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NOTE ON KATO’S TYPE INEQUALITY

FLAVIUS LUCIAN PATER

(Communicated by Josip Pecaric)

Abstract. The main purpose of this note is to prove a Kato’s type inequality for a generalized
Schrodinger operator o7 . As an application, we present the L™ -uniqueness of </ .

1. Framework and main result

Kato’s inequality in its classical form say the following (see [3, Lemma A, p.
138]): if u € L}, .(RY) is such that the distributional Laplacian satisfies Au € L}, (R9),

then the inequality
Alu| > sign(u)Au

holds in the sense of distributions, i.e.

(8, Alul) > (&, sign(u)Au)

holds for all 0 < § € Cf (R%), the space of all infinitely differentiable functions with
compact support.

A few years later, Simon [15] realized that the Kato inequality for A is related
to positivity of the semigroup generated by A in L?(R¢). An abstract Kato inequality
originates from the distributional inequality and it was established by Arendt [1] and by
Schep [14] that the abstract Kato inequality (when properly formulated) for a generator
o/ together with an additional condition is equivalent to the positivity of Cp-semigroup
generated by &7 .

Let ¢ be a continuous strictly positive function on R¢, d > 1, such that V¢ €
L? (R?,dx) in the Schwartz distribution sense and denote by - the iner product in R?
and by |x| = \/x-x the euclidian norm. Consider the generalized Schrodinger operator

AV
d'_EJFT'V

with domain Cy (R9), the space of infinitely differentiable functions with compact sup-
port in R . This operator has been used to describe the random path of mouvement of
a quantum system in the equilibrium measure py := 02dx (see [11]).

The main result of this paper is
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THEOREM 1.1. Let A >0 large enough and u € L'(R?, uy) such that
(,(/ =AD) f),, =0, VfeCH(RY)

where

~ [ feax
Rd

Then ¢2u € H*(R?,dx) N L, (R, dx) and we have

loc loc

—E/Vavwu|>dx+/v(7"’-vwu|dx>/xé¢2u|dx )
Rd ]Rd ]Rd

for all positive compactly supported functions & € H'*(R? dx).
Proof. Let A > 0 large enough and u € L' (R?, Ug) such that
<u,(£7'—7tl)f>ﬂ¢ :O7 vfecao(Rd)

Then

%/Af¢2udx+/%¢-Vf¢2udx=/zf¢2udx, Vf e C3(RY).
Rd Rd Rd

By the ellipticity regularity result in [2, Lemma 2, p. 341], ¢%u € Hll()f(Rd dx) N
Ly (RY dx) and an integration by parts yields

—%/VﬁV(d)zu)d)H—/%~Vf¢2udx:/lf¢2udx )
d R4 R4

forall f € H'?(R? dx) with compact support.
Now we can follow [2]. Since ¢2u € H'*(R?, dx), ¢2|u| € H*(RY, dx) as well.

loc loc

For € >0, let y; : R — R be given by

Ve (x) = {Sgn(") ;o if|x[>e

% , if x| <e.

Obviously, y; is Lipschitz continuous, whence g (¢2u) € H'*(R?, dx) and

loc
/ 1
Ve (0u) = W (¢7u) - V(97u) = EX{¢2\M\<8}V(¢2”) dx -a.e.

Fix a positive function & € C(R?). Setting f := & e (¢%u) in (2), we obtain

—%{w&wg(&u ¢udx+/¢ V(Eve(9%u)) 0%



NOTE ON KATO’S TYPE INEQUALITY 251

so that
/)Lgl//g u)¢*udx
1 1
=3 / VE - V(¢?u) sgn(¢?u) dx — % / EIV(9*u)| dx
(62lul>¢} {¢2|"|<5}
n / Vq) -VE sgn(¢?u)¢> udx+ / é V(9*u)9*udx.
(02lul>¢} {¢2|"|<5}

To estimate the right hand side of this equality, note that

Vit (ot | [ ev@iPar|

{02|ul<e} {9 lul<e}

where

4.2

Cg = g
{9?|u \<8}

||u||L1(Rd7du¢)'
L= (RY dpy)

X{92Jul<

Remark that £~ !C, converge to 0 as & tends to 0. We obtain

o [ el v@uetua- 5 [ evigtoPax

{¢2|u|<8} {¢2|u|<8}

1

2

1 1
S| [ Ev@rePax| o [ Ev@tPax
{02[ul<e} {02|ul<e}

N

1 1
— o2t | [ eVt - [ aveRuPax
{9?|ul<e} {0?|ul<e}
1
< —Ce — 0ife —0.
2&
Then we have

[A&ve(@Puwe?udx
]Rd

< —% / VE - V(¢*u) sgn(¢?u) dx + / V(T(Pvé Sgﬂ(¢2u)¢2udx+%c£,

{92u>e} {02u>e}
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Now, by letting € — 0 in this inequality, we obtain (3), because

lim VE-V(¢%u) sgn(¢p’u)dx = /V& V(92 |u|) dx

e—0

{92 ul>e} R?

by dominated convergence, and the other integrals in the above inequality converge
similarly. Hence (3) holds for all positive functions & € Ci(R?). Since C(RY) is
dense in

{f e HY*(R?, dx) | support of f is compact},

it follows that (3) is true for all positive compactly supported functions & € H'?(R?, dx).
O

A similar result was announced in [10]. As we can see in next section, Kato’s
inequality play a key rolle in the study of uniqueness problems.

2. Application

The uniqueness of generalized Schrodinger operator

Af = éf—kv(;)

in L*(RY, 1y is defined as the essential self-adjointness of </, i.e. the closure of o/

Vf VfeCy(RY)

in L2(RY, Ug) coincides with the generator i’fg) of the Cp-semigroup {P;P} 0 given
>
by

P}q)f(x)::]EP* W,)exp / ¢ W__/'

where (W;);>¢ is the standard Brownian Motion in R? defined on a filtered probability

space (Q,.7,(F);50+ (Px)epa) With Py (Wy = x) =1 for any initial point x € R?.
In the classical situation where p € [1,0), the L” (R?, 1) -uniqueness of < is

defined as following: the closure of 7 in L” (Rd,u¢) coincides with the generator

‘2&) of {I’,¢} " For example, the essential self-adjointness of <7 was studied by
[

Wielens [16] and the (L'(R?,p4),| - ||1) -uniqueness of & has been studied by Wu
[18].

Following [19], consider on L=(R?, Ug) the topology of uniform convergence on
compact subsets of (L'(RY, ty), || .||1), denoted by €' (L=, L").

Recall that 7 is said to be a pre-generator in L(R?, 114), if there exists some
Co-semigroup on (L=(R?, p1y),% (L=,L")) such that its generator .& extends 7.

Moreover, we say that & is (L™(R, ty), % (L”,L")) -unique, if </ is closable
and its closure .7 with respect to the topology € (L°°,L1) is the generator of some
Co-semigroup on (L=(RY, uy),% (L=,L")).
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This uniqueness notion has been used by Rockner and Zhang [12], [13], Wu [17],
Wu and Zhang [19], Lemle [4], [5], [6], [7], Lemle and Wu [8], [9] and others in
different contexts. In a more general setting, the main result concerning uniqueness of
pre-generators can be find in [19, Theorem 2.1, p. 570] or [9, Theorem 1.1, p. 486].

Our goal in this section is to prove the (L*(R?,uy),% (L~,L"))-uniqueness of
the operator (<7,C5 (R?)).

For this purpose, first we must remark that the operator («7,Cy(R?)) is a pre-
generator in (L™(R?, y),% (L™,L")). Indeed, by [18, Lemma 1.2, p. 556] we can
see that {Ptq)} . is a Co-semigroup in (L'(R?, ), ||1) and its generator .,?ﬁ)

>

extends .o7. By [19, Theorem 1.4, p. 564] it follows that {P,d’} is a Cp-semigroup

>0
in (L™(R?,uy),% (L,L")) and its generator %i) = (ﬁ%) extends the operator
</ meaning that .« is a pre-generator on (L™(R?, uy),% (L=,L")).
Finaly, by [19, Theorem 2.1, p. 570], for the L=(R?, u)-uniqueness of < it is
enough to show that if for some A >0, u € L' (R?, 11y) satisfies

() —AD)u=0

in the sense of distributions, then u = 0.
Let A > 0 large enough and u € L' (R?, 114) such that

(u,(/ = A1) f,, =0, VfeCTRY).

By Theorem 1.1, it follows ¢%u € Hlla’f (RY,dx)N L

loc(Rd7dx) and we have

—%/Vé-VWul)dx+/v(7¢-vé¢2uldx>/k€¢2u|dx 3)
R4 R4 R4

for all positive compactly supported functions & € H'?(R¢,dx). But Kato’s inequality
(3) is equivalent to

A, V
/\ul (55 +7¢~Vc§> due > /Wg dug > 0.
R4 R4

This means that |u| is an <7 -subharmonic function. By [19, Proposition 6.4 (i), p. 607],
it follows that |u| must be a constant function and then u = 0.
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