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ON COMPLETE MONOTONICITY OF

SOME FUNCTIONS RELATED TO MEANS

ÁDÁM BESENYEI

(Communicated by N. Elezović)

Abstract. We show the complete monotonicity of some functions related to the Stolarsky mean
which was a problem of S.-X. Chen and F. Qi (2007) [15]. In the proof, the connection between
operator monotone and completely monotonic functions is used.

1. Introduction

An infinitely differentiable function f : I → R defined on an open interval I is
said to be completely monotonic on I if (−1)n f (n)(x) � 0 for x ∈ I and for every
n = 0,1,2 . . . . (It can be shown that for nonconstant functions the inequality is strict,
see [9]). This definition is a continuous analogue of totally monotone sequences which
was introduced by F. Hausdorff in 1921 (see [20]). Completely monotonic functions
have applications in different areas of mathematics, for instance, in potential theory,
probability theory, numerical and asymptotic analysis and combinatorics, see the refer-
ences in [1]. The monographs [17, 20] provide a detailed discussion of the properties
of completely monotonic functions. We refer to [4] for an excellent historical account
on functions having derivatives of constant sign.

Recently, the complete monotonicity of numerous functions related to the gamma,
polygamma, and other special functions was investigated by many authors, see [6, 7,
16, 18] and the references therein.

The present paper is motivated by the work [15] of S.-X. Chen and F. Qi. There
the authors obtained the following result.

THEOREM 1. For all fixed s,t ∈ R , the derivative of the function x �→ L(x +
s,x + t) is completely monotonic in (−min(s,t),+∞) where L denotes the logarith-
mic mean:

L(x,y) =

{ x−y
logx−logy , if x �= y,

x, if x = y.
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In [15], a function of which the derivative is completely monotonic is called com-
pletely monotonic of first order by the authors. Such functions have an extensive theory
and they are called Bernstein functions in [17]. However, one may call them completely
monotone mappings or Laplace exponents depending on the subject. Nevertheless, we
adopt the following definition.

DEFINITION 1. An infinitely differentiable function f : R
+ → R

+ is called a
Bernstein function if (−1)n−1 f (n) � 0 for all n = 1,2 . . . , i.e., if f ′ is completely mono-
tonic.

Since the property of complete monotonicity is invariant under linear coordinate
transformation, Theorem 1 says equivalently that x �→ L(x+s,x) is a Bernstein function
for every s > 0.

A possible generalization of the logarithmic mean was introduced by K. B. Sto-
larsky in [19]. The so-called Stolarsky (or extended) mean is defined as follows (see
also [13]):

Sp,q(x,y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q(xp−yp)
p(xq−yq)

) 1
p−q

, if pq(p−q) �= 0,x �= y,

exp
(
− 1

p + xp logx−yp logy
xp−yp

)
, if p = q �= 0,x �= y,(

xp−yp

p(logx−logy)

) 1
p
, if p �= 0,q = 0,x �= y,(

xq−yq

q(logx−logy)

) 1
q
, if p = 0,q �= 0,x �= y,

√
xy, if p = q = 0,

x, if x = y.

In recent years, the Stolarsky mean has been the subject of an intensive research, several
of its properties have been investigated, such as monotonicity, comparison, logarithmic
and Schur-convexity, see the references in [15]. However, there are no results on com-
plete monotonicity. This motivated the authors of [15] in posing the following open
problem: what can be said about the complete monotonicity property of the (derivative
of the) function x �→ Sp,q(x+ s,x+ t)?

The main result of the present paper is the following.

THEOREM 2. The function x �→ Sp,q(x+ s,x) is a Bernstein function for all fixed
s > 0 and −1 � q � 1 , −2 � p � 2 or symmetrically −1 � p � 1 , −2 � q � 2 .

For certain values of the parameters (p,q) , the Stolarsky mean Sp,q yields some
well-known means. Namely, the power means (or Hölder means or binomial means)

S2p,p(x,y) = Hp(x,y) =

⎧⎨
⎩
(

xp+yp

2

) 1
p
, if p �= 0,

√
xy, if p = 0,
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the power difference means (see [3])

Sp,p−1(x,y) = Kp(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p−1
p · xp−yp

xp−1−yp−1 , if p �= 0,1,x �= y,
x−y

logx−logy , if p = 1,x �= y,

xy logx−logy
x−y , if p = 0,x �= y,

x, if x = y,

and the generalized logarithmic mean (see [5])

Sp+1,1(x,y) = Lp(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
xp+1−yp+1

(p+1)(x−y)

) 1
p
, if p �= −1,0,x �= y,

x−y
logx−logy , if p = −1,x �= y,

exp
(
−1+ x logx−y logy

x−y

)
, if p = 0,x �= y,

x, if x = y.

COROLLARY 3. The function x �→ Mp,q(x + s,x) is a Bernstein function for all
fixed s > 0 where M may denote the following means:

(i) Hp for −1 � p � 1 ;

(ii) Kp for −1 � p � 2 ;

(iii) Lp for −3 � p � 1 .

In the proof of Theorem 2, we follow a different approach than that of [15]. Our ar-
gument is based on the fact that Bernstein functions have close relationship to operator
monotone functions, namely, operator monotone functions are also Bernstein functions.
We note that operator monotone functions play an important role in the theory of ma-
trix means, see [12]. The operator monotonicity of some functions were investigated in
[10, 8], however, the Stolarsky mean did not appear, nor the notion of complete mono-
tonicity. One purpose of this paper is to draw the attention to the relation of the two
notions.

In the next Section, we briefly summarize the results corresponding to Bernstein
and operatormonotone functions. For a detailed discussion, see the monographs [2, 17].

2. Complete monotonicity and operator monotonicity

Let M
+
n denote the space of n×n complex Hermitian positive-semidefinite (briefly

positive) matrices with the usual ordering: A � B means that B−A is positive. Let f
be a real function on an interval I . If D is a diagonal matrix with diagonal entries λ j ∈ I
( j = 1, . . . ,n ), then f (D) := diag( f (λ1), . . . , f (λn)) . If A is an Hermitian matrix with
eigenvalues in I then let f (A) := U f (D)U∗ where A = UDU∗ with unitary matrix U
and diagonal matrix D containing the eigenvalues of A .
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DEFINITION 2. A function f : I → R
+ is called matrix monotone of order n if

A � B implies f (A) � f (B) for every A,B ∈ M
+
n having eigenvalues in the interval I .

If f is matrix monotone of order n for all n then f is called operator monotone (on
I ).

As a trivial consequence of the definition, we obtain an important property of
operator monotone functions.

PROPOSITION 4. The pointwise limit of operator monotone functions on I is
again an operator monotone function on I .

The theory of operator monotone functions began with the seminal paper [14] of
K. Löwner. In that paper, he established the connection between operator monotone
functions, Pick functions (see later) and the positivity of the matrix of divided differ-
ences. The following characterization is due to him.

THEOREM 5. (Löwner) A function f : I → R
+ is operator monotone if and only

if it has a holomorphic continuation to a mapping of the open upper half-plane into the
closed upper half-plane.

In the literature, there are various names for holomorphic functions which map
the open upper half-plane into the closed upper half-plane. Depending on the subject,
one may call them Herglotz, Pick or Nevanlinna functions (or with some combination
of these names), however, we shall use the term Pick function. We note that by the
open mapping theorem, nonconstant Pick functions map the open upper half-plane into
the open upper half-plane. The following integral characterization of Pick functions is
known (see [2]).

THEOREM 6. Suppose that F : {Imz > 0}→ {Imz � 0} is holomorphic. Then

F(z) = α + β z+
∫ +∞

−∞

(
1

λ − z
− λ

λ 2 +1

)
dμ(λ ),

where α ∈ R , β � 0 and μ is a Borel-measure on R for which

∫
R

1
λ 2 +1

dμ(λ ) < ∞.

Conversely, a function having such form maps the open upper half-plane holomorphi-
cally into the closed upper half-plane.

Combining the characterization of Pick functions and Löwner’s theorem one may
deduce an integral representation of operator monotone functions (see [2]) which was
first used by E. Heinz in [11].
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THEOREM 7. A function f : R
+ → R

+ is operator monotone if and only if it has
the representation

f (t) = a+bt +
∫ ∞

0

(
λ

λ 2 +1
− 1

λ + t

)
dμ(λ )

with a ∈ R , b � 0 and a Borel measure μ on R
+ such that

∫ ∞

0

dμ(λ )
λ 2 +1

< ∞.

Clearly, for every fixed λ > 0, the function t �→ −1/(λ + t) is completely mono-
tonic in R

+ . Since this property is preserved under the integration (with respect to the
parameter λ ), we obtain the connection between operator monotone and completely
monotonic functions (see [2, 17]).

COROLLARY 8. If the function f : R
+ → R

+ is operator monotone then it is a
Bernstein function (i.e., its derivative is completely monotonic).

REMARK 9. We note that the class of positive operator monotone functions co-
incides with a proper subset of Bernstein functions which is called complete Bernstein
functions, see [17]. This fact suggests that Theorem 2 might not be sharp. Indeed, nu-
merical experiments show that in case p ·q < 0 the complete monotonicity holds on a
larger set than given in Theorem 2.

3. Proof of the main result

We show that the function x �→ Sp,q(x+ s,x) is operator monotone for every fixed
s > 0 and by Corollary 8 this implies that it is also a Bernstein function. In order to show
operator monotonicity, we verify that the function x �→ Sp,q(x+ s,x) has a holomorphic
continuation to a mapping of the upper half-plane such that

arg(z+ s) < argSp,q(z+ s,z) < argz (Imz > 0). (1)

We shall use an idea of T. Ando, see [10]. Below, the complex logarithm is defined the
usual way: logz = log |z|+ iargz where 0 � argz < 2π .

First, notice that the limiting cases p = 0, q = 0 and p = q follow by passing to
the limit and employing Proposition 4. Assume 0 < q < p < 2 (hence 0 < q � 1). By
a simple calculation we find that

q((x+ s)p− xp)
p((x+ s)q− xq)

=
∫ 1

0
(λ (x+ s)q +(1−λ )xq)

p
q−1 dλ .

Clearly, if s > 0, 0 < λ < 1 and Imz > 0, then

qarg(z+ s) < arg(λ (z+ s)q +(1−λ )zq) < qargz,



238 ÁDÁM BESENYEI

hence

(p−q)arg(z+ s) < arg
(
(λ (z+ s)q +(1−λ )zq)

p
q −1
)

< (p−q)argz.

After integration with respect to λ we obtain

0 < (p−q)arg(z+ s) < arg

(
q((z+ s)p− zp)
p((z+ s)q− zq)

)
< (p−q)argz < 2π , (2)

which yields (1). The case 0 < p < q < 2 follows by symmetry.
Let p < q < 0. Then

(
q((x+ s)p− xp)
p((x+ s)q− xq)

) 1
p−q

=

(
(x(x+ s))|p|−|q| |p|

(
(x+ s)|q| − x|q|

)
|q|((x+ s)|p| − x|p|

)
) 1

|p|−|q|
.

By (2), for Imz > 0 we have

(|q|− |p|)argz < arg

(
|p|((z+ s)|q| − z|q|

)
|q|((z+ s)|p| − z|p|

)
)

< (|q|− |p|)arg(z+ s),

and obviously
arg(z(z+ s)) = argz+ arg(z+ s), (3)

whence inequality (1) follows immediately. The case q < p < 0 is obtained again due
to symmetry.

Now, let q < 0 < |q| < p . Then

(
q((x+ s)p− xp)
p((x+ s)q − xq)

) 1
p−q

= (x(x+ s))
|q|

p+|q|

(
|q|((x+ s)p− xp)
p
(
(x+ s)|q| − x|q|

)
) 1

p+|q|
.

By (2), for Imz > 0,

(p−|q|)arg(z+ s) < arg

(
|q|((z+ s)p− zp)
p
(
(z+ s)|q| − z|q|

)
)

< (p−|q|)argz,

which, together with (3) implies (1).
Finally, let q < 0 < p < |q| . Then

(
q((x+ s)p− xp)
p((x+ s)q− xq)

) 1
p−q

= (x(x+ s))
|q|

p+|q|

⎡
⎣( p

(
(x+ s)|q| − x|q|

)
|q|((x+ s)p− xp)

) 1
p+|q|
⎤
⎦
−1

,

and one may use (2) and (3) to obtain (1).
Therefore, we have shown that the function x �→ Sp,q(x+ s,x) has a holomorphic

continuation to a mapping of the upper half-plane into itself and thus it is operator
monotone and so a Bernstein function.
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[18] H. ŞEVLI, N. BATIR, Complete monotonicity results for some functions involving the gamma and

polygamma functions, Math. Comput. Model. 53 (2011), 1771–1775.
[19] K. B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87–92.
[20] D. V. WIDDER, The Laplace Transform, Princeton University Press, Princeton, 1946.

(Received August 12, 2011) Ádám Besenyei
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