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ON THE INTERLACING OF CYLINDER FUNCTIONS

T. PÁLMAI

(Communicated by J. Pečarić)

Abstract. Necessary and sufficient conditions for the interlacing of the zeros of cylinder func-
tions and their derivatives of different orders are given.

1. Introduction

The zeros of the Bessel functions have been subjects of studies for more than a
century; the field of applications is vast. In the monograph of Watson [9] a number of
aspects are discussed, a summary of the most important facts are listed in [1]. More
recent results can be found in Refs. [2, 3] where further references are given. In this
note I derive a new interlacing theorem for cylinder functions in the form of necessary
and sufficient conditions. The results are of primary interest from the point of view of
the theory of Bessel functions; however, applications might also arise as in Refs. [5, 6],
where such relations were useful in inverse scattering problems.

The general solution of the Bessel differential equation (up to a constant multi-
plier) is given by the cylinder function [9]

Cν(x) ≡ Jν(x)cosδ −Yν(x)sinδ (1)

where Jν(x) and Yν(x) are the Bessel functions of the first and second kind, respec-
tively. Considering the Bessel differential equation, a second order linear homogeneous
ODE, satisfied by the Bessel functions it is easy to see that Jν(x) , Yν(x) and J′ν(x) ,
Y ′

ν(x) each has an infinity of real zeros, for any given real value of ν . Furthermore,
these zeros are all simple with the possible exception of x = 0. I will use the term
interlace for two functions if between each consecutive pair of zeros of one function
there is one and only one zero of the other. Denote the s th zero of the functions Jν(x) ,
Yν(x) , J′ν (x) , Y ′

ν(x) , Cν(x) and C′
ν (x) by jν,s , yν,s , j′ν,s , y′ν,s , cν,s and c′ν,s , respec-

tively, except that x = 0 is counted as the first zero of J′0(x) [9].
The following theorem summarizes some known relevant interlacing results.

THEOREM 1. ([9, 8, 4, 5, 6, 7]) For ν � 0 the following points hold true.
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(a) For 0 < a � 2 the positive real zeros of Cν (x) and Cν+a(x) are interlaced. Sim-
ilarly, J′ν(x) , J′ν+b(x) and Y ′

ν(x) , Y ′
ν+b(x) are also interlaced if 0 < b � 1 , re-

spectively.

(b) If 0 < c � 1 the inequality sequence

j′ν,s < yν,s < yν+c,s < y′ν,s < jν,s < jν+c,s < j′ν,s+1 s = 1,2, . . . (2)

holds. For c > 1 this property is destroyed. We also have ν � j′ν,1 .

Note that this particular formulation of the interlacing results was obtained only
recently [8, 4, 7].

A very important fact (which is a consequence of the Watson formula [9, p. 508
Eq. (3)]) is stated in the following theorem.

THEOREM 2. cν,s and c′ν,s are continuous increasing functions of the order ν > 0
for all s = 1,2, . . . .

2. Results

The main result is formulated as follows.

THEOREM 3. For positive orders ν and μ the positive zeros of

Cν(x), Cμ(x); J′ν (x), J′μ(x); Y ′
ν(x), Y ′

μ(x)

are interlaced, respectively, if and only if |ν − μ |� 2 .

REMARKS. In general, if at least one of ν and μ is negative Cν(x) and Cμ(x)
are not interlaced on (0,∞) , i.e. not all the positive real zeros are interlaced, unless the
zeros are defined as continuous increasing functions of the order (see Ref. [9], pp. 508–
510 on how the zeros disappear when the order is decreased). However, in the particular
case of δ = 0 the interlacing of Cν (x) and Cμ(x) is preserved for ν,μ > −1.

Additional interlacing relations can be proven with the aid of the tools introduced
below, e.g. between Jν+2(x) and J′ν (x) , but only for specific differences between the
orders (which is 2 in this particular example), and thus not in the form of Theorem 3.

In order to prove Theorem 3 two tools are utilized. The first is the conditional
transitivity of interlacing relations.

LEMMA 4. Let f , g and h be continuous functions on some common interval I .
Suppose f is interlaced with g and g is interlaced with h on I , where

a(x) f (x)+b(x)g(x)+ c(x)h(x) = 0 (3)

with some functions a, b , c satisfying sgna(x) = const. �= 0 , sgnb(x) = const. �= 0
and sgnc(x) = const. �= 0 . Then f is interlaced with h on I .

The second tool is a result connecting Wronskians and interlacing.
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LEMMA 5. The Wronskian W
(√

xCν(x),
√

xCμ(x)
)

has no roots on the interval

x ∈ (min(cν,1, cμ,1),∞) if and only if the positive zeros of the functions Cν (x) and

Cμ(x) are interlaced.

3. Proofs

3.1. Three term recurrence relations

Proof of Lemma 4. Let {xi} and {yi} denote the sets of zeros of f and h on
I , respectively. Then the functional equation (3) yields sgng(xi) = −sgn(bc)sgnh(xi)
and sgn f (yi) =−sgn(ab) sgng(yi) . Since f and g are interlaced we have sgng(xi) =
−sgng(xi+1) , similarly sgng(yi) = −sgng(yi+1) . Then h ( f ) must have an odd num-
ber of zeros between each consecutive pair of zeros of f (h ) implying the two are
interlaced on the interval I . �

We prove two interlacing relations using Lemma 4.

COROLLARY 6. For ν > 0 the positive zeros of Cν (x) and Cν+2(x) are inter-
laced.

Proof. Indeed, Lemma 4 yields the statement, since with I = (0,∞) , f = Cν ,
g = Cν+1 and h = Cν+2 Eq. (3) can be turned into

Cν(x)− 2ν +2
x

Cν+1(x)+Cν+2(x) = 0, (4)

which is a known three term recurrence relation. �
For the derivative functions a suitable three term recurrence relation can be found

using the well-known ones [1]. From

C′
ν(x) = −Cν+1(x)+

ν
x

Cν (x), C′
ν+1(x) = Cν (x)−Cν+2(x), (5)

C′
ν+1(x) = Cν(x)− ν +1

x
Cν+1(x), C′

ν+2(x) = Cν+1(x)− ν +2
x

Cν+2(x) (6)

we infer that

[x2−(ν +1)(ν +2)]C′
ν(x)+[x2−ν(ν +1)]C′

ν+2(x) =
2(ν +1)

x
[x2−ν(ν +2)]C′

ν+1(x)
(7)

holds.
The first zero of C′

ν (x) can be at any point of the half line (0,∞) depending on
ν and δ . Eq. (7) implies that the first few zeros of C′

ν(x) and C′
ν+2(x) may not be

interlaced even if C′
ν(x) and C′

ν+1(x) are interlaced. For x >
√

(ν +1)(ν +2) C′
ν(x)

and C′
ν+2(x) are interlaced if C′

ν (x) and C′
ν+1(x) are interlaced. However, the first

few zeros of C′
ν(x) and C′

ν+1(x) might still not be interlaced. One can only guarantee
interlacing of the derivative functions C′

ν(x) , C′
ν+1(x) and C′

ν+2(x) if δ = 0 or δ = π
2 .
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COROLLARY 7. The positive zeros of J′ν(x) and J′ν+2(x) and those of Y ′
ν(x) and

Y ′
ν+2(x) are interlaced if ν > 0 .

Proof. The multiplying terms in Eq. (7) are all positive for x > j′ν+2,1 thus
Lemma 4 yields that J′ν and J′ν+2 are interlaced on ( j′ν+2,1,∞) since J′ν , J′ν+1 and
J′ν+1 , J′ν+2 are interlaced (Theorem 1). It remains to show that J′ν has only one zero
( j′ν,1 ) before j′ν+2,1 . We have j′ν,1 < j′ν+1,1 < j′ν+2,1 from Theorem 2, while Theo-
rem 1 implies one further zero ( j′ν,2 ) on ( j′ν+1,1, j′ν+1,2) . Analyzing the signs in Eq.
(7) yields that this zero must be after j′ν+2,1 .

The same reasoning holds for the second order derivative functions. �
The following is a simple corollary of Theorem 2.

COROLLARY 8. If ν > 0 then the previous interlacing relations remain to be true
if the difference between the orders is ε instead of 2 with 0 < ε � 2 .

3.2. Wronskians

To prove the negative parts of Theorem 3 I analyze Wronskians as in [6]. Let

ξν =
√

xCν (x) =
√

x[cosδJν(x)− sinδYν(x)], (8)

ξ μ =
√

xCμ(x) =
√

x[cosδJμ(x)− sinδYμ(x)], (9)

which functions give rise to the Wronskian

W
(√

xCν(x),
√

xCμ(x)
)
≡Wξν ,ξ μ

(x) = ξν(x)ξ
′
μ(x)− ξ ′

ν(x)ξ μ(x). (10)

Differentiating with respect to x one obtains

W ′
ξν ,ξ μ

(x) =
μ2−ν2

x2 ξν(x)ξ μ(x), (11)

which holds because of the differential equation

x2
[

d2

dx2 +1

]
ξν(x) =

(
ν2− 1

4

)
ξν(x), (12)

inferred from the Bessel equation.
From Eq. (11) follows that the set of local extrema of Wξν ,ξ μ

(x) is {wνμ,s}∞
s=1 =

{cν,s}∞
s=1∪{cμ,s}∞

s=1 . At these positions the Wronskian takes

extrsWξν ,ξ μ
(x) ≡Wξν ,ξ μ

(wνμ,s) =

{
−ξ ′

ν(cν,t)ξ μ(cν,t)

+ξν(cμ,t)ξ
′
μ(cμ,t),

(13)

where the exact value of t depends on the interlacing of Cν(x) and Cμ(x) .
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Now we are ready to prove Lemma 5.

Proof of Lemma 5. Let cμ,1 < cν,1 . Without loss of generality suppose sgnCν (0+)
= sgnCμ(0+) = 1 (otherwise to satisfy the equation we take the opposite of the re-
spective functions, whose zeros coincide with the original ones). Please note that
sgnC′

ν (cν,n) = (−1)n .
Suppose the zeros of Cν (x) and Cμ(x) are interlaced implying sgnCν(cμ,n) =

(−1)n+1 and sgnCμ(cν,n) = (−1)n . Then every odd (even) numbered extremum is at
a zero of Cμ(x) (Cν(x)). From Eq. (13) and the signs of the constituent functions it
follows that

sgnextrnWξν ,ξ μ
(x) = −1 (14)

independent of n implying for Wξν ,ξ μ
(x) no zeros on (min(cν,1, cμ,1),∞) .

Since {wνμ,s}∞
s=1 = {cν,s}∞

s=1 ∪{cμ,s}∞
s=1 it is apparent that the converse of the

statement is true as well. �

This lemma will now be used to derive the breaking conditions (negative parts) for
Theorem 3.

In what follows I will use some asymptotic properties of the Bessel functions.
From the definitions of Jν(x) and Yν(x) , i.e.

Jν(x) =
∞

∑
m=0

(−1)m

m! Γ(m+ ν +1)

( x
2

)2m+ν
, Yν(x) =

Jν(x)cos(νπ)− J−ν(x)
sin(νπ)

(15)

it is inferred that for ν > 0

Cν(x) = sinδ
(

Γ(ν)2ν

π
+o(1)

)
x−ν , x → 0. (16)

The asymptotics of the Wronskian can be derived from the asymptotics of the
Bessel functions, namely

Jν(x) =

√
2

πx
cos

(
x− νπ

2
− π

4

)
+o(1), x → ∞, (17)

Yν(x) =

√
2

πx
sin

(
x− νπ

2
− π

4

)
+o(1), x → ∞, (18)

therefore

Wξν ,ξ μ
(x) =

2
π

sin

(
μ −ν

2
π + δ − δ

)
+o(1), x → ∞ (19)

meaning that the Wronskian converges to a constant at infinity.

LEMMA 9. Let ν, μ > 0 . Then the interlacing of Cν (x) and Cμ(x) breaks down
in the following cases:

a) Cμ(x) ≡Cμ(x) with |ν − μ | > 2;

b) Cν(x) ≡ Jν(x) and Cμ(x) ≡ Yμ(x) with |ν − μ |> 1 provided that yμ,1 < jν,1.
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Proof. a) The proof is elementary in view of Lemma 5. One only needs to show
that the Wronskian associated to the given cylinder functions has at least one zero be-
tween its first extremum and infinity.

From Eq. (16) it follows, that independently of ν sgnCν (0+) = sgnsinδ . Let
μ < ν . Since sgnCν (0+)= sgnCμ(0+) and cμ,1 < cν,1 the first extremumof Wξν ,ξ μ

(x)

is positive. (For sinδ = 0 we have two Bessel functions of the first kind and sgnJν (0+)
= sgnJμ(0+) still holds.) In Eq. (19) we have δ −δ = 0, thus if 4k < ν −μ < 2+4k
(k ∈ Z

+ ) the Wronskian is positive at the first extremum and negative at infinity, which
assumes an odd number of zeros on this interval. By Lemma 5 in this case Cν(x) and
Cμ(x) are not interlaced.

It is easy to see now that by increasing ν (to reach the uncovered regions of the
previous argumentation) the interlacing is not recovered. Let S > 0 be such that for
n < S cμ,n < cν,n < cμ,n+1 but cμ,S < cν,S < cμ,S+1 < cμ,S+2 < cν,S+1 , i.e. only the
first S zeros of Cν (x) and Cμ(x) are interlaced. Because of Theorem 2 interlacing
cannot be recovered by increasing ν (cμ,S+2 < cν,S+1 < cν+ε,S+1 , ∀ε > 0).

b) (This part was already proven in [6]; however, in a more complicated way.) Let
μ < ν . In this case the first extremum is negative since sgnJν(0+) = −sgnYμ(0+) ,
while δ − δ = − π

2 in Eq. (19) implies for 1+4k < ν − μ < 3+4k (k ∈ Z
+ ) that the

Wronskian converges to a positive number. Therefore the Wronskian has at least one
zero. For the uncovered regions of |μ − ν| > 1 the same kind of reasoning works as
the one we used in case a. �

From the proof one can see that “shifted interlacing” occurs on every (a,b) inter-
val where Wξν ,ξμ (x) has no zeros. By “shifted interlacing” we mean cμ,s < cν,s+d < cμ,s

for s = s1,s2, . . . ,sn with some fixed d �= 0 shift (ordinary interlacing is defined by
d = 0). Especially important is the interval (z,∞) with z being the greatest zero of the
Wronskian.

LEMMA 10. Let ν, μ > 0 . Then the interlacing of C′
ν (x) and C′

μ(x) breaks down
for |ν − μ | > 2 , either C ≡ J or C ≡ Y .

Proof. Let μ < ν . Using Lemma 9a and the recurrence relation

C′
ν(x) = −Cν+1(x)+

ν
x
Cν(x) (20)

I will show that the interlacing

c′μ,1 < c′ν,1 < c′μ,2 < .. . (21)

is certainly broken for |ν − μ | > 2.
From the recurrence relation (20) we infer that the zeros of C′

ν (x) converge to
those of Cν+1(x) , moreover they can be identified with one another since C′

ν (x) and
Cν+1(x) are interlaced (Theorem 1) and also the zeros of both functions are well sepa-
rated asymptotically (see Eq. (17)). That is either cν+1,s ≈ c′ν,s or cν+1,s ≈ c′ν,s+1 for
big s’s.
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Let now ν = μ + 2+K with some 4k < K < 2+ 4k (k ∈ Z
+ ). Then the Wron-

skian Wξν+1,ξμ+1
(x) has an odd number of zeros implying for the zeros of Cν+1(x) and

Cμ+1(x) shifted interlacing on (z,∞) . Because of the asymptotic identification between
C′

ν(x) and Cν+1(x) the shifted interlacing, that is a broken interlacing, also holds for
the zeros of C′

ν (x) (with perhaps a different threshold index).
For the uncovered regions of 2 + 4k < K < 4 + 4k (k ∈ Z

+ ) the same kind of
argument works that was used in Lemma 9. �

The necessary and sufficient interlacing conditions of Theorem 3 are yielded by
the combination of Corollary 8, Lemma 9 and 10.
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