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INEQUALITIES FOR CONVEX FUNCTIONS

AND DOUBLY STOCHASTIC MATRICES

MAREK NIEZGODA

(Communicated by I. Perić)

Abstract. We generalize some results on convex functions presented in papers L. Bougoffa, New
inequalities about convex functions, J. Inequal. Pure Appl. Math., 7 (4), (2006) Art. 148, and
L.-C. Wang, X.-F. Ma and L.-H. Liu, A note on some new refinements of Jensen’s inequality
for convex functions, J. Inequal. Pure Appl. Math., 10 (2), (2009) Art. 48. To this end, we use
majorization of vectors, doubly stochastic matrices and circular matrices.

1. Motivation

In [1], L. Bougoffa established the following results.

THEOREM A. [1, Theorem 1.2] If f is a convex function and x1,x2, . . . ,xn lie in
its domain, then

n

∑
i=1

f (xi)− f

(
x1 + x2 + . . .+ xn

n

)

� n−1
n

[
f

(
x1 + x2

2

)
+ . . .+ f

(
xn−1 + xn

2

)
+ f

(
xn + x1

2

)]
. (1)

THEOREM B. [1, Theorem 1.4] If f is a convex function and a1,a2, . . . ,an lie in
its domain, then

(n−1)[ f (b1)+ . . .+ f (bn)] � n[ f (a1)+ . . .+ f (an)− f (a)] (2)

where a = a1+a2+...+an
n and bi = na−ai

n−1 , i = 1,2, . . . ,n.

In [7], Wang et. al. gave some refinements of Theorems A and B (see [7, Theo-
rems 2.1 and 2.2]).

The purpose of the present paper is to show further generalizations of Theorems A
and B by applying Majorization Theorem, doubly stochastic matrices and circular ma-
trices, and to extend the above-mentioned refinements to a more general framework.
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2. Making use of doubly stochastic matrices

We denote by z[1] � z[2] � . . . � z[n] the entries of a vector z = (z1,z2, . . . ,zn)T ∈R
n

arranged in decreasing order.
We say that a vector y = (y1,y2, . . . ,yn)T ∈ R

n is majorized by a vector x =

(x1,x2, . . . ,xn)T ∈ R
n (in symbols, y ≺m x ) if

i
∑

k=1
y[k] �

i
∑

k=1
x[k] for all i = 1,2, . . . ,n

with equality for i = n (see [6, p. 8]).
A real function F : A→ R on a set A⊂ R

n is called Schur-convex on A if

y≺m x implies F(y) � F(x) for all x,y ∈ A

(see [6, p. 80]).
Majorization Theorem asserts that if f : I→ R is a convex function and x,y ∈ In

then

y≺m x implies
n

∑
i=1

f (yi) �
n

∑
i=1

f (xi) (3)

(see [6, p. 92]). In other words, if f : I → R is a convex function then the induced
function

F(x) =
n

∑
i=1

f (xi) for x = (x1,x2, . . . ,xn)T ∈ In

is Schur-convex on In .
A real n×n matrix S = (si j) is called doubly stochastic (in short, d. s.) if

(i) si j � 0 for i, j = 1,2, . . . ,n ,

(ii)
n
∑
j=1

si j = 1 for i = 1,2, . . . ,n ,

(iii)
n
∑
i=1

si j = 1 for j = 1,2, . . . ,n .

It is known that if S is doubly stochastic then

Sx≺m x for all x ∈ R
n (4)

(see [6, p. 33]).
In the sequel, we use the notation

z =
z1 + z2 + . . .+ zn

n
for z1,z2, . . . ,zn ∈ R .

The following result holds.

THEOREM 2.1. Let f be a convex function on an interval I ⊂R and S = (si j) be
a doubly stochastic n×n matrix.

If x1,x2, . . . , xn ∈ I , and (y1,y2, . . . ,yn)T = S(x1,x2, . . . ,xn)T , i.e., yi =
n
∑
j=1

si jx j

for i = 1,2, . . . ,n, then for any a,b ∈ R with a+b = 1 ,
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(i)
n

∑
i=1

f (xi) � a
n

∑
i=1

f (yi)+bn f (y) for a > 0 , b > 0 , (5)

(ii)
n

∑
i=1

f (yi) � a
n

∑
i=1

f (xi)+bn f (x) for a > 0 , b < 0 , (6)

(iii)
n

∑
i=1

f (xi) � a
n

∑
i=1

f (yi)+bn f (y) for a < 0 , b > 0 , (7)

(iv)
n

∑
i=1

f (yi) � a
n

∑
i=1

f (xi)+bn f (x) for a < 0 , b > 0 . (8)

Proof. (Based on the proof of [1, Theorem 1.2].)
Since a+b = 1, it is easy to check that for any z1,z2, . . . ,zn ∈R

n ,

n

∑
i=1

f (zi) = a
n

∑
i=1

f (zi)+bn
n

∑
i=1

1
n

f (zi). (9)

Next, by Jensen’s inequality, we have

f (z) �
n

∑
i=1

1
n

f (zi). (10)

Hence we get

bn f (z) � bn
n

∑
i=1

1
n

f (zi) for b > 0, (11)

bn f (z) � bn
n

∑
i=1

1
n

f (zi) for b < 0. (12)

Now, by combining (9) with (11)–(12), we establish

n

∑
i=1

f (zi) � a
n

∑
i=1

f (zi)+bn f (z) for b > 0, (13)

n

∑
i=1

f (zi) � a
n

∑
i=1

f (zi)+bn f (z) for b < 0. (14)

On the other hand, by (4) we have y ≺m x , and hence
n
∑
i=1

yi =
n
∑
i=1

xi and y = x .

Therefore, by (3), we obtain

n

∑
i=1

f (yi) �
n

∑
i=1

f (xi). (15)
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Now, by using (15) and (13) for z = y , we derive
n

∑
i=1

f (xi) � a
n

∑
i=1

f (yi)+bn f (y) for b > 0,

and from (15) and (14) for z = x , we find that
n

∑
i=1

f (yi) � a
n

∑
i=1

f (xi)+bn f (x) for b < 0,

completing the proof of (5), (6) and (7).
To see (8), observe that for a < 0 and b > 0 we have

n

∑
i=1

f (yi) = a
n

∑
i=1

f (yi)+b
n

∑
i=1

f (yi) � a
n

∑
i=1

f (yi)+bn f (y)

� a
n

∑
i=1

f (xi)+bn f (x),

the first and second inequalities being consequences of Jensen’s inequality and of (3),
respectively. �

REMARK 2.2. Observe that (13)–(14) are reformulations of Jensen inequality (10).
For b = 0 inequalities in (13)–(14) are trivial.

REMARK 2.3. A detailed version of Theorem 2.1 can be presented as follows.
By denoting

A =
n

∑
i=1

f (xi) and B =
n

∑
i=1

f (yi),

C = a
n

∑
i=1

f (xi)+bn f (x) and D = a
n

∑
i=1

f (yi)+bn f (y),

and by writing inequalities α � γ and β � δ in the arrow forms α → γ (or

α
↓
γ) and

β ← δ (or

β
↑
δ ), respectively, we have

A −→ C
↓ ↓
B −→ D

for a > 0 and b > 0,

A←− C
↓ ↓
B←− D

for a > 0 and b < 0,

A −→ C
↓ ↑
B −→ D

for a < 0 and b > 0.

(Since a+b = 1, the case a < 0 and b < 0 is impossible.)
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If a+ b = 1 then 1
a + (−b)

a = 1 for a 	= 0 and 1
b + (−a)

b = 1 for b 	= 0. For this
reason we are allowed to replace (a,b) by ( 1

a , −b
a ) or ( 1

b , −a
b ) in Theorem 2.1.

COROLLARY 2.4. Let f be a convex function on an interval I ⊂R and S = (si j)
be a doubly stochastic n×n matrix.

If x1,x2, . . . , xn ∈ I , and (y1,y2, . . . ,yn)T = S(x1,x2, . . . ,xn)T , then for any a,b∈R

with a+b = 1 and a 	= 0 ,

(i)
n

∑
i=1

f (yi) � 1
a

n

∑
i=1

f (xi)+
(−b

a

)
n f (x) for a > 0 and b > 0 ,

(ii)
n

∑
i=1

f (xi) � 1
a

n

∑
i=1

f (yi)+
(−b

a

)
n f (y) for a > 0 and b < 0 ,

(iii)
n

∑
i=1

f (xi) � 1
a

n

∑
i=1

f (yi)+
(−b

a

)
n f (y) for a < 0 and b > 0 ,

(iv)
n

∑
i=1

f (yi) � 1
a

n

∑
i=1

f (xi)+
(−b

a

)
n f (x) for a < 0 and b > 0 .

By using Theorem 2.1 and Corollary 2.4 for x = y and S = I (the n×n identity
matrix), we obtain the following.

COROLLARY 2.5. Let f be a convex function on an interval I⊂R and x1,x2, . . . ,
xn ∈ I .

Then for any a,b ∈ R with a+b = 1 ,

(i) if a > 0 , b > 0 then

1
a

n

∑
i=1

f (xi)+
(−b

a

)
n f (x) �

n

∑
i=1

f (xi) � a
n

∑
i=1

f (xi)+bn f (x),

(ii) if a > 0 , b < 0 then

a
n

∑
i=1

f (xi)+bn f (x) �
n

∑
i=1

f (xi) � 1
a

n

∑
i=1

f (xi)+
(−b

a

)
n f (x),

(iii) if a < 0 , b > 0 then

n

∑
i=1

f (xi) � max

{
a

n

∑
i=1

f (xi)+bn f (x),
1
a

n

∑
i=1

f (xi)+
(−b

a

)
n f (x)

}
.
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REMARK 2.6. It is readily seen that TheoremA is a specialization of Theorem2.1,
part (ii), for numbers a = n

n−1 and b =− 1
n−1 and for vectors x = (x1,x2, . . . ,xn)

T and

y = Sx =
(

x1 + x2

2
,
x2 + x3

2
, . . . ,

xn + x1

2

)T

, (16)

where S is n×n matrix given by

S =

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
2 0 . . . . . . 0 0

0 1
2

1
2 0 . . . 0 0

...
...

...
. . .

. . .
...

...
0 0 0 . . . 0 1

2
1
2

1
2 0 0 . . . . . . 0 1

2

⎞
⎟⎟⎟⎟⎟⎠ . (17)

Likewise, in order to obtain Theorem A, one can apply Theorem 2.1, part (i), for
a = n−1

n and b = 1
n with (16)–(17).

Observe that (17) is a circular matrix.

3. Application of circular matrices

Remind that the circular matrix (circulant) induced by a real sequence (c1,c2, . . . ,cn)
is the n×n matrix whose first row is (c1,c2, . . . ,cn) and the other rows are obtained by
succesive cyclic permutations of the first row, i.e.,

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 c2 c3 . . . cn−1 cn

cn c1 c2 . . . cn−2 cn−1

cn−1 cn c1
. . . cn−3 cn−2

...
...

. . .
. . .

...
...

c3 c4 c5 . . . c1 c2

c2 c3 c4 . . . cn c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

In the forthcoming corollary we apply Theorem 2.1 to the circular matrix (18) with
nonnegative entries summing to one in each row and column (doubly stochastic circular
matrix; see [6, pp. 62-64]).

COROLLARY 3.1. Let f be a convex function on an interval I⊂R and x1,x2, . . . ,

xn ∈ I , and let S be an n×n circular matrix defined by (18) with
n
∑
i=1

ci = 1 and ci � 0

for i = 1,2, . . . ,n.
Then for any a,b ∈ R with a+b = 1 and b > 0 , we have

n

∑
i=1

f (xi)−bn f

(
x1 + x2 + . . .+ xn

n

)
� a [ f (〈r1,x〉)+ f (〈r2,x〉)+ . . .+ f (〈rn,x〉)] ,

(19)
where 〈·, ·〉 is the standard inner product in R

n , rT
i denotes the i th row of S and

x = (x1,x2, . . . ,xn)T .
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Given two real numbers α and β , we now focus on the circular matrix

Sk,n−k(α,β ) =
1

kα +(n− k)β

⎛
⎜⎜⎜⎝

α . . . . . . α β . . . . . . β
β α . . . . . . α β . . . β
...

. . .
. . . · · · · · · . . . . . .

...
α . . . α β . . . . . . β α

⎞
⎟⎟⎟⎠ (20)

with the first row (α, . . . ,α︸ ︷︷ ︸
k times

, β , . . . ,β︸ ︷︷ ︸
n−k times

) .

COROLLARY 3.2. If f is a convex function on an interval I ⊂ R and x1,x2, . . . ,
xn ∈ I , then for any a,b ∈ R with a+b = 1 and b > 0 , we have

n

∑
i=1

f (xi)−bn f

(
x1 + x2 + . . .+ xn

n

)

� a

[
f

(
α(x1 + x2 + . . .+ xk)+ β (xk+1 + . . .+ xn)

kα +(n− k)β

)

+ f

(
α(x2 + x3 + . . .+ xk+1)+ β (xk+2 + . . .+ xn + x1)

kα +(n− k)β

)

+ . . .+ f

(
α(x1 + . . .+ xk−1 + xn)+ β (xk + . . .+ xn−1)

kα +(n− k)β

)]
.

For α = 1 and β = 0, (20) becomes

Sk,n−k(1,0) =
1
k

⎛
⎜⎜⎜⎝

1 . . . 1 0 . . . . . . 0
0 1 . . . 1 0 . . . 0
...

. . .
. . . · · · . . . . . .

...
1 . . . 1 0 . . . 0 1

⎞
⎟⎟⎟⎠

with the first row (1, . . . ,1︸ ︷︷ ︸
k times

, 0, . . . ,0︸ ︷︷ ︸
n−k times

) , and then Corollary 3.2 reduces to

COROLLARY 3.3. If f is a convex function on an interval I ⊂ R and x1,x2, . . . ,
xn ∈ I , then for any a,b ∈ R with a+b = 1 and b > 0 , we have

n

∑
i=1

f (xi)−bn f

(
x1+x2+ . . .+xn

n

)

� a

[
f

(
x1+x2+ . . .+xk

k

)
+ f

(
x2+x3+ . . .+xk+1

k

)
+ . . .+ f

(
x1+ . . .+xk−1+xn

k

)]
.

For α = 0 and β = 1, it follows from (20) that

Sk,n−k(0,1) =
1

n− k

⎛
⎜⎜⎜⎝

0 . . . 0 1 . . . . . . 1
1 0 . . . 0 1 . . . 1
...

. . .
. . . · · · . . . . . .

...
0 . . . 0 1 . . . 1 0

⎞
⎟⎟⎟⎠
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with the first row (0, . . . ,0︸ ︷︷ ︸
k times

, 1, . . . ,1︸ ︷︷ ︸
n−k times

) , and then Corollary 3.2 implies the following.

COROLLARY 3.4. If f is a convex function on an interval I ⊂ R and x1,x2, . . . ,
xn ∈ I , then for any a,b ∈ R with a+b = 1 and b > 0 , we have

n

∑
i=1

f (xi)−bn f

(
x1 + x2 + . . .+ xn

n

)

� a

[
f

(
xk+1 + xk+2 + . . .+ xn

n− k

)
+ f

(
x1 + xk+2 + . . .+ xn

n− k

)

+ . . .+ f

(
xk + xk+1 + . . .+ xn−1

n− k

)]
.

For instance, for k = 1,

S1,n−1(0,1) =
1

n−1

⎛
⎜⎜⎜⎜⎝

0 1 1 . . . . . . 1

1 0 1
. . .

. . . 1
...

. . .
. . .

. . .
. . .

...
1 1 1 . . . 1 0

⎞
⎟⎟⎟⎟⎠

and (21) can be rewritten as

n

∑
i=1

f (xi)−bn f

(
x1 + x2 + . . .+ xn

n

)
(21)

� a

[
f

(
x2+x3+ . . .+xn

n−1

)
+ f

(
x1+x3+ . . .+xn

n−1

)
+ . . .+ f

(
x1+x2+ . . .+xn−1

n−1

)]
.

By putting a = n−1
n and b = 1

n into (21), we get

n

∑
i=1

f (xi)− f

(
x1 + x2 + . . .+ xn

n

)

� n−1
n

[
f

(
x2 + x3 + . . .+ xn

n−1

)
+ f

(
x1 + x3 + . . .+ xn

n−1

)

+ . . .+ f

(
x1 + x2 + . . .+ xn−1

n−1

)]
.

Denote ai = xi and bi =
x1+...+xi−1+xi+1+...+xn

n−1 . Since bi =

n
∑
j=1

x j−xi

n−1 = nx−xi
n−1 , it is readily

seen that (22) reduces to inequality (2) in Theorem B.
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4. Refinements of Jensen’s inequality

Throughout this section ≺ stands for the majorization ordering on R
2 . The vector

of ones in R
2 is denoted by 1 . By 〈·, ·〉 we denote the standard inner product of R

2 ,
i.e.,

〈p,q〉 = ac+bd for any p = (a,b)T and q = (c,d)T in R
2 . (22)

A vector p = (a,b)T ∈R
2 is said to be

(i) positive if a � 0 and b � 0,

(ii) increasing (decreasing) if a � b (resp. a � b ),

(iii) probabilistic if a � 0, b � 0 and a+b = 1.

We are now in a position to give some refinements of Jensen’s inequality (cf. [2,
3, 5]).

THEOREM 4.1. Let f be a convex function on an interval I ⊂ R and S = (si j)
be a doubly stochastic n× n matrix. Let x1,x2, . . . , xn ∈ I , and (y1,y2, . . . ,yn)T =
S(x1,x2, . . . ,xn)T .

Let ai,bi,c j,d j ∈ R for i = 1,2, . . . ,k, j = 1,2, . . . ,m, be such that

1 � a1 � a2 � . . . � ak−1 � ak � 1
2
, (23)

bi = 1−ai for i = 1,2, . . . ,k , (24)
1
2

� cm � cm−1 � . . . � c2 � c1 � 0, (25)

d j = 1− c j for j = 1,2, . . . ,m . (26)

Then
n

∑
i=1

f (xi) �
n

∑
i=1

f (yi) � a1

n

∑
i=1

f (yi)+b1n f (y) � a2

n

∑
i=1

f (yi)+b2n f (y)

� . . . � ak−1

n

∑
i=1

f (yi)+bk−1n f (y) � ak

n

∑
i=1

f (yi)+bkn f (y)

� cm

n

∑
i=1

f (yi)+dmn f (y) � cm−1

n

∑
i=1

f (yi)+dm−1n f (y)

� . . . � c2

n

∑
i=1

f (yi)+d2n f (y) � c1

n

∑
i=1

f (yi)+d1n f (y)

� n f (y) = n f (x). (27)

In consequence,
n

∑
i=1

f (xi)−n f (x) �
n

∑
i=1

f (yi)−n f (y)

� (ai− c j)
n

∑
i=1

f (yi)+ (bi−d j)n f (y) � 0 (28)
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for i = 1,2, . . . ,k , j = 1,2, . . . ,m.

Proof. We set

A =
n

∑
i=1

f (xi) , B =
n

∑
i=1

f (yi) , C = n f (x) and D = n f (y), (29)

where x = x1+x2+...+xn
n and y = y1+y2+...+yn

n .
Since y≺ x , we have A � B and C = D by Majorization Theorem (see (3)).
For i = 1,2, . . . ,k and j = 1,2, . . . ,m , we define vectors pi = (ai,bi)T and q j =

(c j,d j)T in R
2 .

By virtue of (23)–(26) we have

p1 � p2 � . . .� pk−1 � pk � pk+1, (30)

q1 � q2 � . . .� qm−1 � qm � qm+1 (31)

with pk+1 = qm+1 = (1/2,1/2)T .
Denote v = (B,D)T . Since B � D by Jensen’s inequality, it follows by an easy

calculation that the functional

p→ 〈p,v〉 for p ∈R
2

is Schur-convex on the set of decreasing vectors. Likewise, the functional

q→ 〈q,v〉 for q ∈R
2

is Schur-concave on the set of increasing vectors.
Therefore from (30)–(31) we get

〈p1,v〉� 〈p2,v〉� . . . � 〈pk−1,v〉� 〈pk,v〉� 〈pk+1,v〉
� 〈qm+1,v〉� 〈qm,v〉� 〈qm−1,v〉� . . . � 〈q2,v〉� 〈q1,v〉. (32)

Because B � D we find that

v � B1 and D1 � v,

where � denotes the standard componentwise ordering on R
2 . Furthermore, the func-

tionals z→ 〈p1,z〉 and z→ 〈q1,z〉 are � -increasing, since p1 and q1 are positive. In
addition, p1 and q1 are probabilistic. For this reason, we conclude that

B = 〈p1,B1〉� 〈p1,v〉 and 〈q1,v〉� 〈q1,D1〉= D. (33)

So, by combining (32) and (33) we obtain (27) via (22) and (29).
Finally, inequality (28) is an easy consequence of (27). This completes the proof.

�
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We now use Theorem 4.1 for the following decreasing vectors pi = (ai,bi)T and
increasing vectors q j = (c j,d j)T , where

ai =
n+ k−1− i

n+ k− i
and bi =

1
n+ k− i

for i = 1,2, . . . ,k , (34)

c j =
1

m+3− j
and d j =

m+2− j
m+3− j

for j = 1,2, . . . ,m . (35)

It follows that (23)–(26) hold for ai , bi , c j and d j defined by (34) and (35).
Therefore we obtain the following extension of [7, Theorems 2.1 and 2.2].

COROLLARY 4.2. Let f be a convex function on an interval I ⊂R and S = (si j)
be a doubly stochastic n× n matrix. Let x1,x2, . . . , xn ∈ I and (y1,y2, . . . ,yn)T =
S(x1,x2, . . . ,xn)T .

Then

n

∑
i=1

f (xi) �
n

∑
i=1

f (yi) � n+ k−2
n+ k−1

n

∑
i=1

f (yi)+
1

n+ k−1
n f (y)

� n+ k−3
n+ k−2

n

∑
i=1

f (yi)+
1

n+ k−2
n f (y)

� . . . � n
n+1

n

∑
i=1

f (yi)+
1

n+1
n f (y)

� n−1
n

n

∑
i=1

f (yi)+
1
n
n f (y)

� 1
2

n

∑
i=1

f (yi)+
1
2
n f (y)

� 1
3

n

∑
i=1

f (yi)+
2
3
n f (y)

� . . . � 1
m+1

n

∑
i=1

f (yi)+
m

m+1
n f (y)

� 1
m+2

n

∑
i=1

f (yi)+
m+1
m+2

n f (y)

� n f (y) = n f (x). (36)

In consequence,

n

∑
i=1

f (xi)−n f (x) �
n

∑
i=1

f (yi)−n f (y)

�
∣∣∣∣∣
(

n+ k−3
n+ k−2

− 1
m+1

) n

∑
i=1

f (yi)−
(

m
m+1

− 1
n+ k−2

)
n f (y)

∣∣∣∣∣ . (37)
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In order to see (36), it is sufficient to apply Theorem 4.1 with (34)–(35).
In addition, (37) follows easily from (36).

REMARK 4.3. In [4] there is another extension of [7, Theorems 2.1]. In addition,
a similar method to that used above is applied in [4, Example 3].
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