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ON THE DIRICHLET PROBLEM FOR THE GENERALIZED

n–LAPLACIAN: SINGULAR NONLINEARITY WITH THE EXPONENTIAL

AND MULTIPLE EXPONENTIAL CRITICAL GROWTH RANGE
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(Communicated by Bohumir Opic)

Abstract. Let Ω ⊂ R
n , n � 2 , be a bounded domain containing the origin. Applying the Moun-

tain Pass Theorem and a singular version of the generalized Moser-Trudinger inequality we prove
the existence of a non-trivial weak solution to the problem

u ∈W 1
0 LΦ(Ω) and −div

(
Φ′(|∇u|) ∇u

|∇u|
)

=
f (x,u)
|x|a in Ω ,

where a ∈ [0,n) , Φ is a Young function such that the space W 1
0 LΦ(Ω) is embedded into expo-

nential or multiple exponential Orlicz space and f (x,t) has the corresponding critical growth.

1. Introduction

Throughout the paper Ω is a bounded domain containing the origin in R
n , n � 2,

and ωn−1 denotes the surface of the unit sphere.
It is an often studied problem to find solutions to the Laplace equation

u ∈W 1,2
0 (Ω) and −Δu = f (x,u) in Ω . (1.1)

For n � 3 and f satisfying limt→∞
f (x,t)
tq = 0 uniformly on Ω with q < n+2

n−2 , there

are many results using the compactness of the embedding of the space W 1,2
0 (Ω) into

Lr(Ω) with r ∈ [1, 2n
n−2) (see a review article by Lions [17] and the references given

there). Problem (1.1) under condition limt→∞
f (x,t)

t
n+2
n−2

= 0 becomes much more difficult

thanks to the fact that the embedding of W 1,2
0 (Ω) into L

2n
n−2 (Ω) is no longer compact.

This difficulty has been overcame by Brezis and Nirenberg [5]. Their method uses the
Mountain Pass Theorem by Ambrosetti and Rabinowitz [3].

When n = 2, we do not only have the Sobolev embedding into Lr(Ω) for any r ∈
[1,∞) but there is also the Trudinger embedding [21] into the Orlicz space expL

n
n−1 (Ω) .

In particular, there is so called Moser-Trudinger inequality by Moser [18]

sup
||u||

W1,n
0 (Ω)

�1

∫
Ω

exp(K|u| n
n−1 ) � C(n,Ln(Ω)) if and only if K � nω

1
n−1
n−1 .
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Therefore, in the literature, there is often used the variational approach by Brezis and
Nirenberg [5] together with the Moser-Trudinger inequality to study the n -Laplace
equation

u ∈W 1,n
0 (Ω) and −Δnu = f (x,u) in Ω , (1.2)

where Δnu := div(|∇u|n−2∇u) and f (x,t) ≈ exp(b|t| n
n−1 ) for some b > 0. See for

example Adimurthi [1], de Figueiredo, Miyagaki, Ruf [13] and do Ó [19].
In recent paper [8], above techniques are modified for a differential equation cor-

responding to the embedding of the Orlicz-Sobolev space W0Ln logα L(Ω) , α < n−1,
into the Orlicz space expL

n
n−1−α (Ω) (this embedding is due to Fusco, Lions, Sbor-

done [14] and Edmunds, Gurka, Opic [10]). The result is the existence of a non-trivial
weak solution to the equation

u ∈W0L
Φ(Ω) and −div

(
Φ′(|∇u|) ∇u

|∇u|
)

= f (x,u) in Ω,

with Φ being a Young function that behaves like tn logα(t) , α < n−1, for large t and
with the nonlinearity f having so called critical growth (corresponding to the choice of
the Young function Φ).

The aim of this paper is to generalize above result in two ways. First, instead of
considering a Young function corresponding to the embedding into exponential space
we also deal with Young functions for which we have an embedding into multiple ex-
ponential spaces. Second, similarly as Adimurthi and Sandeep [2], we deal with the
nonlinearity of the singular form f (x,u)

|x|a , a ∈ [0,n) (notice that we admit a = 0, hence
our results cover the case with no singular weight on the right hand side). Our differen-
tial equation is then

u ∈W0L
Φ(Ω) and −div

(
Φ′(|∇u|) ∇u

|∇u|
)

=
f (x,u)
|x|a in Ω , (1.3)

with Φ and f specified below.

On embedding into exponential and multiple exponential spaces

If � ∈ N and α < n−1, we set

γ =
n

n−1−α
> 0 , B = 1− α

n−1
=

n
(n−1)γ

> 0

and K�,n,α =

⎧⎨
⎩

B
1
B nω

γ
n
n−1 for � = 1

B
1
B ω

γ
n
n−1 for � � 2 .

(1.4)

The space W0Ln logα L(Ω) of the Sobolev type, modeled on the Zygmund space
Ln logα L(Ω) , is continuously embedded into the Orlicz space with the Young func-
tion that behaves like exp(tγ) for large t (see [14] and [10]). Moreover it is shown in
[10] (see also [11]) that in the limiting case α = n− 1 we have the embedding into
a double exponential space, i.e. the space W0Ln logn−1 L logα logL(Ω) , α < n− 1, is
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continuously embedded into the Orlicz space with the Young function that behaves like
exp(exp(tγ )) for large t . Further in the limiting case α = n−1 we have the embedding
into triple exponential space and so on. The borderline case is always α = n− 1 and
for α > n− 1 we have embedding into L∞(Ω) . It is well-known that the Zygmund
space Ln logα L(Ω) coincides with the Orlicz space LΦ(Ω) , where the Young function
Φ satisfies

lim
t→∞

Φ(t)
tn logα(t)

= 1 ,

the space Ln logn−1 L logα logL(Ω) coincides with LΦ(Ω) where

lim
t→∞

Φ(t)
tn logn−1(t) logα(log(t))

= 1 ,

and so on. For other results concerning these spaces we refer the reader to [10], [11]
and [12].

The following notation enables us to work with the multiple exponential spaces
comfortably. For k ∈ N , let us write

log[k](t) = log(log[k−1](t)), where log[1](t) = log(t)

and
exp[k](t) = exp(exp[k−1](t)), where exp[1](t) = exp(t) .

Let � ∈ N and α < n− 1. Then we have above mentioned embedding results for any
Young function Φ satisfying

lim
t→∞

Φ(t)

tn
(

∏�−1
j=1 logn−1

[ j] (t)
)

logα
[�](t)

= 1 (1.5)

(for � = 1 we read (1.5) as limt→∞
Φ(t)

tn logα
[1](t)

= 1). As Ω is bounded, all Young functions

satisfying (1.5) give the same Orlicz-Sobolev space.

Assumptions on Φ and f

We suppose that the function Φ : [0,∞) �→ [0,∞) is a C1 -Young function satisfying
(1.5) and in addition we suppose that there are C > 0, tΦ � 1 and β ∈ (0,min(1,B))
such that

1
C

tn � Φ(t) � Ctn for t ∈
[
0,

1
C

)
(1.6)

and

Φ(t) � tn
(�−1

∏
j=1

logn−1
[ j] (t)

)
logα

[�](t)
(
1− log−β

[�] (t)
)

for t ∈ [tΦ,∞) . (1.7)

Notice that assumptions (1.5) and (1.6) together with the fact that Φ is a C1 -Young
function imply the existence of cΦ > 0 such that

cΦ Φ′(t)t � Φ(t), t > 0 . (1.8)
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The function f : Ω×R �→ R is supposed to satisfy the following conditions:
There are M > 1, tM > 0, Cb > 0, b > 0 and ε0 > 0 such that

f is uniformly continuous on Ω× [−t0,t0] for every t0 > 0 ,

f (x,0) = 0 and t f (x,t) > 0 for all x ∈ Ω and t �= 0 ,
(1.9)

0 < F(x, t) :=
∫ t

0
f (x,s)ds � M|t|1− 1

M | f (x,t)| provided |t| > tM and x ∈ Ω , (1.10)

| f (x, t)| � Cb exp[�](b |t|γ) whenever t ∈ R and x ∈ Ω , (1.11)

limsup
t→0

F(x,t)
tn+ε0

< ∞ uniformly on Ω , (1.12)

and finally

liminf
t→∞

t f (x,t)
exp[�](b|t|γ)

> 0 uniformly on Ω . (1.13)

The main result of this paper is the following theorem.

THEOREM 1.1. Let � ∈ N , n � 2 , α < n− 1 , a ∈ [0,n) and let Ω ⊂ R
n be

a bounded domain containing the origin. Suppose that the C1 -Young function Φ :
[0,∞) �→ [0,∞) satisfies (1.5), (1.6) and (1.7). Let f : Ω×R �→ R be a function satisfy-
ing (1.9), (1.10), (1.11), (1.12) and (1.13). Then problem (1.3) has a non-trivial weak
solution.

Our approach is similar to [8], though the results related to the Moser-Trudinger
inequality from [15] are replaced by those from [9] and [7]. For the convenience of the
reader acquainted with [8] we organize the paper in the same way as [8] and we also
use a similar notation.

Variational formulation

We define

J(u) =
∫

Ω
Φ

(|∇u(x)|)dx−
∫

Ω

F(x,u(x))
|x|a dx , u ∈W0L

Φ(Ω) . (1.14)

By Proposition 6.1 below, this is a C1 -functional on W0LΦ(Ω) and its Fréchet deriva-
tive is

〈J′(u),v〉 =
∫

Ω
Φ′(|∇u(x)|) ∇u(x)

|∇u(x)| ·∇v(x)dx−
∫

Ω

f (x,u(x))v(x)
|x|a dx , (1.15)

u,v ∈W0LΦ(Ω) , where the symbol 〈J′(u),v〉 denotes the value of the linear functional
J′(u) of v .

We say that u ∈W0LΦ(Ω) is a weak solution to problem (1.3) if

〈J′(u),v〉 = 0 for every v ∈W0L
Φ(Ω) . (1.16)
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The paper is organized as follows. After preliminaries we state several versions of
the generalized Moser-Trudinger inequality in the third section. In the fourth section,
we verify the assumptions of the Mountain Pass Theorem (similarly as in [5] we use
a version without the Palais-Smale condition). The fifth section is devoted to properties
of the Palais-Smale sequence and then we apply the Mountain Pass Theorem in the
proof of Theorem 1.1. Finally, we prove that the functional J is a C1 -functional in
Section 6. In the last section, we give a remark concerning the sub-critical growth
range (in the sense of [13]).

2. Preliminaries

The n -dimensional Lebesgue measure is denoted by Ln . By B(x0,R) we denote
an open Euclidean ball in R

n centered x0 with the radius R > 0. If x0 = 0 we simply
write B(R) .

For two functions g,h : I �→ [0,∞) we write g � h on I , if there is C > 0 such
that g(t) � Ch(t) for every t ∈ I . If g � h on I and h � g on I , we write g ≈ h on
I . If I = [0,∞) , we simply write g ≈ h , etc. We write that g << h for t large, if

limt→∞
g(t)
h(t) = 0. If u is a measurable function on A , then by u = 0 (or u �= 0) we mean

that u is equal (or not equal) to the zero function a.e. on A .
By C we denote a generic positive constant which may depend on � , n , α , a ,

Ln(Ω) and Φ . This constant may vary from expression to expression as usual.
By M (A) we denote the set of all Radon measures on a compact set A . We write

that μk
∗
⇀ μ in M (A) if

∫
A ψ dμk →

∫
A ψ dμ for every ψ ∈C(A) .

We need the following property of the function exp[�] , � ∈ N .
For every p ∈ [1,∞) and � ∈ N it can be easily proved that

expp
[�](t) � Cexp[�](pt) on [0,∞) . (2.1)

Young functions and Orlicz spaces.

A function Φ : [0,∞) → [0,∞) is a Young function if Φ is increasing, convex,

Φ(0) = 0 and limt→∞
Φ(t)

t = ∞ .
Denote by LΦ(A,dμ) the Orlicz space corresponding to a Young function Φ on a

set A with a measure μ . If μ = Ln we simply write LΦ(A) . The space LΦ(A,dμ) is
equipped with the Luxemburg norm

||u||LΦ(A,dμ) = inf
{

λ > 0 :
∫

A
Φ

( |u(x)|
λ

)
dμ(x) � 1

}
. (2.2)

Given a differentiable Young function Φ we can define the generalized inverse
function to φ(y) = Φ′(y) by

ψ(s) = inf{y : φ(y) > s} for s > 0

and further we define the associated Young function Ψ by

Ψ(t) =
∫ t

0
ψ(s)ds for t � 0 .
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The dual space to LΦ(A,dμ) can be identified as the Orlicz space LΨ(A,dμ) . We
further have generalized Hölder’s inequality

∫
A
|u(y)v(y)| dμ(y) � 2||u||LΦ(A,dμ)||v||LΨ(A,dμ) . (2.3)

Δ2 -condition

We say that a function Φ satisfies the Δ2 -condition, if there is CΔ > 1 such that

Φ(2t) � CΔΦ(t) whenever t � 0 .

It is not difficult to check the Δ2 -condition for our Young functions satisfying (1.5) and
(1.6). Therefore one easily proves

Φ(s+ t) � CΔΦ(s)+CΔΦ(t) , (2.4)

||uk||LΦ(A,dμ)
k→∞→ 0 ⇐⇒

∫
A

Φ(|uk|)dμ(x) k→∞→ 0 , (2.5)

for every ξ ∈ (0,1) there is η ∈ (0,1) such that

||u||LΦ(A,dμ) � 1−η =⇒
∫

A
Φ(|u|)dμ(x) � 1− ξ , (2.6)

and for every η ∈ (0,1) there is ξ ∈ (0,1) such that
∫

A
Φ(|u|)dμ(x) � 1− ξ =⇒ ||u||LΦ(A,dμ) � 1−η . (2.7)

We also need the following lemma from [8, Lemma 2.1].

LEMMA 2.1. If Φ is a C1 -Young function satisfying the Δ2 -condition, then also
Φ′ satisfies the Δ2 -condition.

We often use the following estimate together with the generalized Hölder’s in-
equality.

LEMMA 2.2. If a Young function Φ satisfies (1.5) and (1.6), then Ψ(Φ′) � Φ .

Proof. For � = 1, our lemma is the same as [8, Lemma 2.3]. Hence we can sup-
pose that � � 2 in the sequel.

Let us find E > exp[�](1) large enough so that

Φ1(t) = tn
(�−1

∏
j=1

logn−1
[ j] (E + t)

)
logα

[�](E + t)

and

Ψ̃1(t) = t
n

n−1

(�−1

∏
j=1

log−1
[ j] (E + t)

)
log

− α
n−1

[�] (E + t)
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are Young functions satisfying

Φ1(t) ≈ tn on [0,C] and Ψ̃1(t) ≈ t
n

n−1 on [0,C]

for some C > 0. Plainly, Φ1 and Ψ1 are satisfying the Δ2 -condition. Next, if E is
large enough, we have

Φ′
1(t) = tn−1

(�−1

∏
j=1

logn−1
[ j] (E + t)

)
logα

[�](E + t)

×
[
n+

�−1

∑
j=1

n−1

∏ j
i=1 log[i](E + t)

t
t +E

+
α

∏[�]
i=1 log[i](E + t)

t
t +E

]

≈ tn−1
(�−1

∏
j=1

logn−1
[ j] (E + t)

)
logα

[�](E + t) =: ϕ2(t)

and

Ψ̃′
1(t) = t

1
n−1

(�−1

∏
j=1

log−1
[ j] (E + t)

)
log

− α
n−1

[�] (E + t)

×
[ n
n−1

−
�−1

∑
j=1

1

∏ j
i=1 log[i](E + t)

t
t +E

− α
n−1

1

∏[�]
i=1 log[i](E + t)

t
t +E

]

≈ t
1

n−1

(�−1

∏
j=1

log−1
[ j] (E + t)

)
log

− α
n−1

[�] (E + t) =: ψ2(t) .

Further, by (1.5), (1.6) and by the fact that Φ is a Young function we have on (0,∞)

ϕ(t) � Φ(t)
t

� 1
C

ϕ2(t).

Hence there is C1 large enough so that for every t ∈ (0,∞) we have

ϕ(C1Ψ̃′
1(t)) � 1

C
ϕ2(C1Ψ̃′

1(t)) � 1
C

ϕ2

(C1

C
ψ2(t)

)

=
Cn−1

1

C
ψn−1

2 (t)
(�−1

∏
j=1

logn−1
[ j]

(
E +

C1

C
ψ2(t)

))
logα

[�]

(
E +

C1

C
ψ2(t)

)

� Cn−1
1

C
ψn−1

2 (t)
(�−1

∏
j=1

1
C

logn−1
[ j] (E + t)

) 1
C

logα
[�](E + t)

=
Cn−1

1

C
t � t .

Since the associated function Ψ satisfies ϕ(ψ(t)) = t for all t � 0, we obtain from
above that

Ψ(t) � C1Ψ̃1(t) .
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Finally

Ψ(Φ′(t)) � C1Ψ̃1(Φ′(t)) � C1Ψ̃1(Cϕ2(t))

= Cϕ
n

n−1
2 (t)

(�−1

∏
j=1

log−1
[ j] (E +Cϕ2(t))

)
log

− α
n−1

[�] (E +Cϕ2(t))

� Cϕ
n

n−1
2 (t)

(�−1

∏
j=1

C log−1
[ j] (E + t)

)
C log

− α
n−1

[�] (E + t)

= Ctn
(�−1

∏
j=1

logn−1
[ j] (E + t)

)
log−α

[�] (E + t) = CΦ1(t) � CΦ(t) .

Thus, we are done. �

Next, we need to be able to estimate the norm by the modular and vice versa.
Some rough estimates are given by the following lemma from [16, Lemma 3.8.4].

LEMMA 2.3. Let u ∈ LΦ(Ω) .

(i) If ||u||LΦ(Ω) � 1 , then
∫

Ω Φ(|u|) � ||u||LΦ(Ω) .

(ii) If ||u||LΦ(Ω) > 1 , then
∫

Ω Φ(|u|) � ||u||LΦ(Ω) .

More careful estimates use the following lemma.

LEMMA 2.4. For every ε > 0 there is δ > 0 such that

||u||n+ε
LΦ(Ω) �

∫
Ω

Φ(|u|) � ||u||n−ε
LΦ(Ω) provided ||u||LΦ(Ω) < δ .

Proof. Since tn−ε << Φ(t) << tn−ε for large t , the proof is similar to [8, Proof
of Lemma 2.4]. �

Orlicz-Sobolev spaces

Let A be an nonempty open bounded set in R
n and let Φ be a Young function

satisfying (1.5). In this subsection we consider Orlicz spaces only with the Lebesgue
measure. We define the Orlicz-Sobolev space WLΦ(A) as the set

WLΦ(A) := {u : u, |∇u| ∈ LΦ(A)}

equipped with the norm

‖u‖WLΦ(A) := ‖u‖LΦ(A) +‖∇u‖LΦ(A) ,

where ∇u is the gradient of u and we use its Euclidean norm in R
n .
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We put W0LΦ(A) for the closure of C∞
0 (A) in WLΦ(A) . For this space we prefer

to use throughout the paper the equivalent norm

‖u‖W0LΦ(A) := ‖∇u‖LΦ(A) .

The space W0LΦ(A) is a reflexive Banach space and it is compactly embedded into
LΦ(A) .

We write that uk ⇀ u in W0LΦ(A) , if

∫
A

∂uk

∂xi
vdx

k→∞→
∫

A

∂u
∂xi

vdx for every v ∈ LΨ(A) and i ∈ {1, . . . ,n} .

Tools from the Measure Theory

We make use of a version of a lemma from [13, Lemma 2.1]. The original version
is stated for θ = 0 and a = 0, but it can be easily seen that the proof given in [13]
works also in our case after obvious minor modifications.

LEMMA 2.5. Let θ ∈ [0,1) and 0 � a < n. Let {uk} be a sequence of functions
from L1(Ω) converging to u ∈ L1(Ω) a.e. in Ω ⊂ R

n . Let f : Ω×R �→ R be a contin-

uous function bounded on Ω× [−t0,t0] for every t0 > 0 . Suppose that f (x,uk)|uk|θ
|x|a and

f (x,u)|u|θ
|x|a belong to L1(Ω) and

∫
Ω

| f (x,uk)uk|
|x|a � C1 .

Then f (x,uk)|uk|θ
|x|a → f (x,u)|u|θ

|x|a in L1(Ω) .

We also need the Generalized Lebesgue Dominated Convergence Theorem (see
[20, Exercise 5.4.13]).

PROPOSITION 2.6. Let {uk} , {vk} be sequences of measurable functions on Ω
such that |uk| � vk for all k ∈ N . Let u and v be measurable functions on Ω such that
uk → u a.e. in Ω and vk → v a.e. in Ω . Then

lim
k→∞

∫
Ω

vk =
∫

Ω
v =⇒ lim

k→∞

∫
Ω

uk =
∫

Ω
u .

Tools from the Calculus of Variations

Our key instrument is the following version of the Mountain Pass Theorem by
Ambrosetti and Rabinowitz [3].

THEOREM 2.7. Let X be a real Banach space and J ∈ C1(X ,R) . Suppose that
there exist a neighborhood U of 0 in X and ξ ∈ R satisfying the following conditions:
(i) J(0) < ξ ,
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(ii) J(u) � ξ on the boundary of U ,
(iii) there is w /∈U such that J(w) < ξ .
Set

c = inf
γ∈Γ

max
u∈γ

J(u) � ξ ,

where Γ = {g ∈C([0,1],X) : g(0) = 0,g(1) = w} . Then there is a sequence {uk} ⊂ X
such that

J(uk) → c and J′(uk) → 0 in X∗ . (2.8)

The sequence satisfying (2.8) is called the Palais-Smale sequence and the constant
c is a Palais-Smale level. Notice that that this version slightly differs from often used
version of the Mountain Pass Theorem which requires the Palais-Smale condition (the
Palais-Smale sequence has a subsequence convergent in the norm) and asserts that there
is a critical point x0 ∈ X satisfying J(x0) = c . We use this version of the Mountain
Pass Theorem, because we need a bit less from the Palais-Smale sequence than the
convergence in the norm. Our approach is taken from [5]. See [5, page 459] for the
discussion concerning the proof of Theorem 2.7.

3. On the generalized Moser-Trudinger inequality

We often use the following embedding result from [7, Theorem 1.2 and Theo-
rem 1.3].

THEOREM 3.1. Let � ∈ N , n � 2 , α < n− 1 , a ∈ [0,n) and let Φ be a Young
function satisfying (1.5). Suppose that u ∈W0LΦ(Ω) .
(i) If K � 0 , then ∫

Ω

exp[�](K|u(x)|γ )
|x|a < ∞ .

(ii) If � = 1 , K ∈ [0,(1− a
n )K1,n,α) and ||∇u||LΦ(Ω) � 1 , then

∫
Ω

exp[�](K|u(x)|γ )
|x|a � C .

(iii) If � � 2 , K ∈ [0,K�,n,α) and ||∇u||LΦ(Ω) � 1 , then

∫
Ω

exp[�](K|u(x)|γ )
|x|a � C .

The constant C depends on �,n,α,a,Ln(Ω),K and Φ only (i.e. C is independent of
the choice of u).

Let us note that when K is larger than the upper bound of the interval in Theo-
rem 3.1(ii) and (iii), respectively, then there is no uniform estimate of the integral in
Theorem 3.1(ii) and (iii), respectively. The counterexamples are given in [7]. In the
borderline case (K = (1− a

n)K1,n,α for � = 1 and K = K�,n,α for � � 2) we cannot say
anything in general, for a detailed discussion see [7].
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Next, using the same procedure as when obtaining [8, Proposition 3.2] from [8,
Theorem 3.1] modifying the proof of Theorem 3.1(ii) and (iii) given in [7] we obtain
the following ”modular” version of Theorem 3.1.

PROPOSITION 3.2. Let � ∈ N , n � 2 , α < n−1 , b > 0 , a ∈ [0,n) and let Φ be
a Young function satisfying (1.5). Let uk ∈W0LΦ(Ω) satisfy

∫
Ω

Φ(|∇uk|) � c <

⎧⎪⎨
⎪⎩

(
K1,n,α

b

(
1− a

n

)) n
γ

provided � = 1(
K�,n,α

b

) n
γ

provided � � 2 .

Then there is q > 1 such that

∫
Ω

(exp[�](b|uk|γ )
|x|a

)q
� C .

Finally, the proof of Theorem 3.1(ii) and (iii) can be modified (for more details
see [8, Sketch of proof of Proposition 3.4]) so that we have a version of Theorem 3.1(ii)
and (iii) for functions that are generally non-zero on the boundary of a fixed ball.

PROPOSITION 3.3. Let �∈ N , n � 2 , α < n−1 , a∈ [0,n) and let Φ be a Young
function satisfying (1.5). Let uk ∈W0LΦ(Ω) satisfy ||∇uk||LΦ(Ω) � C1 . Then for every
q � 1 there is τ > 0 with the following property:
For every x ∈ Ω and R > 0 satisfying B(x,2R) ⊂ Ω we have

||∇uk||LΦ(B(x,R)) < τ =⇒
∫

B(x,R)

exp[�](q|uk|γ)
|x|a � C .

The constant C � 0 is independent of k ∈ N (it may depend on C1 , q , � , n , α , a , Φ ,
x and R).

4. Assumptions of the Mountain Pass Theorem

In this section we check that our functional J has the Mountain Pass Geometry
(i.e. assumptions (i), (ii) and (iii) from Theorem 2.7 are satisfied).

The following assertions follow easily from (1.9) and (1.10).
There is a positive constant C such that

F(x,t) � Cexp
(
C|t| 1

M

)
, |t| � tM . (4.1)

Given ε > 0 there is tε > 0 such that

F(x,t) � ε f (x,t)t, |t| � tε . (4.2)

Now, we can start to check the assumptions of the Mountain Pass Theorem.
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LEMMA 4.1. If u ∈W0LΦ(Ω) , u � 0 and u �= 0 , then

J(tu) t→∞→ −∞ .

Sketch of proof. Since Ω is bounded, we have by (4.1) (which can be extended
by (1.9) to R\ (−t0, t0) for each t0 > 0 fixed; with a different constant C , of course)

F(x,t)
|x|a � 1

C
F(x,t) � 1

C
exp

(
C|t| 1

M

)

for |t|� τ for each τ > 0 fixed. The rest of the proof is the same as [8, Proof of Lemma
4.1]. �

LEMMA 4.2. There are ρ > 0 and ξ > 0 with the following property.
If u ∈W0LΦ(Ω) with ||∇u||LΦ(Ω) = ρ , then J(u) � ξ .

Proof. Fix q > n . By assumptions (1.10), (1.11) and (1.12) we have

F(x, t) � C1|t|n+ε0 +Cexp[�](b|t|γ)|t|q = F1(t)+F2(t) .

Next, from Theorem 3.1(ii) and (iii), respectively, we can easily see that if u∈W0LΦ(Ω)
is such that ||∇u||LΦ(Ω) � 1, then

∫
Ω

|u|n+ε0

|x|a � C2 .

Hence by Lemma 2.4 with ε ∈ (0,ε0) we obtain for ρ small enough

∫
Ω

F1(u)
|x|a � C1

∫
Ω

|u|n+ε0

|x|a = C1||∇u||n+ε0
LΦ(Ω)

∫
Ω

| u
||∇u||LΦ(Ω)

|n+ε0

|x|a � C1C2||∇u||n+ε0
LΦ(Ω)

� 1
4
||∇u||n+ε

LΦ(Ω) � 1
4

∫
Ω

Φ(|∇u|) .

(4.3)
Fix p > 1 such that ap < n . Next, if ρ is so small that bpργ < (1− ap

n )K�,n,α , from
Hölder’s inequality, (2.1), Theorem 3.1(ii) and (iii), respectively, and from the fact that
W0LΦ(Ω) is continuously embedded into Ls(Ω) , for every s ∈ [1,∞) , we obtain

∫
Ω

F2(u)
|x|a = C

∫
Ω

exp[�](b|u|γ)|u|q
|x|a �

(∫
Ω

expp
[�](b|u|γ)
|x|ap

) 1
p
(∫

Ω
|u|qp′

) 1
p′

� C
∫

Ω

exp[�](bp||∇u||γ
LΦ(Ω)(

|u|
||∇u||LΦ(Ω)

)γ )

|x|ap ||u||q
Lqp′

� C||u||q
W0LΦ(Ω) = C||∇u||q

LΦ(Ω) .
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For ρ > 0 small enough we can further use Lemma 2.4 with ε < q−n to infer
∫

Ω

F2(u)
|x|a � C||∇u||q−n−ε

LΦ(Ω) ||∇u||n+ε
LΦ(Ω) � 1

4

∫
Ω

Φ(|∇u|) . (4.4)

Now, (4.3) and (4.4) give

J(u) =
∫

Ω
Φ(|∇u|)−

∫
Ω

F(x,u)
|x|a � 1

2

∫
Ω

Φ(|∇u|) .

Finally, one can easily see from (2.5) that the modular is bounded away from zero, if
the norm is equal to ρ > 0 and thus we are done. �

REMARK 4.3. In case a = 0, we can replace assumption (1.12) by a weaker con-
dition

limsup
t→0

F(x,t)
CSΦ(|t|) < 1 uniformly on Ω ,

where CS > 0 is such that CS
∫

Ω Φ(|u|) �
∫

Ω Φ(|∇u|) . With this assumption (which
means F(x, t) � tn for small t ) the proof of Lemma 4.2 is the same as the proof of [8,
Lemma 4.2]. For a ∈ (0,n) , the author does not know whether there is CS > 0 such
that CS

∫
Ω

∫
Φ(|u|)|x|a �

∫
Ω Φ(|∇u|) , hence we use assumption (1.12) in this paper.

In the rest of the section we show that our Palais-Smale level is not too high. First,
we need to construct a sequence of auxiliary functions concentrating around the origin
with suitably controlled modulars.

LEMMA 4.4. Suppose that B(R) ⊂ Ω . If � = 1 , let us define for each k ∈ N

wk(x) = gk(|x|) , where

gk(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for y ∈ [R,∞)

(− 2
Ry+2)K

− 1
γ

1,n,αnB logB(2)k
1
γ −B

(
1+ log(k)

k

) 1
γ

for y ∈ [R
2 ,R]

K
− 1

γ
1,n,αnB logB(R

y )k
1
γ −B

(
1+ log(k)

k

) 1
γ

for y ∈ [Re−
k
n , R

2 ]

K
− 1

γ
1,n,αk

1
γ
(
1+ log(k)

k

) 1
γ

for y ∈ [0,Re−
k
n ] .

(4.5)

In case � � 2 we fix T > exp[�](1) and we define

wk(x) = gk(|x|) , where

gk(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for y ∈ [R,∞)

(− 2
Ry+2)K

− 1
γ

�,n,α logB
[�](T +2)k

1
γ −B

(
1+ log(k)

k

) 1
γ

for y ∈ [R
2 ,R]

K
− 1

γ
�,n,α logB

[�](T + R
y )k

1
γ −B

(
1+ log(k)

k

) 1
γ

for y ∈ [Rexp
− 1

n
[�] (k), R

2 ]

K
− 1

γ
�,n,α logB

[�]

(
T + exp

1
n
[�](k)

)
k

1
γ −B

(
1+ log(k)

k

) 1
γ

for y ∈ [0,Rexp
− 1

n
[�] (k)] .

(4.6)



268 R. ČERNÝ

Then for every θ0 � 1 there is k0 ∈ N such that
∫

Ω
Φ(θ |∇wk|) � θ n for every k � k0 and θ ∈ [1,θ0] .

The proof of Lemma 4.4 for � = 1 and θ = 1 is given in [6, Example 5.1]. For
general θ ∈ [1,θ0] the proof requires a minor modification only. For � � 2, the proof is
obtained modifying [9, Proof of Theorem 1.2]. Let us note that the proof uses assump-
tion (1.7).

Now we can obtain the estimate concerning the Palais-Smale level.

LEMMA 4.5. There is a non-trivial function w ∈W0LΦ(Ω) such that

J(θw) <

⎧⎪⎨
⎪⎩

(
K�,n,α

b

(
1− a

n

)) n
γ

provided � = 1(
K�,n,α

b

) n
γ

provided � � 2
for every θ ∈ [0,∞) .

Proof. Fix R > 0 such that B(R) ⊂ Ω . By (1.13) we have

liminf
t→∞

t f (x,t)
exp[�](b|t|γ)

> C uniformly on B(R) . (4.7)

Our aim is to show that there is k ∈ N such that the assertion of the lemma holds for wk

given by Lemma 4.5. For the sake of contradiction suppose that for all k ∈ N we have

sup{J(θwk) : θ ∈ [0,∞)} �

⎧⎪⎨
⎪⎩

(
K�,n,α

b

(
1− a

n

)) n
γ

provided � = 1(
K�,n,α

b

) n
γ

provided � � 2 .

In view of Lemma 4.1 there are θk > 0, k ∈ N , such that

J(θkwk) = max{J(θwk) : θ ∈ [0,∞)} .

Since F is non-negative (see (1.9)), we arrive at
∫

Ω
Φ(θk|∇wk|) � J(θkwk) = max{J(θwk) : θ ∈ [0,∞)}

�

⎧⎪⎨
⎪⎩

(
K�,n,α

b

(
1− a

n

)) n
γ

provided � = 1(
K�,n,α

b

) n
γ

provided � � 2 .
(4.8)

Next, from Lemma 4.4 with θ = θ0 = 1 we observe that there is k0 ∈ N such that
for k � k0 we have ∫

Ω
Φ(|∇wk|) � 1 . (4.9)



ON THE GENERALIZED n -LAPLACE EQUATION 269

Now, we claim that θk are bounded away from zero. Indeed, for k � k0 such that θk � 1
we have by (4.8), (4.9) and by the fact that Φ is a Young function (hence Φ(ts) � tΦ(s)
for every t ∈ [0,1] and s � 0)

θk � θk

∫
Ω

Φ(|∇wk|) �
∫

Ω
Φ(θk|∇wk|) �

⎧⎪⎨
⎪⎩

(
K�,n,α

b

(
1− a

n

)) n
γ

provided � = 1(
K�,n,α

b

) n
γ

provided � � 2 .

Further, as d
dθ J(θwk)|θ=θk = 0, it follows that

∫
Ω

Φ′(θk|∇wk|)|∇wk| =
∫

Ω

wk f (x,θkwk)
|x|a .

Multiplying both sides by cΦθk , using (1.8), (4.7) (recall that θk are bounded away
from zero) and the definition of wk we obtain k1 � k0 such that for all k � k1 we have

∫
Ω

Φ(θk|∇wk|) � cΦ

∫
Ω

Φ′(θk|∇wk|)θk|∇wk| = cΦ

∫
Ω

θkwk f (x,θkwk)
|x|a

� cΦ

∫
B(Rexp

− 1
n

[�] (k))

θkwk f (x,θkwk)
|x|a � C

∫
B(Rexp

− 1
n

[�] (k))

exp[�](b|θkwk|γ)
|x|a .

(4.10)
In the rest of the proof we distinguish two cases.

Case � = 1.
Since

∫
B(Rexp−

1
n (k))

1
|x|a dx = C

∫ Rexp−
1
n (k))

0
rn−1−a dr = Cexp

((a
n
−1

)
k
)

from (4.5) and (4.10) we obtain

∫
Ω

Φ(θk|∇wk|) � Cexp
(( bθ γ

k

K1,n,α
+

a
n
−1

)
k+

bθ γ
k

K1,n,α
log(k)

)
. (4.11)

Now, for each k ∈ N satisfying θk � 2 let us find sk ∈ N such that θk ∈ [2sk ,2sk+1) .
Therefore the Δ2 -condition, (4.9) and (4.11) give us for every k � k1 such that θk � 2

Csk+1
Δ � Csk+1

Δ

∫
Ω

Φ(|∇wk|) �
∫

Ω
Φ(θk|∇wk|)

� Cexp
( bθ γ

k

K1,n,α
k− k

)
� Cexp

( b
K1,n,α

2skγk− k
)

.

Therefore sk are bounded and thus there is θ0 � 1 such that θk � θ0 for every k ∈ N .
Hence we can use Lemma 4.4 to obtain k2 � k1 such that for every k � k2 we

have ∫
Ω

Φ(θk|∇wk|) � θ n
k . (4.12)
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It has the following consequences. First, (4.8) and (4.12) give

θk �
(K1,n,α

b

(
1− a

n

)) 1
γ

=: D
1
γ for k � k2 . (4.13)

Second, (4.11), (4.12) and (4.13) imply

C = θ n
0 � θ n

k �
∫

Ω
Φ(θk|∇wk|)

� Cexp
(( bθ γ

k

K1,n,α
+

a
n
−1

)
k+

bθ γ
k

K1,n,α
log(k)

)

� Cexp
(( bD

K1,n,α
+

a
n
−1

)
k+

bD
K1,n,α

log(k)
)

= Cexp
( bD

K1,n,α
log(k)

)
k→∞→ ∞ .

Thus, we have a contradiction and we are done in the case � = 1.

Case � � 2.
This time we have

∫
B(Rexp

− 1
n

[�] (k))

1
|x|a dx = C

∫ Rexp
− 1

n
[�] (k))

0
rn−1−a dr = Cexp

a
n−1
[�] (k)

and further by [9, Proof of Theorem 4.1] we have for k large enough the estimate

( log[�](exp
1
n
[�](k))

k

)Bγ
(k+ log(k)) � k+

1
2

log(k) .

Hence (4.6) and (4.10) imply

∫
Ω

Φ(θk|∇wk|) � Cexp
a
n−1
[�] (k)exp[�]

( bθ γ
k

K�,n,α
logBγ

[�] (T + exp
1
n
[�](k))k

1−Bγ
(
1+

log(k)
k

))

� Cexp
a
n−1
[�] (k)exp[�]

( bθ γ
k

K�,n,α
k
(
1+

log(k)
2k

))
.

(4.14)
Next, we obtain in the same way as in the case � = 1 that θk are bounded. Thus, we
have by Lemma 4.4 and (4.8) for k large enough

∫
Ω

Φ(θk|∇wk|) � θ n
k and θk �

(K�,n,α
b

) 1
γ

=: D
1
γ .
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This together with (4.14) implies

C � θ n
k �

∫
Ω

Φ(θk|∇wk|)

� Cexp
a
n−1
[�] (k)exp[�]

( bθ γ
k

K�,n,α
k
(
1+

log(k)
2k

))

� Cexp−1
[�] (k)exp[�]

( bD
K�,n,α

k
(
1+

log(k)
2k

))

= Cexp−1
[�] (k)exp[�]

(
k+

log(k)
2

)
k→∞→ ∞ .

This is a contradiction. Hence we are done in both cases � = 1 and � � 2. �

5. Properties of the Palais-Smale sequence

In this section we study the properties of the Palais-Smale sequence. Our aim is
to show that it contains a subsequence with the gradients converging a.e. in Ω (see
Lemma 5.2) and that the limit (in the sense of (5.5)) is a weak solution to problem (1.3)
(see Lemma 5.3).

Let {uk} be a Palais-Smale sequence from W0LΦ(Ω) , that is by (2.8),

J(uk) =
∫

Ω
Φ

(|∇uk|
)−

∫
Ω

F(x,uk)
|x|a

k→∞→ c , (5.1)

and (see (1.15)) there are εk → 0 such that for every v ∈W0LΦ(Ω) we have

|〈J′(uk),v〉| =
∣∣∣
∫

Ω
Φ′(|∇uk|

) ∇uk

|∇uk| ·∇v−
∫

Ω

f (x,uk)v
|x|a

∣∣∣ � εk‖∇v‖LΦ(Ω) . (5.2)

LEMMA 5.1. There is a constant C > 0 independent of k ∈ N such that

‖∇uk‖LΦ(Ω) � C ,

∫
Ω

Φ
(|∇uk|

)
� C (5.3)

and

0 �
∫

Ω

f (x,uk)uk

|x|a � C . (5.4)

Proof. We obtain from (4.2) and (5.1) that, for any ε > 0,
∫

Ω
Φ

(|∇uk|
)

� C+
∫

Ω

F(x,uk)
|x|a � Cε + ε

∫
Ω

f (x,uk)uk

|x|a .

Hence, using (5.2) with v = uk and (1.8) we arrive at
∫

Ω
Φ

(|∇uk|
)

� Cε + ε
(∫

Ω
Φ′(|∇uk|

)|∇uk|+ εk‖∇uk‖LΦ(Ω)

)

� Cε + εC
∫

Ω
Φ

(|∇uk|
)
+ εεk‖∇uk‖LΦ(Ω) .
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Together with Lemma 2.3(ii) it implies that ‖∇uk‖LΦ(Ω) � C and
∫

Ω Φ
(|∇uk|

)
� C .

The remaining estimate now follows from (5.2) (with v = uk , see also (1.8)). The
integral in (5.4) is non-negative by (1.9). �

By (5.3) there is a function u ∈ W0LΦ(Ω) (passing to a suitable subsequence of
{uk} if necessary) such that

uk ⇀ u in W0L
Φ(Ω) ,

uk → u in LΦ(Ω) ,

uk → u in Lr(Ω) for every r ∈ [1,∞) ,

uk → u a.e. in Ω .

(5.5)

By (1.11) and Theorem 3.1(i) we have f (x,u)
|x|a , f (x,uk)

|x|a ∈ L1(Ω) . Since we also have (5.4),
Lemma 2.5 with θ = 0 implies

lim
k→∞

∫
Ω

f (x,uk)
|x|a =

∫
Ω

f (x,u)
|x|a . (5.6)

Moreover, from (5.4) and Lemma 2.5 we also obtain f (x,uk)
|x|a |uk|1− 1

M → f (x,u)
|x|a |u|1− 1

M in

L1(Ω) and thus by (1.10) and Proposition 2.6 we see that

lim
k→∞

∫
Ω

F(x,uk)
|x|a =

∫
Ω

F(x,u)
|x|a . (5.7)

LEMMA 5.2. Passing to a subsequence we have

∇uk → ∇u a.e. on Ω . (5.8)

Sketch of proof. The proof is very long, technical and most of it can be taken
from [8, Proof of Lemma 5.2]. Therefore we focus on the differences only.

In the same way as in [8, Proof of Lemma 5.2] it can be shown that it is enough to
prove that

∫
Ω

ψε

(
Φ′(|∇uk|) ∇uk

|∇uk| −Φ′(|∇u|) ∇u
|∇u|

)
· (∇uk −∇u) k→∞→ 0 ,

where ψε ∈ C1(Ω) satisfying 0 � ψε � 1 and ψε = 0 on a suitably chosen small
exceptional open set Bε . Next, above integral is estimated by I1 + I2 + I3 + I4 + I5 ,
where

I3 =
∫

Ω
ψε

f (x,uk)
|x|a (uk −u)

and I1 , I2 , I4 and I5 are the same as in [8, Proof of Lemma 5.2] and tend to zero. We
want to show that we also have I3 → 0. The first step is to prove that for fixed p∈ (1, n

a )
we have ∫

Ω\Bε

( | f (x,uk)|
|x|a

)p
� C . (5.9)
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This is shown in a similar way as in [8, Proof of Lemma 5.2, Step 6] using the com-
pactness of Ω\Bε , Proposition 3.3, (1.11) and (2.1).

Finally, Hölder’s inequality, (5.5) and (5.9) imply

|I3| �
∫

Ω\Bε

∣∣∣ f (x,uk)
|x|a (uk −u)

∣∣∣ �
(∫

Ω\Bε

( | f (x,uk)|
|x|a

)p) 1
p ||uk −u||Lp′ (Ω)

k→∞→ 0 . �

LEMMA 5.3. The function u ∈ W0LΦ(Ω) given by (5.5) is a weak solution to
problem (1.3), i.e. we have (1.16).

Sketch of proof. It is enough to modify [8, Proof of Lemma 5.3] in the following
way. First, instead of f (x,u) we always deal with f (x,u)

|x|a . Second, when proving that

ψk → v in W0LΦ(Ω) implies

∣∣∣
∫

Ω

f (x,u)
|x|a (v−ψk)

∣∣∣ k→∞→ 0 ,

we use Hölder’s inequality raising f (x,u)
|x|a to the power p∈ (1, n

a ) . Then we apply (1.11),

(2.1) and Theorem 3.1(i) to show the boundedness of || f (x,u)
|x|a ||Lp(Ω) . The fact that

W0LΦ(Ω) is continuously embedded into Lp′(Ω) is used to show that ||v−ψk||Lp′ (Ω) →
0. �

Proof of Theorem 1.1. Since we have J(0) = 0, Lemmata 4.1, 4.2 and Proposi-
tion 6.1, we can apply the Mountain Pass Theorem (Theorem 2.7) which together with
Lemma 4.5 gives us a Palais-Smale sequence {uk} ⊂W0LΦ(Ω) approaching a Palais-
Smale level c such that

0 < c <

⎧⎪⎨
⎪⎩

(
K1,n,α

b

(
1− a

n

)) n
γ

for � = 1(
K�,n,α

b

) n
γ

for � � 2 .
(5.10)

Passing to a subsequence we can further suppose that we have (5.5).
By Lemma 5.3 we know that the function u ∈W0LΦ(Ω) given by (5.5) is a weak

solution to (1.3) and thus it remains to show that u is non-trivial. For the sake of
contradiction suppose that we have u = 0. From (5.1), (5.7), u = 0 and from (5.10) we
obtain c̃ > c such that for k sufficiently large we have

∫
Ω

Φ(|∇uk|) � c̃ <

⎧⎪⎨
⎪⎩

(
K1,n,α

b

(
1− a

n

)) n
γ

for � = 1(
K�,n,α

b

) n
γ

for � � 2 .

Hence Proposition 3.2 together with estimate (1.11) and Hölder’s inequality give us
∫

Ω

f (x,uk)uk

|x|a
k→∞→ 0 .
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Therefore (5.2) with v = uk and (5.3) imply
∫

Ω
Φ′(|∇uk|)|∇uk| k→∞→ 0 .

Next, as Φ is a Young function, we have Φ(t) � tΦ′(t) for every t � 0 and thus we
obtain from above ∫

Ω
Φ(|∇uk|) k→∞→ 0 .

However, in view of (5.1) and (5.7) (recall F(x,0) = 0 by the definition) this contradicts
c > 0. Hence u is non-trivial. �

6. Functional J is C1

PROPOSITION 6.1. For the functional J defined by (1.14) we have
J ∈C1(W0LΦ(Ω),R) and its Fréchet derivative is (1.15).

Sketch of proof. The proof using the approach from [4, Proof of Theorem A.V] is
similar as the one given in [8, Section 6]. Therefore we sketch it.

It is shown in [8, Lemma 6.2] that the functional

J1(u) =
∫

Ω
Φ(|∇u|) , u ∈W0L

Φ(Ω)

satisfies J1 ∈C1(W0LΦ(Ω),R) and

〈J′1(u),ϕ〉 =
∫

Ω
Φ′(|∇u|) ∇u

|∇u| ·∇ϕ , u,ϕ ∈W0L
Φ(Ω) .

In fact, paper [8] concerns Young functions satisfying (1.5) with � = 1 only, but the
proof is still valid for any � ∈ N .

Next, we show that

J2(u) =
∫

Ω

F(x,u)
|x|a , u ∈W0L

Φ(Ω)

satisfies J2 ∈C1(W0LΦ(Ω),R) and

〈J′2(u),ϕ〉 =
∫

Ω

f (x,u)ϕ
|x|a , u,ϕ ∈W0L

Φ(Ω) .

This time we have to modify the proof from [8] a bit. Let us start showing that J2 is
Gateaux differentiable everywhere on W0LΦ(Ω) . For a.e. x ∈ Ω it is easy to see that
the point wise limit satisfies

lim
t→0

F(x,u(x)+tϕ(x))
|x|a − F(x,u(x))

|x|a
t

=
f (x,u(x))

|x|a ϕ(x) . (6.1)
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Moreover, we may use the Mean Value Theorem and (1.11) to obtain
∣∣∣∣∣

F(x,u+tϕ)
|x|a − F(x,u)

|x|a
t

∣∣∣∣∣ � | f (x,u+ ξ ϕ)|
|x|a |ϕ | � C

exp[�](β (|u|+ |ϕ |)γ)
|x|a |ϕ |

� C
(exp[�](β2γ |u|γ)

|x|a +
exp[�](β2γ |ϕ |γ )

|x|a
)
|ϕ | .

(6.2)

Now, fix p ∈ (1, n
a) (hence ap < n ). Let p′ = p

p−1 . We know that ϕ ∈ Lp′(Ω) and
thus we may apply Hölder’s inequality on the right-hand side of (6.2) and using (2.1)
together with Theorem 3.1(i) we easily obtain that the right-hand side of (6.2) is inte-
grable. Thus, it follows from the Lebesgue Dominated Convergence Theorem applied
to (6.1) that

lim
t→0

J2(u+ tϕ)− J2(u)
t

=
∫

Ω

f (x,u)ϕ
|x|a for every u, ϕ ∈W0L

Φ(Ω) .

This is the Gateaux differentiability everywhere on W0LΦ(Ω) .
To prove that J′2(u) is continuous, let uk → u in W0LΦ(Ω) . Passing to a subse-

quence, we can suppose that uk → u a.e. in Ω and moreover that there is a majorant
V ∈ W0LΦ(Ω) , i.e. |uk| � V for every k . The existence of a common majorant is
shown in a standard way dealing with a subsequence (still denoted {uk} ) satisfying
||uk −u||W0LΦ(Ω) � 2−k and setting V = |u|+ ∑∞

k=1 |uk −u| .
Next, fix p∈ (1,

√ n
a ) (hence ap2 < n ). From (1.11), (2.1) and Theorem 3.1(i) we

obtain
∫

Ω

( | f (x,uk)|
|x|a

)p2

� C
∫

Ω

exp[�](p
2β |uk|γ )

|x|ap2 � C
∫

Ω

exp[�](p
2β |V |γ)

|x|ap2 < ∞ .

The boundedness in Lp2
(Ω) and the point wise convergence a.e. implies that f (x,uk)

|x|a
Lp(Ω)→

f (x,u)
|x|a . This, the continuous embedding of W0LΦ(Ω) into Lp′(Ω) and Hölder’s inequal-

ity finally imply

||J′2(uk)− J′2(u)||C(W0LΦ(Ω),R) = sup
||∇ϕ||LΦ(Ω)�1

∣∣∣
∫

Ω

( f (x,uk)
|x|a − f (x,u)

|x|a
)

ϕ
∣∣∣

�
∣∣∣
∣∣∣ f (x,uk)

|x|a − f (x,u)
|x|a

∣∣∣
∣∣∣
Lp(Ω)

sup
||∇ϕ||LΦ(Ω)�1

||ϕ ||Lp′ (Ω)
k→∞→ 0 .

�

7. Sub-critical case

We can use our methods to obtain the existence of a non-trivial weak solution
to (1.3) also in the sub-critical case. It is, instead of (1.11) we have

for every b > 0 there is Cb > 0 such that

| f (x, t)| � Cb exp[�](b|t|γ) whenever t ∈ R and x ∈ Ω .
(7.1)
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In this case we do not need to assume (1.7) and (1.13).

THEOREM 7.1. Let � ∈ N , n � 2 , α < n− 1 , a ∈ [0,n) and let Ω ⊂ R
n be

a bounded domain containing the origin. Suppose that the C1 -Young function Φ :
[0,∞) �→ [0,∞) satisfies (1.5) and (1.6). Let f : Ω ×R �→ R be a function satisfy-
ing (1.9), (1.10), (7.1) and (1.12). Then problem (1.3) has a non-trivial weak solution.

Proof. Since assumptions (1.7) and (1.13) were used in the proof of Lemma 4.5
only, we can use all our partial results but Lemma 4.5.

Fix w ∈W0LΦ(Ω) such that w � 0 and w �= 0. By Lemma 4.1 and non-negativity
of F (see (1.9)), we observe that

sup
t∈[0,∞)

J(tw) < ∞ . (7.2)

Since we have J(0) = 0, Lemmata 4.1, 4.2 and Proposition 6.1, we can apply the
Mountain Pass Theorem (Theorem 2.7) which together with (7.2) gives us a Palais-
Smale sequence {uk} ⊂W0LΦ(Ω) approaching a Palais-Smale level c ∈ (0,∞) .

Moreover, we can find b0 > 0 small enough so that c ∈ (0,((1− a
n )K�,n,α

b0
)

n
γ ) .

Finally, since assumption (7.1) implies inequality (1.11) with b = b0 , we conclude the
proof in the same way as the proof of Theorem 1.1. �

Acknowledgement

The author was supported by the research project MSM 0021620839 of the Czech
Ministry MŠMT.
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