A+G

2

)1−r3
, (27)

Q1/3
(

Q+A
2

)2/3

� T � Qr4

(
Q+A

2

)1−r4

, (28)

where r3 =
log(4/π)

log2
≈ .348503871 and r4 =

log(π
8 cot(π

8 ))
2log(cos(π

8 ))
≈ .336842548.

The left-hand sides of (27) and (28) are also due to Sándor ([9, 10]).
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6. Harmonic interpolations

This section is devoted to bounds of borchardtisation by the weighted harmonic
mean of its originators.

THEOREM 6.1. The following inequalities hold

1−m(α)
M

+
m(α)

N
� 1

SBM,N
� 1/3

M
+

2/3
N

,

where m(x) = tanx−x
tanx−sinx .

Proof. As usual we can write

1
SBM.N

− t
N
− 1− t

M
∼= β − t sinβ − (1− t) tanβ .

The functions φt(x) = x− t sinx− (1− t) tanx increase in t , φt(0) = φ ′
t (0) = 0.

Their second derivative φ ′′
t (x) = t sinx

cos3 x

(
cos3 x− 2(1−t)

t

)
is negative for t � 2/3. In

case t > 2/3 the function φt is convex for small x and has one inflection point. The
inequality φt(α) � 0 is equivalent to

t � tanα −α
tanα − sinα

= m(α),

and application of Lemma 4.1 completes the proof. �

COROLLARY 6.1. The Seiffert means satisfy

1
A

� 1
P

� 1/3
G

+
2/3
A

, (29)

1− r5

A
+

r5

Q
� 1

T
� 1/3

A
+

2/3
Q

,

where r5 =
4−π

4−2
√

2
≈ 0.732696501 .

The right-hand side of (29) is due to Seiffert ([16]).

THEOREM 6.2. The following inequalities hold

1−m(α/2)
M+N

2

+
m(α/2)√

N M+N
2

� 1
SBM,N

� 1/3
M+N

2

+
2/3√
N M+N

2

,

where m(x) is defined as above.

We leave the proof to the reader.
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COROLLARY 6.2. For the Seiffert means we have

1− r5
A+G

2

+
r5√
AA+G

2

� 1
P

� 1/3
A+G

2

+
2/3√
AA+G

2

,

1− r6
Q+A

2

+
r6√

QQ+A
2

� 1
T

� 1/3
Q+A

2

+
2/3√
QQ+A

2

,

where r5 is defined in the previous corollary and r6 = m(π/8)≈ .6823467 .

The reader familiar with our method can easily prove the following theorem

THEOREM 6.3. The following bounds are optimal

n(α)
N

+
1−n(α)

M+N
2

� 1
SBM,N

� 1/3
N

+
2/3
M+N

2

,

where n(x) = 2 tanx/2−x
2 tanx/2−sinx .

COROLLARY 6.3. For the Seiffert means we have the bounds

2− π
2

A
+

π
2 −1
A+G

2

� 1
P

� 1/3
A

+
2/3
A+G

2

(30)

r7

Q
+

1− r7
Q+A

2

� 1
T

� 1/3
Q

+
2/3
Q+A

2

, (31)

where r7 =
8(
√

2−1)−π
6
√

2−8
≈ 0.354672268 .

The proof of the right-hand side of (30) using (27) and the AG inequality can be
found in [11].

7. Q and A−2 interpolations

Inequalities (20) between elements of the triangle are valid also for their squares.
This enables us to prove the next estimates.

THEOREM 7.1. The inequalities hold

√
l(α)M2 +(1− l(α))N2 � SMM,N �

√
M2 +2N2

3
,√

M +N
2

√
l(α/2)

2
M +

(
1− l(α/2)

2

)
N � SMM,N �

√
M +N

2

√
M +5N

6
,

where l(x) = 1
sin2 x

− 1
x2 . The bounds cannot be improved.
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Proof. To prove the first part consider the difference

SB2
M,N − tM2− (1− t)N2 ∼= 1

β 2 −
t

tan2 β
− 1− t

sin2 β
= t− l(β ).

The function l(x) increases from 1/3 to l(α) , which concludes the proof.

To prove the second part replace M with M+N
2 and N with

√
N M+N

2 . �

COROLLARY 7.1. For the Seiffert means the inequalities hold√
π2−4

π2 G2 +
4

π2 A2 � P �
√

G2 +2A2

3
, (32)√

2π2−16
π2 A2 +

16−π2

π2 Q2 � T �
√

A2 +2Q2

3
,√

G+A
2

√
π2−8

π2 G+
8

π2 A � P �
√

G+A
2

√
G+5A

6
,√

A+Q
2

√
r8A+(1− r8)Q � T �

√
A+Q

2

√
A+5Q

6
,

where r8 ≈ 0.171935686.

Sándor and Triff in [12] refined (32) by showing that between P and the right-hand
side of (32) is quite a place to fit the identric mean I(x,y) = e−1(xx/yy)1/(x−y) .

Applying our method to reciprocals of squares, we obtain

THEOREM 7.2. The constants in the inequalities are sharp√
p(α)
M2 +

1− p(α)
N2 � 1

SBM,N
�
√

1/3
M2 +

2/3
N2 ,√√√√ 1

M+N
2

(
p(α/2)

M+N
2

+
1− p(α/2)

N

)
� 1

SBM,N
�

√√√√ 1
M+N

2

(
1/3
M+N

2

+
2/3
N

)
,

where p(x) = x2−sin2 x
tan2 x−sin2 x

.

The proof is similar to the previous one and we leave it and corrolaries to the
reader.

8. Interpolations by other means

That M and N are means, does not imply that M2/N or N2/M are means (take
min and max as counterexamples), although they often are. For example, Theorem 7.1
states that 2P2/(A+G) is a mean. It is well known that the harmonic mean H(x,y) =

2
1/x+1/y equals G2/A and the contraharmonic mean C(x,y) = x2+y2

x+y can be written as
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Q2/A . This motivates us to search for interpolations of SBM,N using M2/N and N2/M
as bounds.

Note that in our geometric parlance M2/N = M cosβ and N2/M = N/cosβ .

THEOREM 8.1. The bounds below cannot be improved

q(α)
M2

N
+(1−q(α))N � SBM.N � 5

6
N +

1
6

M2

N
,

where q(x) = x−sinx
xsin2 x

.

Proof. The proof goes along known line

SBM.N − (1− t)N− t
M2

N
∼= 1

β
− 1− t

sinβ
− t cosβ

tanβ

=
1

β sinβ
(
sinβ − (1− t)β − tβ cos2 β

)
=

1
β sinβ

(
sinβ −β + tβ sin2 β

)
.

The functions ρt(x) = sinx−x+txsin2 x vanish with their derivatives at x = 0. Because
their second derivatives equal

ρ ′′
t (x) = t sinx

(
1
t
−2

sin2x+ xcos2x
sinx

)
,

it is enough to show that sin2x+xcos2x
sinx decreases to apply Lemma 4.1.

We shall do it in three steps:

• sin2x
sinx = 2cosx decreases,

• if x > π/4, then both −cos2x and x
sinx are positive and increase, thus xcos2x

sinx is
negative and decreases,

• for x < π/4 and 0 < s < 1 the function cossx
cos2x increases, hence so does

∫ 1
0

cossx
cos2xds

= sinx
xcos2x . Its reciprocal thus decreases. �

COROLLARY 8.1. Since G2

A = H and A2

Q = A−2+Q
2 , the Seiffert means satisfy

π −2
π

H +
2
π

A � P � 1
6
H +

5
6
A, (33)

π −2
√

2
π

A−2 +
2
√

2
π

Q � T � 1
12

A2 +
11
12

Q.

The bounds (33) were proven in [2].
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The bounds for geometric interpolations (see [17]) follow immediately from The-
orem 5.1, and for the harmonic interpolations we obtain

THEOREM 8.2. There are sharp bounds

1− r(α)
M2/N

+
r(α)
N

� 1
SBM,N

� 1/6
M2/N

+
5/6
N

,

where r(x) = sinx−xcos2 x
sin3 x

.

Proof. We have

1
SBM.N

− t
N
− 1− t

M2/N
∼= β − t sinβ − (1− t)

sinβ
cos2 β

,

and we apply Lemma 4.1 to functions μt(x) = x− t sinx− (1− t) sinx
cos2 x

. �

Applying this reasoning to M and N2/M we obtain

THEOREM 8.3. The inequalities hold

s(α)M +(1− s(α))
N2

M
� SBM.N � 2

3
M +

1
3

N2

M
,

where s(x) = x−sinxcosx
xsin2 x

.

and

THEOREM 8.4. The inequalities hold

1−u(α)
N2/M

+
u(α)
M

� 1
SBM,N

� 1/3
N2/M

+
2/3
M

,

where u(x) = x−sinxcosx
tanx−sinxcosx .

COROLLARY 8.2. The following inequalities between arithmetic, contraharmonic
and Seiffert T means hold(

2− 4
π

)
A+

(
4
π
−1

)
C � T � 2

3
A+

1
3
C,

2− π
2

C
+

π
2 −1

A
� 1

T
� 1/3

C
+

2/3
A

.

All the theorems show that the geometric method described here is much more
efficient than straightforward approach presented in many current papers ([2, 17, 18])
and it does not require assumption about homogeneity of means.

Note also that our method, similarly to the sequential method of Sándor can lead
to further refinements: consider a right triangle formed by the lines BE , EF and the

bissectrice of ∠B . Then we can apply our method taking N+M
2 and

√
N N+M

2 as a
starting point.
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