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INTERPOLATIONS OF SCHWAB-BORCHARDT MEAN

ALFRED WITKOWSKI

(Communicated by J. Sdndor)

Abstract. For two means M,N satisfying M(x,y) < N(x,y) we apply the "borchardtisation’
process to obtain a new mean

N2 — M2
arccos(M/N) "
We use some geometric ideas to prove inequalities between the three means. In particular some
new inequalities for Seiffert means are established.

SBM‘N ==

1. Introduction
For positive numbers x, y the pair of sequences

_ Xpt+Yn - Xn+ Yn - -
Xntl = "5 Il =\ Fo=X Yo=Y, (L

converges to a common limit called the Schwab-Borchardt mean

N < b
arccos(x/y) Y
SB(x7y): /x2_y2 .
arccosh(x/y)’ yeh
X x=y.

The algorithm (1) was known to Gauss but has been rediscovered by Borchradt and
named after him ([ 1, 6]).
Two means introduced by Seiffert in [13]

r=y
27.)@ XFy,
P(x,y) = arcsin
X r=Y
and in [15]
X=Y
——— X#Y
T(x,y) = 2arctanj‘?§ '
X X=
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are of great interest for many mathematicians. In [6] Neuman and Sandor proved that
both are particular cases of the Schwab-Borchardt means, namely

2 2
P(x,y>=s3(¢x—y,’%) and m,y):s;g(’%, ’“?’).

Interesting inequalities between P, T, arithmetic, geometric, logarithmic, identric and
power means were obtained by many authors (see the bibliography) using analytic ap-
proach or properties of the Schwab-Borchardt algorithm. Especially the sequential
method developed by Sandor ([8, 9, 10, 6]) provides a way for further refinements.

In this paper we use geometric properties of the upper’ part of SB to generalise
those results and to obtain some new, optimal estimates. The word "optimal" does not
mean here that the estimates cannot be improved, rather that the results presented are
the best possible in the class (obvious from the statement of theorems) of inequalities.

2. Notation and definitions

We shall be using the following notation: x,y are always positive. For real ¢ we
denote by A;(x,y) the power mean of order ¢

X +y L
At:At(x7y): ( 2 ) 1#0,

/Xy t=0.
We also use standard notation G = Ag, A =A; and Q = A, for geometric, arithmetic

and the root mean square means.
We write a = b to indicate that a and b are of the same sign.

DEFINITION 2.1. If two means N(x,y) and M(x,y) satisfy M(x,y) < N(x,y) for
all x,y, then we define their borchardtisation by

SBun(x,y) = SB(M(x,y),N(x,y)).
With this terminology we have
SB = SBminmax, P=8Bga, T =SBap.
Consider a right triangle AABC (see Fig. 1) with sides
IAB| =N, |BC|=M, |AC|=+/N2—M2,

and let P be the intersection point of AB and the circle of radius |BC| centered at B.

In the middle of PAC draw a tangent line that meets BA at F and BC at E.
We shall denote by B the radial measure of /B

M
= arccos —.
P N
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A
PF
3
B 0 CE
Figure 1.
Thus AC|  |AC||BC]
SBuy = el JACIBC] @)
|PC|

DEFINITION 2.2. As x,y vary, the angle B varies as well between 0 and o,

where
M(x,y)
O = Oy N = suparccos

X,y N(X’Y) .

We call oy n the angle between M and N .

Note that Omin,max = 0G4 = 5 (fix y and make x small), while oy o = T, because
|AC| = M;—y‘ < T2 =|AB|. In general, the reader can easily show that for 0 < r < s the
angle between power means equals 0y, 4, = arccos 21 /s=1/r,

Observe that

1— AB| — |B A
B [TcosB _ [lAB Bl jac| )
2 2 2|AB| > /‘AB||AB|-5\BC|

tané _ |l—cosB  [|AB|—|BC| |AC| @
2 \/ 14+cosp \/ |AB|+|BC|  |AB|+|BC|’
and therefore (2) enables us to write the identities
— SBM_N‘P?:|
PC|=|BC|B = —+— 5
Pl = IBclp = =g =, )
SBy.v|PC
1PO| = |BC]sin = PP (6)
SByv|PC
|AC| = |BC|tan B = SBun|PC| (7)
M
SBy.n|PC
|PC| = 2|BC|sin /2 = 224N | (8)

MiN
VN



196 A. WITKOWSKI

SBy|PC|
W. 9)

|EF| =2|BC|tanf3 /2 =

This in turn leads to identities

+N
SBun-B=Nsinf = Mtanﬂ—ZW/NT sinf3/2 = 2

that we shall explore in the next sections.

NanB/2,  (10)

3. Obvious inequalities

The inequalities in this section between the means M,N and their borchardtisa-
tion follow immediately from (10) and monotonicity of functions *2* and “2*. The
geometric interpretation shows that the constants are optimal.

THEOREM 3.1. The inequalities hold

t

M < By < M, (11)

o

(in case oo = % this indicates lack of the upper bound)
"IN < SByy <N, (12)

sincr/2 M+N M~+N
<SBynwn < N— 13
a2 \/N MN <A/ (13)
M+N tan(x/2 M+N

<SBynwn < — 14
2 MNS T2 2 (14)

Let us apply this result to Seiffert means: the inequality (15) was established first
by Seiffert in [16]. The right-hand sides of (16), (18) and the left-hand sides of (17) and
(19) follow also immediately from the monotonicity of sequences defining Schwab-
Borchardt means (see Sdndor’s papers [9, 10]). The right-hand side of (17) was proved
by P. Hasto in [3, Cor. 1.11].

COROLLARY 3.1. The Seiffert mean P satisfies the inequalities

G<P

<P<A, (15)

Af /A+G pe QA+G 16)
A+G 4A+G

<P<— (17)
T 2
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COROLLARY 3.2. The Seiffert mean T satisfies the inequalities
ALT< A
b4
\/_
—Q r<o,

42 -2 A A
V2 o0t A e oA (18)

)

T <
Q;AgT\ i_l Q;“A. (19)
4. Arithmetic interpolations
The set of obvious inequalities
IPO| < |PC| < |PC| < |EF| < |AC| (20)

allows us to consider different kind of interpolations, like |PC|—¢|PQ| — (1 —1)|AC]|,

|PC|—|PC|'|EF|'~" etc. and look for these ¢ for which the interpolations preserve sign.
As we shall see, the formulas (5)—(9) will turn them into optimal bounds for SBy y in
terms of arithmetic, geometric or harmonic interpolations of surrounding means.

In most cases we shall face the situation similar to the one described in the next
lemma (monotonicity and convexity may vary).

LEMMA 4.1. Suppose f; :[0,7/2] — R, t € [0,1] is a family of functions satisfy-

ing the following assumptions:

— f; increases with t,

— £:(0) = f/(0) =0 for every t,

— there exists ty such that f;(x) are concave in x for every t < iy,

— if t > 1y, then fi(x) is convex for small x and has at most one inflection point.
Let 0 < oo < 1/2. Then

— fi(x) <0 holds for all x € [0, ] if and only if t <1

— fi(x) = 0 holds for all x € [0,a] if and only if fi(a) > 0. In particular, if
fiy (&) =0, then f; is nonnegative for all t > ty.

We leave its simple proof (draw a picture and look) to the reader.

THEOREM 4.1. We have the following optimal bounds

(I1=h(0))N+h(o)M < SByn < iN-f—éM

where h(x) = x()i:sci(r)l:x) :
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Proof. Using (10) we obtain

N T
SBMN—(I—I)N tM = B_m_tanﬁ
ﬁs1 ﬂ(smB (1—1)B—1BcosP).

The functions @ (x) = sinx — (1 —#)x — txcosx satisfy ¢ (0) = ¢/(0) =0 and
1—2¢
(p,"(x)ztSiﬂx(i— ) :

tanx t

Note that ¢ increases in ¢. Since Z— decreases from 1 to 0, we see that for # < 1/3
the function ¢, is concave and therefore negative. We also see that for 7 > 1/2 it is
convex in (0,7/2). Incase 1/2 <t <2/3, ¢ is convex for small x and has one
inflection point, so by Lemma 4.1, SBy v < (1 —¢)N +tM holds for 7 < % and since
the right-hand side decreases in 7, it attains its best bound at r = 1 /3.
On the other hand, the condition ¢ (c) > 0 is equivalent to
o —sino
1= oa(l —cosa) ha)-

This gives the left-hand side of our statement. [

COROLLARY 4.1. For Seiffert means we have
2 nT—2 2

1
“A+=—G<P<ZA+=G, Q1)
T T 3 3

2 1
(l—rl)Q+r1A<T<§Q+ §A7 (22)

2(—2v/2)
2-V2)n
The right-hand sides of (21) and (22) are due to Sandor ([9, 10]).

where r; = =~ .340341385.

THEOREM 4.2. The constants in the inequalities below are optimal

[ M+N M+N 2 | M+N 1M+N
(I=h(a/2))\/ N—— +h(0/2) SSun < 7\/N +=
2 3 2 3 2
where h(x) is defined in Theorem 4.1.

Proof. We use (10) to obtain

M+N M+N 1 1—t¢ t
SByy — (1 —1)| /[N — i — —
= (1=1) 2 2 B 2sinﬁ/2 2tanB/2

ﬂsmﬂ/Z(pt(ﬁ/z)

where ¢ is the function defined in the proof of Theorem 4.1. The proof concludes as
above. [
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2 / 1A+G
- 2
3 2 3 2 23)
» +A 2 + L10+4
(1— <T< - - 24
7‘2 3 3 7 ( )

where r| is the same as in the previous corollary and r, = %{m =~ (0.335056.

COROLLARY 4.2.

The right-hand side inequality in (23) was proved by Sandor in [9]. Note that the
right-hand side of (24) can be obtained from (23) using methods described in [10].

5. Geometric interpolations

Next two theorems provide the best bounds by weighted geometric means.

THEOREM 5.1. The inequalities hold

where k(x) = %‘ The constants cannot be improved.

Proof. Equations (10) imply that

1 1
SBynv—NIMle
M B sin!~Btan’ B

1 , »
= Benpan B (sinBcos™B—B).

The functions & (x) = sinxcos ™" x—x, t > 0 satisfy & (0) = &/(0) =0 and increase
in ¢. Their second derivative equals

" (x) = —(1 —1)?sinxcos "2 x (coszx— zgtjtl)Z) )

The quotient E(II:I)% is greater than 1 if r > 1/3, which yields convexity of & (x).

On the other hand, for 0 < ¢ < 1/3 the expression in brackets is positive for small x
and changes sing once as x varies, therefore, by slight modification of Lemma 4.1 we
conclude that SBy;y > N?/3M"/3 for t > 1/3, and SByxy < N' 7'M’ on (0,a) if and
only if sinoccos™ o0 — o < 0, which is equivalent to

logsina —loga — k(). 0
logcos
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COROLLARY 5.1. The Seiffert means satisfy
A2BG3 < P,

Q2/3A1/3 <T< Ql—r314r37

log &

~.302992259.
log?2

where r3 =

The left-hand sides of (25) and (26) are due to Sandor ([9, 10]).

THEOREM 5.2. The inequalities hold

1+k(ct/2)

2/3
M+ N 1-k(@/2) [ M+ N )
N3 [ <SByun<N 2  [——
) M,N > ,

where k(x) is defined in Theorem 5.1. The constants cannot be improved.

Proof. Let 0 <t < 1. Again by (10) we have

M+N)t§ 1 1
2 B 2tsin' T Bran’ B/2

1
- Bsinf/2cos! =% ﬁ/zéz'f—l(ﬁ/z),

SByun — N <

(25)
(26)

where & is defined in the proof of previous theorem, and we conclude that SBy n —

N (MY s positive if 7 > 2/3 and negative if 7 < % O

COROLLARY 5.2. For the Seiffert means we have
2/3 1—r3
(50)” cren (15"

2
2/3 1—ry
1/3 0+A . 0+A
0 (€A r o (€)'

log(4 log(Z cot
where 1y — PB4/ 218503871 and ry — \O2EOUE))

T
B
—————— ~.336842548.
log2 2log(cos(g))

The left-hand sides of (27) and (28) are also due to Sandor ([9, 10]).

27)

(28)
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6. Harmonic interpolations

This section is devoted to bounds of borchardtisation by the weighted harmonic
mean of its originators.

THEOREM 6.1. The following inequalities hold

I1-m(o) m(ax) 1
M * N S

_13 23

_|_ -

S SByxn M N’
__ tanx—x

where m(x) = .

Proof. As usual we can write

1 t 1—1¢
L 2Tl g inB— (1 —1)tanp.
SBuw N ar " PorsinB-(1-njtanp

The functions ¢ (x) = x —¢sinx — (1 —¢)tanx increase in ¢, ¢(0) = ¢/(0) =0
Their second derivative ¢/"(x) = Lsinx

2(1—t . .
= o5 (cos3x— ¥> is negative for 7 < 2/3. In
case t > 2/3 the function ¢ is convex for small x and has one inflection point. The
inequality ¢, (o) > 0 is equivalent to

tana — o (@)
_ane—«
“ tano —sina ’

and application of Lemma 4.1 completes the proof.

|
COROLLARY 6.1. The Seiffert means satisfy
1 1 _1/3 2/3
~ <SSt
AP G A 29
1—r5+r_5<l < g_,_%’
A o T A 0

where rs = —— " 0732696501,
4-2\2

The right-hand side of (29) is due to Seiffert ([16]).

THEOREM 6.2. The following inequalities hold

1—m 2 m 2
moj2) | mia/2)

113 2/3
2

~X ~ + )
N N

where m(x) is defined as above.

We leave the proof to the reader.
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COROLLARY 6.2. For the Seiffert means we have

1—r5+ rs < < 22 1/3 2/3

— + ,
Sy vl RS YT
1—rg T6 1 1/3 2/3
+ <= <o
o+A T = 244 ’
5 QQ;A 5 QQ;A

where rs is defined in the previous corollary and re = m(m/8) ~ .6823467.

The reader familiar with our method can easily prove the following theorem

THEOREM 6.3. The following bounds are optimal

n@)  l-n(@) _ 1 _1/3, 23

N MerN = SBM,N SN MJZrN7

2tanx/2—x

where n(x) = 2tanx/2—sinx

COROLLARY 6.3. For the Seiffert means we have the bounds

2-5 5-1_1_1/3 23

A TmE SPST4 tag G0
ry 1—7’7 1 1/3 2/3
T I /N 31
N
8(V2—1)—
where r7 = 82— 1) =7 o 34672068,

6v2—8

The proof of the right-hand side of (30) using (27) and the AG inequality can be
foundin [11].

7. O and A_, interpolations

Inequalities (20) between elements of the triangle are valid also for their squares.
This enables us to prove the next estimates.

THEOREM 7.1. The inequalities hold

W<a>M2+<1—Z< IV < sy <[ L2
\/m\/ (@/2),, @) \/M+N\/M+5N

where 1(x) =

gmz — X— The bounds cannot be improved.
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Proof. To prove the first part consider the difference
SByn—tM*—(1—t)N* =2 — — —— — —— =1 — ().

The function /(x) increases from 1/3 to I(¢t), which concludes the proof.
To prove the second part replace M with 2 and N with /N2 O

COROLLARY 7.1. For the Seiffert means the inequalities hold

2 _ 4 2 1 DA2
\/71: G2 _2142<})<1/G_|—77 (32)
w2 b3 3
\/2n2—16 16 — n2Q2 /A2+2Q2
G+A w2 — 8 G+A G+5A
2 sPs
[A Q\/— /A+ A+5
X _ <T <4 ] =
> rgA+(l rg)Q\T\ 5 z

where rg = 0.171935686.

ﬂ

Sandor and Triff in [12] refined (32) by showing that between P and the right-hand
side of (32) is quite a place to fit the identric mean I(x,y) = ! (x*/y*)!/ (=)
Applying our method to reciprocals of squares, we obtain

THEOREM 7.2. The constants in the inequalities are sharp

\/ p(a) 1 1/3 2/
< <A =5+,

M2 N2 SByy SV MZ T A2

1 [ pla)2) 1—p(a/2)> 1 1 ( 1/3 2/3)

+ < < 4+ 2=

M+N M+N = = N M+N ’

MIN ( MIN N SBuy -\ LE\ X TN

2 12

x> —sin’x
tan2 x—sinZx *

where p(x) =

The proof is similar to the previous one and we leave it and corrolaries to the
reader.

8. Interpolations by other means

That M and N are means, does not imply that M?/N or N> /M are means (take
min and max as counterexamples), although they often are. For example, Theorem 7.1

states that 2P? /(A + G) is a mean. It is well known that the harmonic mean H (x,y) =

x+y

" can be written as

equals G?/A and the contraharmonic mean C(x,y) =

2
l/erl/v
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Q?/A. This motivates us to search for interpolations of SByy using M?/N and N> /M
as bounds.

Note that in our geometric parlance M? /N = M cos 3 and N>/M = N/ cosf3.

THEOREM 8.1. The bounds below cannot be improved

M? 5. 1M
- N <SByn < 2N+ -~
(o) 5+ (1= qo)N < SBuy < 2N+
where g(x) = xx—;;‘?;‘

Proof. The proof goes along known line

M?> 1 1—t tcospP
SByn—(1—t)N—tm =~ — L
my = ) N B sinf3 tanf

(sinf— (1—1)B—tBcos® B)

1
_ﬁsiﬁ
~ Bsinp

The functions p; (x) = sinx —x-+zxsin® x vanish with their derivatives at x = 0. Because
their second derivatives equal

(smﬁ B+1B s1n2[3)

1 sin2x 4 xcos2x
4 =t 1 [ S —
p/ (x) = tsinx . P ,

it is enough to show that % decreases to apply Lemma 4.1.
We shall do it in three steps:
sin2x __
o = =72cosx decreases,
e if x > /4, then both —cos2x and E are positive and increase, thus )L‘ZX is
negative and decreases,

e for x < /4 and 0 <s <1 the function £25= increases, hence so does fol o ds

sinx
= ooss - 1ts reciprocal thus decreases. [

2
COROLLARY 8.1. Since > =H and A =4 2+Q , the Seiffert means satisfy

-2 2 1 5
”—H+—A <P<-H+2A, (33)
T 6 6

T—2v2 2

T\/_A 2+—\/_Q<T EA2+ Q

The bounds (33) were proven in [2].
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The bounds for geometric interpolations (see [17]) follow immediately from The-
orem 5.1, and for the harmonic interpolations we obtain
THEOREM 8.2. There are sharp bounds

l—r(a) r(a) 1 1/6 5/6
+ < < -~
M?*/N N SBun ~ M?/N N

L2
where r(x) = S
S X

Proof. We have

1 t 11—t
—— = ——— ~B—rsinf—(1—1
SBun N N P rsinp=(1-1)

sin 3

cos? 3’

and we apply Lemma 4.1 to functions t,(x) =x—ztsinx— (1 —1) % . O

Applying this reasoning to M and N?>/M we obtain

THEOREM 8.3. The inequalities hold

N2 2 1 N2
s(a)M+(1— S(a))ﬁ <SByn< =M+ =

__ x—sinxcosx
where s(x) = #0070

and

THEOREM 8.4. The inequalities hold

—u(e) u(e) 1 /3 2/3
F— < < =,
N2/M M SBu N N2/M M

__ _x—sinxcosx
where u(x) T tanx—sinxcosx *
COROLLARY 8.2. The following inequalities between arithmetic, contraharmonic
and Seiffert T means hold

(2—i)A+ (i— 1>C< T< %A+1C,
T T 3 3
25 5-1_1_13.2/3
C A T C A
All the theorems show that the geometric method described here is much more
efficient than straightforward approach presented in many current papers ([2, 17, 18])
and it does not require assumption about homogeneity of means.
Note also that our method, similarly to the sequential method of Sandor can lead
to further refinements: consider a right triangle formed by the lines BE, EF and the
R

bissectrice of ZB. Then we can apply our method taking NT and as a

starting point.
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