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Abstract. In this paper, we derive some identities for the Hausdorff measures of noncompactness
of certain matrix operators on the sequence spaces X(r,s) of generalized means. Further, we
apply the Hausdorff measure of noncompactness to obtain the necessary and sufficient conditions
for such operators to be compact.

1. Introduction and preliminaries

In this section, we give some definitions, notations and preliminary results which
form the back ground of the present work.

Let w denote the space of all sequences x = (xk)
∞
k=0 real or complex. Let �∞,c and

c0 be the spaces of all bounded, convergent and null sequences, respectively. Further,
by cs and �p (1 � p < ∞) , we denote the spaces of all sequences associated with
convergent and p -absolutely convergent series, respectively.

A sequence space X is called a BK space if it is a Banach space with continuous
coordinates pn : X → C (n ∈ N) , where C denotes the complex field and pn(x) = xn

for all x = (xk) ∈ X and every n ∈ N . A BK space X ⊃ φ is said to have AK if every
sequence x = (xk) ∈ X has a unique representation x = ∑∞

k=0 xke(k) ; where φ denotes
the set of all finite sequences that terminate in zeros, e = (1,1,1, . . .) and e(k) is the
sequence whose only non-zero term is 1 in the kth place for each k ∈N := {0,1,2, . . .} .

The sequence spaces �∞ , c and c0 are BK spaces with the same sup-norm given
by ‖x‖�∞

= supk |xk| , where the supremum is taken over all k ∈ N . Further, the space

�p is a BK space with the usual �p -norm defined by ‖x‖�p
= (∑∞

k=0 |xk|p)1/p , where
1 � p < ∞ . Moreover, the BK spaces c0 and �p (1 � p < ∞) have AK (cf. [6, 17]).

Let SX denote the unit sphere in a normed linear space X . If X ⊃ φ is a BK space
and a = (ak) ∈ w , then we write

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞

∑
k=0

akxk

∣∣∣∣∣ (1.1)
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provided the expression on the right is defined and finite which is the case whenever
a ∈ Xβ , where

Xβ =
{
a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
is the β -dual of a subset X of w.

Let A = (ank)
∞
n,k=0 be an infinite matrix. We write An for the sequence in the nth

row of A , that is An = (ank)
∞
k=0 for every n ∈ N . In addition, if x = (xk) ∈ w then we

define the A-transform of x as the sequence Ax = (An(x))
∞
n=0 , where

An(x) =
∞

∑
k=0

ankxk; (n ∈ N) (1.2)

provided the series on the right converges for each n ∈ N .
For arbitrary subsets X and Y of w , we write (X ,Y ) for the class of all infinite

matrices that map X into Y . Thus A ∈ (X ,Y ) if and only if An ∈ Xβ for all n ∈ N and
Ax ∈ Y for all x ∈ X .

For any subset X of w , the matrix domain of an infinite matrix A in X is defined
by

XA =
{
x ∈ w : Ax ∈ X

}
.

An infinite matrix T = (tnk) is called a triangle if tnn �= 0 and tnk = 0 for all k > n
(n ∈ N) . The study of matrix domains of triangles in sequence spaces has a special
importance due to the various properties which they have. For example, if X is a BK
space then XT is also a BK space with the norm given by ‖x‖XT

= ‖Tx‖X for all x∈XT

[17, Theorem 4.3.12].
The following results are very important in our study.

LEMMA 1.1. [6, Theorem 1.29] Let 1 < p < ∞ and q = p/(p− 1) . Then, we

have �
β
∞ = cβ = cβ

0 = �1 , �
β
1 = �∞ and �

β
p = �q . Furthermore, let X denote any of the

spaces c0 , c , �∞ , �1 or �p . Then, we have ‖a‖∗X = ‖a‖Xβ for all a∈ Xβ , where ‖·‖Xβ

is the natural norm on the dual space Xβ .

LEMMA 1.2. [6, Theorem 1.23 (a)] Let X and Y be BK spaces. Then, we have
(X ,Y ) ⊂ B(X ,Y ) , that is, every matrix A ∈ (X ,Y ) defines an operator LA ∈ B(X ,Y )
by LA(x) = Ax for all x ∈ X , where B(X ,Y ) denotes the set of all bounded (continu-
ous) linear operators L : X → Y.

LEMMA 1.3. [6, Lemma 2.2] Let X ⊃ φ be a BK space and Y be any of the
spaces c0 , c or �∞ . If A ∈ (X ,Y ) , then

‖LA‖ = ‖A‖(X ,�∞) = sup
n
‖An‖∗X < ∞.

Also, let F be the collection of all nonempty and finite subsets of N = {0,1,2, . . .} ,
throughout. Then, we have the following result:
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LEMMA 1.4. [7, Proposition 3.3] Let X ⊃ φ be a BK space. If A ∈ (X , �1) , then

‖A‖(X ,�1) � ‖LA‖ � 4 · ‖A‖(X ,�1),

where

‖A‖(X ,�1) = sup
N∈F

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

< ∞.

By MX , we denote the collection of all bounded subsets of a metric space (X ,d) .
If Q ∈ MX , then the Hausdorff measure of noncompactness of the set Q , denoted by
χ(Q) , is defined by

χ(Q) := inf{ε > 0 : Q ⊂ ∪n
i=1B(xi,ri),xi ∈ X ,ri < ε(i = 1,2, ...),n ∈ N0}.

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness [15].
The basic properties of the Hausdorff measure of noncompactness can be found in

[6] and [15].
To compute the Hausdorff measure of noncompactness of a bounded subset of the

BK space �p (1 � p < ∞) , we may use the following result [15, Theorem 2.8].

LEMMA 1.5. Let 1 � p < ∞ and Q ∈ M�p . If Pm : �p → �p (m ∈ N) is the
operator defined by Pm(x) = (x0,x1, . . . ,xm,0,0, . . .) for all x = (xk) ∈ �p , then we have

χ(Q) = lim
m→∞

(
sup
x∈Q

‖(I−Pm)(x)‖�p

)
,

where I is the identity operator on �p .

The idea of compact operators between Banach spaces is closely related to the
Hausdorff measure of noncompactness, and it can be given as follows:

Let X and Y be Banach spaces. Then, a linear operator L : X → Y is said to be
compact if the domain of L is all of X and L(Q) is a totally bounded subset of Y for
every Q ∈MX . Equivalently, we say that L is compact if its domain is all of X and for
every bounded sequence (xn) in X , the sequence (L(xn)) has a convergent subsequence
in Y . An operator L ∈ B(X ,Y ) is said to be of finite rank if dimR(L) < ∞ , where
R(L) denotes the range space of L . An operator of finite rank is clearly compact.

The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows:

Let X and Y be Banach spaces and L ∈ B(X ;Y ). Then, the Hausdor measure of
noncompactness of L , denoted by ‖ L ‖χ , can be given by

‖ L ‖χ= χ(L(SX)) (1.3)

and we have
L is compact if and only if ‖ L ‖χ= 0. (1.4)

Recent developments on this particular topic can be found in (cf. [1], [2], [4],
[8]–[14]).
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2. The sequence spaces of generalized means

Throughout this paper, let r ∈ U and s ∈ Uo , where

U =
{
u = (uk) ∈ w : uk �= 0 for all k

}
and Uo =

{
u = (uk) ∈ w : u0 �= 0

}
.

For any sequence x = (xn) ∈ w , we define the sequence x = (xn) of generalized
means of x by

xn =
1
rn

n

∑
k=0

sn−kxk; (n ∈ N). (2.1)

Further, we define the infinite matrix A(r,s) of generalized means by

A(r,s)nk =

⎧⎨
⎩

sn−k/rn ; (0 � k � n),

0; (k > n)
(2.2)

for all n,k ∈ N . Then, by using the notation of (1.2), it follows by (2.1) that x is the
A(r,s)-transform of x , that is x = A(r,s)x for all x ∈ w .

Moreover, it is obvious by (2.2) that A(r,s) is a triangle. Thus, it has a unique

inverse A(r,s)−1 which is also a triangle. More precisely, we put D(s)
0 = 1/s0 and

D(s)
n =

1

sn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 s0 0 0 · · · 0
s2 s1 s0 0 · · · 0
s3 s2 s1 s0 · · · 0
...

...
...

...
...

sn−1 sn−2 sn−3 sn−4 · · · s0

sn sn−1 sn−2 sn−3 · · · s1

∣∣∣∣∣∣∣∣∣∣∣∣∣
; (n = 1,2,3, . . .).

Then, the entries of A(r,s)−1 are given by

A(r,s)nk
−1 =

⎧⎨
⎩

(−1)n−kD(s)
n−krk ; (0 � k � n),

0; (k > n)
(2.3)

for all n,k ∈ N , that is A(r,s)−1 = A(s′,r) , where s′ = (s′n) such that s′n = (−1)nD(s)
n

for all n ∈ N . Therefore, we have by (2.1) that

xn =
n

∑
k=0

(−1)n−kD(s)
n−krk xk; (n ∈ N). (2.4)

REMARK 2.1. It is worth mentioning that the general forms of the well-known
matrices of Nörlund, Cesàro, Euler and weighted means can be obtained as special
cases of the matrix A(r,s) of generalized means (see [11, Example 2.1]). Also, let a
and b be non-zero complex numbers. Then, by taking r = e and s = (a,b,0,0, . . .) ,
the matrix A(r,s) is reduced to the generalized difference matrix B(a,b) studied in
[2, 3, 4].
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For an arbitrary subset X of w , we define the set X(r,s) which is a special case of
X(r,s, t) (cf. [11]) as the matrix domain of the triangle A(r,s) in X , that is

X(r,s) =

{
x = (xk) ∈ w : x =

(
1
rn

n

∑
k=0

sn−kxk

)∞

n=0

∈ X

}
.

It is obvious that X(r,s) is a sequence space whenever X is a sequence space, and
we call it the sequence space of generalized means. Further, if X is a BK space then
X = X(r,s) is also a BK space with the norm given by

‖x‖X = ‖x‖X ; (x ∈ X). (2.5)

REMARK 2.2. Let X be a BK space and X = X(r,s) . Then, it is trivial that x∈ X
if and only if x ∈ X . Moreover, we have by (2.5) that x ∈ SX if and only if x ∈ SX . In

fact, the linear operator L : X → X defined by L(x) = x (x ∈ X) is bijective and norm
preserving by (2.1), (2.4) and (2.5).

The β -duals of the spaces of generalized means have been determined and some
related matrix classes characterized. We refer the reader to [11] for relevant terminol-
ogy.

Furthermore, by taking into account that the inverse of A(r,s) is given by (2.3),
we have the following lemma which is immediate by [11, Theorem 4.5].

LEMMA 2.3. Let X be a BK space with AK or X = �∞ . If a = (ak) ∈ (X(r,s))β ,
then ã = (ãk) ∈ Xβ and we have

∞

∑
k=0

akxk =
∞

∑
k=0

ãk xk (2.6)

for all x = (xk) ∈ X with x = A(r,s)x , where

ãk =
∞

∑
j=k

(−1) j−kD(s)
j−krka j; (k ∈ N). (2.7)

Now, we prove the following results which will be needed in the sequel.

LEMMA 2.4. Let X be a BK space with AK or X = �∞ and let X = X(r,s) .
Then, we have

‖a‖∗X = ‖ã‖∗X
for all a = (ak) ∈ X

β
, where ã = (ãk) is the sequence defined by (2.7) .

Proof. Let a = (ak) ∈ X
β
. Then, it follows by Lemma 2.3 that ã = (ãk) ∈ Xβ and

the equality (2.6) holds for all sequences x = (xk) ∈ X and x = (xk) ∈ X which are
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connected by the relation x = A(r,s)x . Further, we have by Remark 2.2 that x ∈ SX if
and only if x ∈ SX . Therefore, we derive from (1.1) and (2.6) that

‖a‖∗
X

= sup
x∈SX

∣∣∣∣∣
∞

∑
k=0

akxk

∣∣∣∣∣= sup
x∈SX

∣∣∣∣∣
∞

∑
k=0

ãk xk

∣∣∣∣∣= ‖ã‖∗X .

This concludes the proof. �

REMARK 2.5. Let c0 = c0(r,s) , �∞ = �∞(r,s) , �1 = �1(r,s) and � p = �p(r,s)
for 1 < p < ∞ . Then, by combining Lemmas 1.1 and 2.4, we have the following:

(a) If a ∈ (c0)β , then ‖a‖∗c0
= ∑∞

k=0 |ãk| < ∞ .

(b) If a ∈ (�∞)β , then ‖a‖∗
�∞

= ∑∞
k=0 |ãk| < ∞ .

(c) If a ∈ (�1)β , then ‖a‖∗
�1

= supk |ãk| < ∞ .

(d) If a ∈ (� p)β , then ‖a‖∗
�p

= (∑∞
k=0 |ãk|q)1/q < ∞ , where q = p/(p−1) .

Throughout this paper, if A = (ank) is an infinite matrix, we define the associated
matrix Ã = (ãnk) by

ãnk =
∞

∑
j=k

(−1) j−kD(s)
j−krkan j; (n,k ∈ N) (2.8)

provided the series on the right converge for all n,k ∈ N which is the case whenever
An ∈ X(r,s)β for all n ∈ N , where X is a BK space with AK or X = �∞ [11, Theorem
4.5]. Then, we have:

LEMMA 2.6. Let X be a BK space with AK or X = �∞ , X = X(r,s) , Y a se-
quence space and A = (ank) an infinite matrix. If A ∈ (X ,Y ) , then Ã ∈ (X ,Y ) such
that Ax = Ãx for all x ∈ X with x = A(r,s)x , where Ã = (ãnk) is the associated matrix
defined by (2.8) .

Proof. Suppose that A∈ (X ,Y ) and let x∈ X . Then An ∈ X
β

for all n∈N . Thus,
it follows by Lemma 2.3 that Ãn ∈ Xβ for all n ∈ N and the equality Ax = Ãx holds
which yields that Ãx ∈ Y , where x is the sequence of generalized means of x , i.e.,
x = A(r,s)x . Further, it is obvious by (2.4) and Remark 2.2 that every x ∈ X is the
sequence of generalized means of some x ∈ X . Hence, we deduce that Ã ∈ (X ,Y ) .
This completes the proof. �

Finally, we conclude this section by the following results on operator norms.

THEOREM 2.7. Let X be a BK space with AK or X = �∞ , X = X(r,s) , A = (ank)
an infinite matrix and Ã = (ãnk) the associated matrix. If A is in any of the classes
(X , �∞) , (X ,c) or (X ,c0) , then

‖LA‖ = ‖A‖(X ,�∞) = sup
n
‖Ãn‖∗X < ∞.
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Proof. This is immediate by combining Lemmas 1.3 and 2.4. �

THEOREM 2.8. Let X be a BK space with AK or X = �∞ and let X = X(r,s) . If
A ∈ (X , �1) , then

‖A‖(X ,�1)
� ‖LA‖ � 4 · ‖A‖(X ,�1)

,

where

‖A‖(X ,�1)
= sup

N∈F

∥∥∥∥∥∑
n∈N

Ãn

∥∥∥∥∥
∗

X

< ∞.

Proof. This result follows from Lemmas 1.4 and 2.4. �

REMARK 2.9. The special cases of Theorems 2.7 and 2.8 when X is any of the
spaces c0 , �∞ or �p (1 � p < ∞) can be obtained by means of Lemma 1.1.

THEOREM 2.10. Let �1 = �1(r,s) and 1 � p < ∞ . If A ∈ (�1, �p) , then

‖LA‖ = ‖A‖(�1,�p)
= sup

k

(
∞

∑
n=0

|ãnk|p
)1/p

< ∞.

Proof. The proof is elementary and left to the reader (see [11, Corollary 5.10]). �

REMARK 2.11. The characterizations of matrix classes considered in this paper
can be found in [11, Corollaries 5.4; 5.7]. Thus, we shall omit these characterizations
and only deal with the operator norms and the Hausdorff measures of noncompactness
of some matrix operators which are given by infinite matrices in such classes.

3. Compact operators on the spaces of generalized means

In this section, we derive some identities for the Hausdorff measures of noncom-
pactness of certain matrix operators on the spaces of generalized means and apply our
results to obtain the necessary and sufficient (or only sufficient) conditions for such
operators to be compact.

We recall the following lemma [10, Theorem 3.7] which is very useful in estab-
lishing the results of this section.

LEMMA 3.1. Let X ⊃ φ be a BK space. Then, we have

(a) If A ∈ (X , �∞) , then
0 � ‖LA‖χ � limsup

n→∞
‖An‖∗X .

(b) If A ∈ (X ,c0) , then
‖LA‖χ = limsup

n→∞
‖An‖∗X .
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(c) If X has AK or X = �∞ and A ∈ (X ,c) , then

1
2
· limsup

n→∞
‖An−α‖∗X � ‖LA‖χ � limsup

n→∞
‖An−α‖∗X ,

where α = (αk) with αk = limn→∞ ank for all k ∈ N .

Now, let A = (ank) be an infinite matrix and Ã = (ãnk) the associated matrix
defined by (2.8). Then, by combining Lemmas 2.4, 2.6 and 3.1, we have the following
result:

THEOREM 3.2. Let X be a BK space with AK or X = �∞ and X = X(r,s) . Then,
we have

(a) If A ∈ (X , �∞) , then
0 � ‖LA‖χ � limsup

n→∞
‖Ãn‖∗X (3.1)

and
LA is compact if lim

n→∞
‖Ãn‖∗X = 0. (3.2)

(b) If A ∈ (X ,c0) , then
‖LA‖χ = limsup

n→∞
‖Ãn‖∗X (3.3)

and
LA is compact if and only if lim

n→∞
‖Ãn‖∗X = 0. (3.4)

(c) If A ∈ (X ,c) , then

1
2
· limsup

n→∞
‖Ãn − α̃‖∗X � ‖LA‖χ � limsup

n→∞
‖Ãn − α̃‖∗X (3.5)

and
LA is compact if and only if lim

n→∞
‖Ãn− α̃‖∗X = 0, (3.6)

where α̃ = (α̃k) with α̃k = limn→∞ ãnk for all k ∈ N .

Proof. It is obvious that (3.2), (3.4) and (3.6) are respectively obtained from (3.1),
(3.3) and (3.5) by using (1.4). Thus, we have to prove (3.1), (3.3) and (3.5).

Since X is a BK space, we deduce by means of Lemma 2.4 that (3.1) and (3.3)
are immediate by parts (a) and (b) of Lemma 3.1, respectively.

To prove (3.5), we have A∈ (X ,c) and hence Ã∈ (X ,c) by Lemma 2.6. Therefore,
it follows by part (c) of Lemma 3.1 that

1
2
· limsup

n→∞
‖Ãn− α̃‖∗X � ‖LÃ‖χ � limsup

n→∞
‖Ãn− α̃‖∗X , (3.7)

where α̃ = (α̃k) and α̃k = limn→∞ ãnk for all k ∈ N .
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Now, let us write S = SX and S = SX , for short. Then, we obtain by (1.3) and
Lemma 1.2 that

‖LA‖χ = χ(LA(S)) = χ(AS) (3.8)

and
‖LÃ‖χ = χ(LÃ(S)) = χ(ÃS). (3.9)

Further, we have by Remark 2.2 that x∈ S if and only if x ∈ S , and since Ax = Ãx
by Lemma 2.6, we deduce that AS = ÃS . This leads us with (3.8) and (3.9) to the
consequence that ‖LA‖χ = ‖LÃ‖χ . Hence, we get (3.5) from (3.7). This completes the
proof. �

It is worth mentioning that the condition in (3.2) is only a sufficient condition for
the operator LA to be compact, where A ∈ (X , �∞) and X is a BK space with AK or
X = �∞ . More precisely, the following example will show that it is possible for LA to
be compact while limn→∞ ‖Ãn‖∗X �= 0. Hence, in general, we have just ‘if’ in (3.2) of
Theorem 3.2 (a).

EXAMPLE 3.3. Let X denote any of the spaces c0 , �∞ or �p (1 � p < ∞) and let
X = X(r,s) . Also, let us define the matrix A = (ank) by an0 = s0/r0 and ank = 0 for
k � 1 (n ∈ N) . Then, we have for every x = (xk) ∈ X that Ax = (s0x0/r0)e and hence
A∈ (X , �∞) . Further, it is obvious that LA is of finite rank and so LA is compact. On the
other hand, by using (2.8), it can easily be seen that Ãn = e(0) for all n ∈ N . Thus, we
obtain by Lemma 1.1 that ‖Ãn‖∗X = 1 for all n∈N which implies that limn→∞ ‖Ãn‖∗X =
1.

Moreover, as an immediate consequence of Theorem 3.2, we have the following
corollary in which we write �∞ = �∞(r,s) .

COROLLARY 3.4. If either A ∈ (�∞,c0) or A ∈ (�∞,c) , then the operator LA is
compact.

Proof. Let A ∈ (�∞,c0) . Then, we have by Lemma 2.6 that Ã ∈ (�∞,c0) which
implies that limn→∞(∑∞

k=0 |ãnk|) = 0 [16], that is, limn→∞ ‖Ãn‖∗�∞
= 0 by Lemma 1.1.

This leads us with Theorem 3.2 (b) to the consequence that LA is compact. Similarly,
if A ∈ (�∞,c) then Ã ∈ (�∞,c) and hence limn→∞(∑∞

k=0 |ãnk − α̃k|) = 0 which can be
written as limn→∞ ‖Ãn− α̃‖∗�∞

= 0, where α̃ = (α̃k) and α̃k = limn→∞ ãnk for all k∈N .
Therefore, we deduce from Theorem 3.2 (c) that LA is compact. �

Throughout, let Fm (m∈N) be the subcollection of F consisting of all nonempty
and finite subsets of N with elements that are greater than m , that is

Fm =
{
N ∈ F : n > m for all n ∈ N

}
; (m ∈ N).

Then, we have the following [10, Theorem 3.11]:
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LEMMA 3.5. Let X ⊃ φ be a BK space. If A ∈ (X , �1) , then

lim
m→∞

(
sup

N∈Fm

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

)
� ‖LA‖χ � 4 · lim

m→∞

(
sup

N∈Fm

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

)
.

THEOREM 3.6. Let X be a BK space with AK and X = X(r,s) . If A ∈ (X , �1) ,
then

lim
m→∞

‖A‖(m)
(X ,�1)

� ‖LA‖χ � 4 · lim
m→∞

‖A‖(m)
(X ,�1)

(3.10)

and
LA is compact if and only if lim

m→∞
‖A‖(m)

(X ,�1)
= 0, (3.11)

where

‖A‖(m)
(X ,�1)

= sup
N∈Fm

∥∥∥∥∥∑
n∈N

Ãn

∥∥∥∥∥
∗

X

; (m ∈ N).

Proof. It is obvious that (3.10) is obtained by combining Lemmas 2.4 and 3.5.
Also, by using (1.4), we get (3.11) from (3.10). �

Now, we may note that Theorems 3.2 and 3.6 have several consequences when X
is any of the spaces c0 or �p (1 � p < ∞) . For instance, by using Lemma 1.1, we have
the following corollaries:

COROLLARY 3.7. Let c0 = c0(r,s) . Then, we have

(a) If A ∈ (c0, �∞) , then

0 � ‖LA‖χ � limsup
n→∞

(
∞

∑
k=0

|ãnk|
)

and

LA is compact if lim
n→∞

(
∞

∑
k=0

|ãnk|
)

= 0.

(b) If A ∈ (c0,c0) , then

‖LA‖χ = limsup
n→∞

(
∞

∑
k=0

|ãnk|
)

and

LA is compact if and only if lim
n→∞

(
∞

∑
k=0

|ãnk|
)

= 0.

(c) If A ∈ (c0,c) , then

1
2
· limsup

n→∞

(
∞

∑
k=0

|ãnk − α̃k|
)

� ‖LA‖χ � limsup
n→∞

(
∞

∑
k=0

|ãnk − α̃k|
)
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and

LA is compact if and only if lim
n→∞

(
∞

∑
k=0

|ãnk − α̃k|
)

= 0,

where α̃k = limn→∞ ãnk for all k ∈ N .

COROLLARY 3.8. Let 1 < p < ∞ , q = p/(p− 1) and � p = �p(r,s) . If A ∈
(� p, �1) , then

lim
m→∞

‖A‖(m)
(� p,�1)

� ‖LA‖χ � 4 · lim
m→∞

‖A‖(m)
(�p,�1)

and

LA is compact if and only if lim
m→∞

‖A‖(m)
(�p,�1)

= 0,

where

‖A‖(m)
(�p,�1)

= sup
N∈Fm

(
∞

∑
k=0

∣∣∣∣∣∑n∈N
ãnk

∣∣∣∣∣
q)1/q

; (m ∈ N).

Now, we prove the following result:

THEOREM 3.9. Let �1 = �1(r,s) and 1 � p < ∞ . If A ∈ (�1, �p) , then

‖LA‖χ = lim
m→∞

(
sup

k

( ∞

∑
n=m

|ãnk|p
)1/p

)
(3.12)

and

LA is compact if and only if lim
m→∞

(
sup

k

( ∞

∑
n=m

|ãnk|p
))

= 0. (3.13)

Proof. Let us remark that the limit in (3.12) exists by Theorem 2.10.
Now, we write S = S

�1
. Then, we have by Lemma 1.2 that LA(S) = AS ∈ M�p .

Thus, it follows from (1.3) and Lemma 1.5 that

‖LA‖χ = χ(AS) = lim
m→∞

(
sup
x∈S

‖(I−Pm)(Ax)‖�p

)
, (3.14)

where Pm : �p → �p (m ∈ N) is the operator defined by Pm(x) = (x0,x1, . . . ,xm,0,0, . . .)
for all x = (xk) ∈ �p and I is the identity operator on �p .

On the other hand, let x ∈ �1 be given. Then x ∈ �1 and since A ∈ (�1, �p) , we
obtain from Lemma 2.6 that Ã ∈ (�1, �p) and Ax = Ãx . Thus, we have for every m ∈ N
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that

‖(I−Pm)(Ax)‖�p
= ‖(I−Pm)(Ãx)‖�p

=
( ∞

∑
n=m+1

|Ãn(x)|p
)1/p

=
( ∞

∑
n=m+1

∣∣∣ ∞

∑
k=0

ãnk xk

∣∣∣p)1/p

�
∞

∑
k=0

( ∞

∑
n=m+1

|ãnk xk|p
)1/p

� ‖x‖�1

(
sup

k

( ∞

∑
n=m+1

|ãnk|p
)1/p)

= ‖x‖
�1

(
sup

k

( ∞

∑
n=m+1

|ãnk|p
)1/p)

.

This yields that

sup
x∈S

‖(I−Pm)(Ax)‖�p
� sup

k

( ∞

∑
n=m+1

|ãnk|p
)1/p

; (m ∈ N).

Therefore, we deduce from (3.14) that

‖LA‖χ � lim
m→∞

(
sup

k

( ∞

∑
n=m+1

|ãnk|p
)1/p)

. (3.15)

To prove the converse inequality, let b(k) ∈ �1 be such that A(r,s)b(k) = e(k) (k ∈
N) , that is, e(k) is the sequence of generalized means of b(k) for each k ∈ N (see [11,
Corollary 3.5]). Then, we have by Lemma 2.6 that Ab(k) = Ãe(k) = (ãnk)

∞
n=0 for every

k ∈ N .
Now, let B = {b(k) : k ∈ N} . Then B ⊂ S and hence AB ⊂ AS which implies that

χ(AB) � χ(AS) = ‖LA‖χ .
Further, it follows by applying Lemma 1.5 that

χ(AB) = lim
m→∞

(
sup

k

( ∞

∑
n=m+1

∣∣An(b(k))
∣∣p)1/p)

= lim
m→∞

(
sup

k

( ∞

∑
n=m+1

|ãnk|p
)1/p)

.

Thus, we obtain that

lim
m→∞

(
sup

k

( ∞

∑
n=m+1

|ãnk|p
)1/p)

� ‖LA‖χ . (3.16)

Hence, we get (3.12) by combining (3.15) and (3.16). This completes the proof,
since (3.13) is immediate by (1.4) and (3.12). �
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Finally, we end this section with the following example which shows that the limit
in (3.12) may not be zero, that is, there exist matrix operators in the class B(�1, �p)
which are not compact, where 1 � p < ∞ .

EXAMPLE 3.10. Let A = (ank) be the infinite matrix defined by (2.2), that is
A = A(r,s) . Since �1 is the matrix domain of A in �1 , we have A ∈ (�1, �1) and hence
A ∈ (�1, �p) for 1 � p < ∞ . Further, it is trivial to see that the associated matrix Ã is
the identity matrix, that is ãnn = 1 and ãnk = 0 for k �= n (n ∈ N) . Now, let m ∈ N be
given. Then, we have for every k ∈ N that

∞

∑
n=m

|ãnk|p =

{
1; (k � m),

0; (k < m).

This implies that

sup
k

( ∞

∑
n=m

|ãnk|p
)1/p

= 1; (m ∈ N)

which leads us with (3.12) of Theorem 3.9 to the consequence that ‖LA‖χ = 1 and
hence LA is not compact.

REMARK 3.11. Many applications and special cases of Theorems 3.2, 3.6 and 3.9
can be found in [4, 5, 7, 8, 9, 12, 13, 14] for some particular sequences r and s .
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