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ON THE DIRICHLET PROBLEM FOR THE GENERALIZED
n—-LAPLACIAN: SINGULAR NONLINEARITY WITH THE EXPONENTIAL
AND MULTIPLE EXPONENTIAL CRITICAL GROWTH RANGE

ROBERT CERNY

(Communicated by Bohumir Opic)

Abstract. Let Q CR", n> 2, be a bounded domain containing the origin. Applying the Moun-
tain Pass Theorem and a singular version of the generalized Moser-Trudinger inequality we prove
the existence of a non-trivial weak solution to the problem

ueWIL®(Q)  and —div(Q’(\Vu\)%):f‘(;:) inQ

)

where a € [0,n), @ is a Young function such that the space W, L®(Q) is embedded into expo-
nential or multiple exponential Orlicz space and f(x,#) has the corresponding critical growth.

1. Introduction

Throughout the paper €2 is a bounded domain containing the originin R", n > 2,
and w,_; denotes the surface of the unit sphere.
It is an often studied problem to find solutions to the Laplace equation

ueW,?(Q) and  —Au=f(xu) nQ. (1.1)

For n > 3 and f satisfying lim; .. ! (:f,’t) = 0 uniformly on Q with g < %, there

are many results using the compactness of the embedding of the space WO1 ’Z(Q) into
L' (Q) with r € [1, nzTnz) (see a review article by Lions [17] and the references given

there). Problem (1.1) under condition lim; e A ,(,’fz) = 0 becomes much more difficult

tn=2
thanks to the fact that the embedding of Wol’z(Q) into Li2 (Q) is no longer compact.
This difficulty has been overcame by Brezis and Nirenberg [5]. Their method uses the
Mountain Pass Theorem by Ambrosetti and Rabinowitz [3].
When n =2, we do not only have the Sobolev embedding into L"(Q) for any r €
[1,00) but there is also the Trudinger embedding [21] into the Orlicz space expL7T ().
In particular, there is so called Moser-Trudinger inequality by Moser [18]

n 1
su ex uln1) < Cn, %, if and only 1 <nw' ;.
p / p(K|u[#T) < C(n,.Z,(Q))  ifandonlyif K <no)|
<1/Q

[fue] !
u 1,
Wy "(Q)
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Therefore, in the literature, there is often used the variational approach by Brezis and
Nirenberg [5] together with the Moser-Trudinger inequality to study the n-Laplace
equation

uew,”(Q) and  —Au=f(xu) nQ, (1.2)

where Ayu = div(|Vu|"2Vu) and f(x,1) ~ exp(blt|7"T) for some b > 0. See for
example Adimurthi [1], de Figueiredo, Miyagaki, Ruf [13] and do 0] [19].

In recent paper [8], above techniques are modified for a differential equation cor-
responding to the embedding of the Orlicz-Sobolev space WoL"log® L(Q), oo <n—1,
into the Orlicz space expLﬁ(Q) (this embedding is due to Fusco, Lions, Sbor-
done [14] and Edmunds, Gurka, Opic [10]). The result is the existence of a non-trivial
weak solution to the equation

ueWoL®(Q)  and d1v<(D’(\Vu\)|V |> flx,u)  inQ,

with @ being a Young function that behaves like " log®*(r), a < n— 1, for large ¢ and
with the nonlinearity f having so called critical growth (corresponding to the choice of
the Young function ®).

The aim of this paper is to generalize above result in two ways. First, instead of
considering a Young function corresponding to the embedding into exponential space
we also deal with Young functions for which we have an embedding into multiple ex-
ponential spaces. Second, similarly as Adimurthi and Sandeep [2], we deal with the
nonlinearity of the singular form ! |(x|f L ae [0,n) (notice that we admit @ = 0, hence
our results cover the case with no singular weight on the right hand side). Our differen-
tial equation is then

ueWoL®(Q)  and —dlv(cl)’(|V v ‘) f(x’a”) nQ, (1.3
X
with @ and f specified below.
On embedding into exponential and multiple exponential spaces
If e Nand oo <n—1, we set
n o n
=—>0 B=1- = 0
[y i n—1 (n—l)y>
1T (1.4)
Binw’ for{ =1
and Kipg = Lo
B, | forl>2

The space WoL"log®L(Q) of the Sobolev type, modeled on the Zygmund space

L"log” L(Q), is continuously embedded into the Orlicz space with the Young func-
tion that behaves like exp(z?) for large 7 (see [14] and [10]). Moreover it is shown in
[10] (see also [11]) that in the limiting case & =n — 1 we have the embedding into
a double exponential space, i.e. the space WoL"log" ' Llog%logL(Q), o < n—1, is
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continuously embedded into the Orlicz space with the Young function that behaves like
exp(exp(1”)) forlarge 7. Further in the limiting case & = n— 1 we have the embedding
into triple exponential space and so on. The borderline case is always @ =n—1 and
for oo > n—1 we have embedding into L= (Q). It is well-known that the Zygmund
space L"log® L(Q) coincides with the Orlicz space L?(Q), where the Young function
O satisfies ®
t
lim _o) a) =
1—eo t]og% (1)
the space L log" ! Llog®logL(Q2) coincides with L®(Q) where
o)
m n—1 o =
== "log""" (1) log” (log(1))
and so on. For other results concerning these spaces we refer the reader to [10], [11]
and [12].
The following notation enables us to work with the multiple exponential spaces
comfortably. For k € N, let us write

b

)

log(r) = log(logy_yy(¢)),  where  logy(t) = log(r)
and
expyy (1) = exp(expy_ (1)), where  expyy (1) = exp(t) .

Let /€ N and o <n—1. Then we have above mentioned embedding results for any
Young function @ satisfying

(o}
lim ) —1 (1.5)
e (H logl (1 )) logfj (1)
(for / =1 weread (1.5) as lim,_,., % 1). As Q is bounded, all Young functions

satisfying (1.5) give the same Orlicz-Sobolev space.

Assumptions on ® and f

We suppose that the function ® : [0,0) — [0, o) is a C' -Young function satisfying
(1.5) and in addition we suppose that there are C > 0, tp > 1 and 8 € (0,min(1,B))

such that | |
—t" < D(r) < Ct" fort € [07—> 1.6
&' <o) ori € |0, 5 (16

and
(Hlog >logm( )( loghﬁ (t)) fort € [tp,) . (1.7)

Notice that assumptions (1.5) and (1.6) together with the fact that @ is a C! -Young
function imply the existence of c¢g > 0 such that

co® (1)t <D(t), t>0. (1.8)
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The function f: Q x R +— R is supposed to satisfy the following conditions:
There are M > 1, t)y >0, C, >0, b > 0 and & > 0 such that

£ is uniformly continuous on Q x [—f, 1] for every 7y > 0,

1.9
f(x,0)=0 and 1f(x,t)>0 forallxeQandr #£0, (1.9

!
0 < F(x,t) ::/ F(x,8)ds < Mlt|""#|f(x,1)| provided|r| > 1y and x € Q , (1.10)
0

|f(x,2)| < Cp expy(bt[") wheneverz € Randx € Q, (1.11)
F(x,t
li?Ls(;lp t}gio) < oo uniformly on Q , (1.12)
and finally
timinf—7%0 0 uniformly on Q| (1.13)

1= expyy(blt]7)

The main result of this paper is the following theorem.

THEOREM 1.1. Let £ €N, n>2, a<n—1, a€[0,n) and let Q C R" be
a bounded domain containing the origin. Suppose that the C'-Young function ® :
[0,00) — [0,00) sarisfies (1.5), (1.6) and (1.7). Let f: QxR — R be a function satisfy-
ing (1.9), (1.10), (1.11), (1.12) and (1.13). Then problem (1.3) has a non-trivial weak
solution.

Our approach is similar to [8], though the results related to the Moser-Trudinger
inequality from [15] are replaced by those from [9] and [7]. For the convenience of the
reader acquainted with [8] we organize the paper in the same way as [8] and we also
use a similar notation.

Variational formulation
We define
F
J(u):/d)(Wu(x)\)dx—/ Flxux)
Q

e dx , ueWoL®(Q) . (1.14)
Q

By Proposition 6.1 below, this is a C! -functional on WyL®(Q) and its Fréchet deriva-
tive is

o [ Vil oo [ fu)vl)
<J (u),v>_/gq>(|vu(x)\)wu(x)| Vo(x)d /Q e, (L)

u,v € WoL®(Q), where the symbol (J'(u),v) denotes the value of the linear functional
J'(u) of v.
We say that u € WoL®(Q) is a weak solution to problem (1.3) if

(J' (u),v) =0 for every v € WoL®(Q) . (1.16)
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The paper is organized as follows. After preliminaries we state several versions of
the generalized Moser-Trudinger inequality in the third section. In the fourth section,
we verify the assumptions of the Mountain Pass Theorem (similarly as in [5] we use
a version without the Palais-Smale condition). The fifth section is devoted to properties
of the Palais-Smale sequence and then we apply the Mountain Pass Theorem in the
proof of Theorem 1.1. Finally, we prove that the functional J is a C'-functional in
Section 6. In the last section, we give a remark concerning the sub-critical growth
range (in the sense of [13]).

2. Preliminaries

The n-dimensional Lebesgue measure is denoted by %,. By B(xo,R) we denote
an open Euclidean ball in R” centered xp with the radius R > 0. If xo =0 we simply
write B(R).

For two functions g,/ : [ +— [0,e0) we write g < & on I, if there is C > 0 such
that g(r) < Ch(t) forevery r €. If g Shon I and h < g on I, we write g =~ h on
I. If 1 =[0,), we simply write g ~ h, etc. We write that g << h for ¢ large, if
lim; 22—3 =0. If u is a measurable function on A, then by u =0 (or u # 0) we mean
that u is equal (or not equal) to the zero function a.e. on A.

By C we denote a generic positive constant which may depend on ¢, n, «, a,
£,(Q) and ®. This constant may vary from expression to expression as usual.

By .# (A) we denote the set of all Radon measures on a compact set A. We write
that = p in 4 (A) if [, wdw, — [, wdu for every w € C(A).

We need the following property of the function expj,, {eN.

For every p € [1,) and £ € N it can be easily proved that

expfy (1) < Cexpy(pt)  on[0,e). @.1)

Young functions and Orlicz spaces.

A function @ : [0,00) — [0,00) is a Young function if @ is increasing, convex,
®(0) =0 and lim; . 22 = oo,

Denote by L®(A,du) the Orlicz space corresponding to a Young function @ on a
set A with a measure u. If u = %, we simply write L®(A). The space L®(A,du) is
equipped with the Luxemburg norm

eell 01y :inf{A > 0://*01)(‘”;’6)0 dp(x) < 1} : 2.2)

Given a differentiable Young function @ we can define the generalized inverse
function to ¢(y) = @ (y) by

y(s) =inf{y: ¢(y) > s} for s>0

and further we define the associated Young function ¥ by

t
‘I‘(t):/q/(s)ds for 1>0.
0
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The dual space to L®(A,du) can be identified as the Orlicz space LY (A,du). We
further have generalized Holder’s inequality

[ OO ) < 2l Ve - 23)

A, -condition
We say that a function @ satisfies the A, -condition, if there is Cy > 1 such that
D(21) < CpD(1) wheneverz >0 .

It is not difficult to check the A;-condition for our Young functions satisfying (1.5) and
(1.6). Therefore one easily proves

D(s+1) < CAD(s) + Cad(1) , 2.4)
lellma =70 = [ @(uddu =0, 2.5)

forevery & € (0,1) thereis n € (0,1) such that

ellsgpa <1=1 = [ O(u)dut) <1-¢, 6

and for every 1 € (0,1) thereis & € (0,1) such that

JoUuDdut) <1-¢ = lalluogagm <11 e
We also need the following lemma from [8, Lemma 2.1].

LEMMA 2.1. If ® is a C'-Young function satisfying the A, -condition, then also
@ satisfies the A, -condition.

We often use the following estimate together with the generalized Holder’s in-
equality.

LEMMA 2.2. If a Young function @ satisfies (1.5) and (1.6), then ¥ (®@') < ®.

Proof. For £ =1, our lemma is the same as [8, Lemma 2.3]. Hence we can sup-
pose that ¢ > 2 in the sequel.
Let us find E > expy, (1) large enough so that

)=t <H10g (E+1) )10gfé](E+t)

and
-1

¥y (1) = (ng[ E—i—t)) logy,[" "T(E +1)
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are Young functions satisfying
@ (1)~1" on[0,C] and P (t)~t"T on[0,C]

for some C > 0. Plainly, ®; and ‘¥'; are satisfying the A;-condition. Next, if E is
large enough, we have

D) (t) =1"" 1<l_[log (E+1) >logm (E+1)

-1

x[ "‘Z n—1 t n o t
n
= 1H 1 logj; (E+1)t+E H[ log; (E+1)tTE

" 1<l_[log (E+1) >logm(E+t) ca(t)

and
= L d 7%
Wi(t) = 1<H10g[ E—l—t))log[] (E+1)
j=1
x{ n _E 1 1« 1 t }
n—1 ST logy(E+n)t+E n—11l 1o, (E41)!+E

o
T

e (-1 B
e (HIOg[j]l (E +,)> logy," " (E+1) = (1) .
j=1

Further, by (1.5), (1.6) and by the fact that ® is a Young function we have on (0, o)

Hence there is C; large enough so that for every ¢ € (0,e0) we have

P(CT 1) > GO 0) > zor(Te)

C
Cnfl -1 B C
= <, log]; (E+Fll//2(t)))logfé]<E+Elllfz(t)>
CIHI —1 = 1 1 o
> = (t)<j:1610gm (E+z))ElogM(E+t)
n—1
= IC t>t

Since the associated function ¥ satisfies @(y/(¢)) =1 for all ¢ > 0, we obtain from

above that .
"P(l‘) < Clqll(t) .
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Finally

(ng E+t>logm (E+1) = CD, () < CD(7) .

Thus, we are done. [

Next, we need to be able to estimate the norm by the modular and vice versa.
Some rough estimates are given by the following lemma from [16, Lemma 3.8.4].

LEMMA 2.3. Let u € L*(Q).
@) If Ilully o) < 1, then fo@(jul) < [[ul| o0
(i) If [ul|po(q) > 1, then Jo @(|ul) > ||ullo(q)
More careful estimates use the following lemma.

LEMMA 2.4. Forevery € > 0 there is 8 > 0 such that

lellzatgy < [ @(u) < lllffat, — provided lullaa < 5.

Proof. Since "7 << ®(t) << "¢ for large ¢, the proof is similar to [8, Proof
of Lemma2.4]. O

Orlicz-Sobolev spaces

Let A be an nonempty open bounded set in R” and let @ be a Young function
satisfying (1.5). In this subsection we consider Orlicz spaces only with the Lebesgue
measure. We define the Orlicz-Sobolev space WL®(A) as the set

WL®(A) := {u: u,|Vu| € L®(A)}
equipped with the norm
[ullreay = [lull o)+ [Vull o)

where Vu is the gradient of u and we use its Euclidean norm in R”.
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We put WoL®(A) for the closure of C;(A) in WL®(A). For this space we prefer
to use throughout the paper the equivalent norm

HMHWOL‘D(A) = ||V’4HL<I>(A)
The space WoL®(A) is a reflexive Banach space and it is compactly embedded into

LP(A).
We write that u; — u in WoL®(A), if

d —soo
A 8?: ' /3—&vdx foreveryve LY (A) and i€ {1,...,n} .

Tools from the Measure Theory

We make use of a version of a lemma from [13, Lemma 2.1]. The original version
is stated for 6 = 0 and a = 0, but it can be easily seen that the proof given in [13]
works also in our case after obvious minor modifications.

LEMMA 2.5. Let 60 € [0,1) and 0 < a < n. Let {ug} be a sequence of functions
from LY(Q) converging to u € L'(Q) a.e. in Q CR". Let f:Q xR+ R be a contin-

0
uous function bounded on Q x [—ty, 1] for every ty > 0. Suppose that % and

E]e belong to L'(Q) and

[

\fx uy) Mk\
e

Then f(x’"")a‘”"le — f(x’”)a‘”‘e in L"(Q).

I I

We also need the Generalized Lebesgue Dominated Convergence Theorem (see
[20, Exercise 5.4.13]).

PROPOSITION 2.6. Let {uy}, {vi} be sequences of measurable functions on Q
such that |ug| < vy for all k € N. Let u and v be measurable functions on Q such that
up — u a.e. in Q and vy — v a.e. in Q. Then

lim vk:/v —= hm uk—/
k—e J O Q

Tools from the Calculus of Variations

Our key instrument is the following version of the Mountain Pass Theorem by
Ambrosetti and Rabinowitz [3].

THEOREM 2.7. Let X be a real Banach space and J € C'(X,R). Suppose that
there exist a neighborhood U of 0 in X and & € R satisfying the following conditions:
() J(0) <&,
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(i) J(u) = & on the boundary of U,
(iii) there is w ¢ U such that J(w) < &.
Set
= inf 2 )
o= g >

where T = {g € C([0,1],X) : g(0) = 0,g(1) = w}. Then there is a sequence {u;} C X
such that

Juy) —c and J () —0inX*. (2.8)

The sequence satisfying (2.8) is called the Palais-Smale sequence and the constant
c is a Palais-Smale level. Notice that that this version slightly differs from often used
version of the Mountain Pass Theorem which requires the Palais-Smale condition (the
Palais-Smale sequence has a subsequence convergent in the norm) and asserts that there
is a critical point xy € X satisfying J(xo) = c. We use this version of the Mountain
Pass Theorem, because we need a bit less from the Palais-Smale sequence than the
convergence in the norm. Our approach is taken from [5]. See [5, page 459] for the
discussion concerning the proof of Theorem 2.7.

3. On the generalized Moser-Trudinger inequality

We often use the following embedding result from [7, Theorem 1.2 and Theo-
rem 1.3].

THEOREM 3.1. Let L€ N, n>2, a <n—1, a € [0,n) and let ® be a Young
function satisfying (1.5). Suppose that u € WoL®(Q).
1) If K >0, then

(i) If £=1, K€0,(1-1)Kina) and ||Vul| o) < 1, then
JE LI
o ~

x|

(i) If £ > 2, K € [0,Kip0) and ||Vul| o) < 1, then

/ expy (K[u(x)[")
Q

e[

<C.

The constant C depends on {,n,o,a,%£,(2),K and ® only (i.e. C is independent of
the choice of u).

Let us note that when K is larger than the upper bound of the interval in Theo-
rem 3.1(ii) and (iii), respectively, then there is no uniform estimate of the integral in
Theorem 3.1(ii) and (iii), respectively. The counterexamples are given in [7]. In the
borderline case (K = (1 — %)Kl,n,a for =1 and K = Ky, o for £ > 2) we cannot say
anything in general, for a detailed discussion see [7].
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Next, using the same procedure as when obtaining [8, Proposition 3.2] from [8,
Theorem 3.1] modifying the proof of Theorem 3.1(ii) and (iii) given in [7] we obtain
the following “modular” version of Theorem 3.1.

PROPOSITION 3.2. Let LN, n>2, a<n—1, b>0, a€[0,n) and let ® be
a Young function satisfying (1.5). Let uy € WoL®(Q) satisfy

n

Klnot Y .
214 ) provided { = 1
/q>(|vuk\)<c< (% <g )
Q 4 provided £ > 2

Then there is g > 1 such that

/ (exp[e](b|uk|y)>q <c
Q e[ h

Finally, the proof of Theorem 3.1(ii) and (iii) can be modified (for more details
see [8, Sketch of proof of Proposition 3.4]) so that we have a version of Theorem 3.1(ii)
and (iii) for functions that are generally non-zero on the boundary of a fixed ball.

PROPOSITION 3.3. Let LN, n>2, oo <n—1, a€[0,n) andlet ® be a Young
Sfunction satisfying (1.5). Let uy € WOL‘D(Q) satisfy ||Vug||o(q) < C1. Then for every
q = 1 there is T > 0 with the following property:

For every x € Q and R > 0 satisfying B(x,2R) C Q we have

CXPle\glUkl") (qlux]")

e

Vil popry <7 = /xR

The constant C > 0 is independent of k € N (it may depend on Cy, q, ¢, n, o, a, ©,
x and R).

4. Assumptions of the Mountain Pass Theorem
In this section we check that our functional J has the Mountain Pass Geometry
(i.e. assumptions (i), (ii) and (iii) from Theorem 2.7 are satisfied).

The following assertions follow easily from (1.9) and (1.10).
There is a positive constant C such that

F(x,) > Cexp(qzﬁ), 1] =1 . @.1)
Given € > 0 there is 7, > 0 such that
F(x7t)<8f(x7t)tv ‘t‘>t£~ (42)

Now, we can start to check the assumptions of the Mountain Pass Theorem.



266 R. CERNY

LEMMA 4.1. Ifu e WOL‘D(Q), u>0 and u#0, then

t—o0

J(tu) = —oo.

Sketch of proof. Since Q is bounded, we have by (4.1) (which can be extended
by (1.9) to R\ (—19,10) for each 7y > 0 fixed; with a different constant C, of course)

F(x,t) _ 1

1
Ft) o Lt > Lexp(cl#)
> gFten > gexp(cl

for |¢| > 7 foreach 7 > 0 fixed. The rest of the proof is the same as [8, Proof of Lemma
4.1]. O

LEMMA 4.2. There are p >0 and & > 0 with the following property.
If u € WoL®(Q) with |Vul| o) = p. then J(u) > &.

Proof. Fix g > n. By assumptions (1.10), (1.11) and (1.12) we have
F(x,1) < Ci[t][""% + Cexpyy (ble|")e|? = Fi(1) + Fa(r) -

Next, from Theorem 3.1(ii) and (iii), respectively, we can easily see that if u € WoL®(Q)
is such that |[Vul| ) < 1, then

|u‘n+£0

x|
Hence by Lemma 2.4 with € € (0,&) we obtain for p small enough
R _ [l e [ Tl .
[ < / = CilIVulljafy, [ <G| Vallialy,

e[ e[

ku"“ < [ (v
Q

4.3)
Fix p > 1 such that ap < n. Next, if p is so small that bpp? < (1 — £)K; ,, o, from
Holder’s inequality, (2.1), Theorem 3.1(ii) and (iii), respectively, and from the fact that
WoL®(Q) is continuously embedded into L*(Q), for every s € [1,0), we obtain

expiy (blul?)|ul? exp (blu L L,
/Fz(u):C/ Prg (Ll _ (f expfyy (blul”) ) ( /W
Q |x| Q || o  |x®
expy (bl IV o g (ot )")
c| . el
Q |x| P L

< Cllullg 100y = ClIVullfo g -

N

WoL®(Q
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For p > 0 small enough we can further use Lemma 2.4 with € < g —n to infer

FZ( ) q—n—¢ n+£ 1
e < ClIVulaa IVullistg, < 3 [ @0V @4

Now, (4.3) and (4.4) give

= [ oava) - [ F = 5 [ o).

Finally, one can easily see from (2.5) that the modular is bounded away from zero, if
the norm is equal to p > 0 and thus we are done. [

REMARK 4.3. Incase a =0, we can replace assumption (1.12) by a weaker con-

dition
limsu Fx,1)
o Cs®(i])
where Cs > 0 is such that Cy [o ®(|u|) < [oP(|Vul|). With this assumption (which
means F(x,7) <" for small ¢) the proof of Lemma 4.2 is the same as the proof of [8,
Lemma 4.2]. For a € (0,n), the author does not know whether there is Cs > 0 such
that Cs [o [ @(|u])|x|* < [o@(]Vu|), hence we use assumption (1.12) in this paper.

<1 uniformly on Q ,

In the rest of the section we show that our Palais-Smale level is not too high. First,
we need to construct a sequence of auxiliary functions concentrating around the origin
with suitably controlled modulars.

LEMMA 4.4. Suppose that B(R) C Q. If ¢ = 1, let us define for each k € N

wi(x) = ge(]x]) where
0 fory € [R,*)
_1 1 i
(—2y+2) ln"a nPlogh (2)kv B(1+%>Y fory € [%.R] 4.5)
gey) =9 -1 : :
Kualanlog"(§ iy (14 507 forye[Re s, 4]
1
K, nyakY ( logk(k)> ! forye [O,Re*ﬁ .
Incase € >2 we fix T > expyy (1) and we define
wi(x) = gr(|x]) , where
0 fory € [R,e)
log (k) %’ R
(— Ry—|—2) “alogm(T—l-Z)k (1+T> fory e [3,R]
gy)=9¢ -1 v

1
K&n”'a logﬁ] (T + ;)k <l  loglk >> fory € [Rexp," (k). R

_1 1 1 o : -1
K, o logfé] <T + exp[’z] (k))kV B (l + #) " forye [0, Rexpy," ()] -
(4.6)




268 R. CERNY
Then for every 6y > 1 there is ky € N such that
/(D(G\Vwk\)gen forevery k= ko and 0 € [1, 6] .
Q

The proof of Lemma 4.4 for / =1 and 6 =1 is given in [6, Example 5.1]. For
general 6 € [1,6y] the proof requires a minor modification only. For ¢ > 2, the proof is
obtained modifying [9, Proof of Theorem 1.2]. Let us note that the proof uses assump-
tion (1.7).

Now we can obtain the estimate concerning the Palais-Smale level.

LEMMA 4.5. There is a non-trivial function w € WoL®(Q) such that

Kin.o (1 a % 1 =
_a provided { = 1
J(ow) < (Kb \ n>> forevery 6 € [0,00) .
( 1};:05) Y provided € > 2

Proof. Fix R > 0 such that B(R) C Q. By (1.13) we have

liminf 50

——>C uniformly on B(R) . (4.7)
1= expyy (b]]7)

Our aim is to show that there is £ € N such that the assertion of the lemma holds for wy
given by Lemma 4.5. For the sake of contradiction suppose that for all kK € N we have

n

N (Ké‘,l;w <1 _ %)) 7 provided £ =1
<Ké‘£‘u> Y provided £ > 2 .

sup{J(Owy) : 6 € [0,00)}

In view of Lemma 4.1 there are 6, > 0, k € N, such that
J(Owy) = max{J(Owy): 0 € [0,00)} .

Since F is non-negative (see (1.9)), we arrive at

/Q D(6|Vwi]) = J(60wz) = max{J(Owy) : 6 € [0,0)}

B _)) " provided £ = 1 (4.8)

(Ké‘}r)w ) provided £ > 2.

Next, from Lemma 4.4 with @ = 6y = 1 we observe that there is ky € N such that
for k > ky we have

[eqvmp<t. (4.9)
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Now, we claim that 6; are bounded away from zero. Indeed, for k > ko such that 6; < 1
we have by (4.8), (4.9) and by the fact that @ is a Young function (hence ®(rs) < 1®(s)
forevery t € [0,1] and s > 0)

<K[’”’< —%))7 provided / = 1
0> 0 | O(Vwel) > [ @(BIVwi > 3

provided ¢ > 2 .

Further, as -%J(6wy)|g—g, =0, it follows that

/¢’(9k\vwk\)|vwk|:/ M
“ S

Multiplying both sides by c¢ 6, using (1.8), (4.7) (recall that 6, are bounded away
from zero) and the definition of w; we obtain k| > k¢ such that for all £ > k; we have

6, 0
/qn(ek|vwk|)>c@/q>’(ek|vwk|)ek\vwk\=C¢/ Bowi x, Buwi)
Q Q Q ||
6 6 expy (b|Owi|”
2Cq)/ | kwkf(x; Wi >C/ B P ( |ak x|7) .
B(Rexpy," (k) x| B(Rexpy," (k) x|
(4.10)
In the rest of the proof we distinguish two cases.
Case (= 1.

Since
1
Rexp~ 7 (k))
/ . de:C/ rﬂ_l_“dr:Cexp«g—l)k)
B(Rexp™ 7 (k)) x| 0 n

from (4.5) and (4.10) we obtain

be!
> k
/Qd)(ek\Vwk\) > Cexp((K

In,o

a bo)
——l)k k
+n +K

In,o

log(k)) . @.11)

Now, for each k € N satisfying 6; > 2 let us find s; € N such that 6, € [2"*,2“*“).
Therefore the A;-condition, (4.9) and (4.11) give us for every k > k; such that 6, > 2

crtzat! [e(vi) > [ @@ Vi)
b6
> Cexp( k

1n,a

k—k) >Cexp( 2Wk—k) .

1,n,00
Therefore s; are bounded and thus there is 6y > 1 such that 6; < 6y for every k € N.

Hence we can use Lemma 4.4 to obtain k, > k; such that for every k > ky we
have

[ 6w <6 (4.12)
Q
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It has the following consequences. First, (4.8) and (4.12) give

<=

9@(“57“(1—%)) D7 fork>k . (4.13)

Second, (4.11), (4.12) and (4.13) imply

c=%>%>/¢wwwb

>Cexp(( b/ §_1>k+;912/ 10g(k)>

Kl 00 n 1,n,00
D
> Cexp(( Z )k—i— 10g(k)>
In,o
( D log( ) k—so0
= —> ©O0 |
Kl 00 g

Thus, we have a contradiction and we are done in the case ¢ = 1.

Case (> 2.
This time we have

/B<R exp " (8))

[

1

1 Rexp; ;" (k)) a_
—dx= C/ 4t gy = Cexpjy 1(k)
0 /

x|

and further by [9, Proof of Theorem 4.1] we have for k large enough the estimate

(22N gy > e sty

Hence (4.6) and (4.10) imply

b@ _ log(k
/ d) Gk\Vwk\) > Cexpm (k) CXpw( [ log[[] (T+exp[g] (k))kl By<1 + —k( >>>
a_y be,j log(k)
> ! y
> Cexpy, (k)exp[k](K£7n7ak<l+ T )) .
(4.14)

Next, we obtain in the same way as in the case ¢ = 1 that 6; are bounded. Thus, we
have by Lemma 4.4 and (4.8) for k large enough

\Y%
<I—

<K/f,n,a ) %’ —D

/ D6 Vwy|) < 6 and Ok
Q b
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This together with (4.14) implies

6> [ @(6Vwl)
Q

>Cexp§]‘l(k)expm ( b6 L (1+log(k)>>

fn o 2k
. bD log(k)
1

-~ log(k)\ k—oo
:Cexp[e]l(k)expm (k—i— gz( )> NGO

This is a contradiction. Hence we are done in both cases =1 and ¢/ >2. O

5. Properties of the Palais-Smale sequence

In this section we study the properties of the Palais-Smale sequence. Our aim is
to show that it contains a subsequence with the gradients converging a.e. in £ (see
Lemma 5.2) and that the limit (in the sense of (5.5)) is a weak solution to problem (1.3)
(see Lemma 5.3).

Let {u;} be a Palais-Smale sequence from WoL®(Q), that is by (2.8),

F oo
mw=Lﬂwm%%;@““ﬁc7 (5.1)

x|

and (see (1.15)) there are & — 0 such that for every v € WoL®(Q) we have

X, U
|MW|_VGWHW Vv fk eVl . (52

e
LEMMA 5.1. There is a constant C > 0 independent of k € N such that

Vel o) < C /QGD(\Wkl) <C (5.3)

and
f X, Uy )u

0<
\x\“

(5.4)

Proof. We obtain from (4.2) and (5.1) that, for any € > 0,

/ O (| Vi) <C+/ “‘" cg+/f”"

e[

Hence, using (5.2) with v = u; and (1.8) we arrive at
/Qq>(|Vuk|) < Cs+8</gq>/(\Vuk\)|Vuk|+€k||VMkHL<I>(Q)>

<G +sC/Qd>(\Vuk|) + e&|| Vg o (o)
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Together with Lemma 2.3(ii) it implies that ||Viy || 0(q) < C and [o ®(|Vig|) < C
The remaining estimate now follows from (5.2) (with v = uy, see also (1.8)). The
integral in (5.4) is non-negative by (1.9). [
By (5.3) there is a function u € WoL®(Q) (passing to a suitable subsequence of
{uy} if necessary) such that
U — u in WoL®(Q) ,
wou L), (5.5)
U —u in L"(Q) for every r € [1,e0) ,

Uy — u a.e.in Q.

By (1.11) and Theorem 3.1(i) we have f‘(;"f) ) f(‘fc‘ﬁ‘) € L'(Q). Since we also have (5.4),
Lemma 2.5 with 8 = 0 implies

f X, Uy, / flx 5.6)
B Jo TP =
Moreover, from (5.4) and Lemma 2.5 we also obtain % |13 — L ‘(Xx‘f) lu|'~# in

L'(Q) and thus by (1.10) and Proposition 2.6 we see that

F F
im [ F) _ / (x,) 5.7)
k—eJa |x[® a |x/

LEMMA 5.2. Passing to a subsequence we have
Vury — Vu  a.e. on Q . (5.8)

Sketch of proof. The proof is very long, technical and most of it can be taken
from [8, Proof of Lemma 5.2]. Therefore we focus on the differences only.

In the same way as in [8, Proof of Lemma 5.2] it can be shown that it is enough to
prove that

, Vuy Vu k—soo
e (@ 0V ot~ @ (Vi) ) - (V= Vi) 0.

where v, € C'(Q) satisfying 0 < we < 1 and w = 0 on a suitably chosen small
exceptional open set B.. Next, above integral is estimated by Iy + 5L + 51+ 14+ I5,
where

_ fxuk i — )

and I, I, I4 and I5 are the same as in [8, Proof of Lemma 5.2] and tend to zero. We
want to show that we also have I3 — 0. The first step is to prove that for fixed p € (1,%)

we have
[ (U 59)
o\Be \ || S '
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This is shown in a similar way as in [8, Proof of Lemma 5.2, Step 6] using the com-
pactness of Q\ B, Proposition 3.3, (1.11) and (2.1).
Finally, Holder’s inequality, (5.5) and (5.9) imply

1] S/Q\BS S te) (uk—u)‘ < </Q\BE(|f(x’uk>|>p>;’|uk—“|m’( koo 0

x| x|
LEMMA 5.3. The function u € WoL®(Q) given by (5.5) is a weak solution to
problem (1.3), i.e. we have (1.16).

Sketch of proof. It is enough to modify [8, Proof of Lemma 5.3] in the following

way. First, instead of f(x,u) we always deal with fix |( |a) Second, when proving that

‘/ f|x|a v =,

we use Holder’s inequality raising ‘( ‘a) to the power p € (1, ”) Then we apply (1.11),

(2.1) and Theorem 3.1(i) to show the boundedness of || fx H 1r(@)- The fact that

[
WoL® () is continuously embedded into L () is used to show that Hv — Wil @
0. O

Wi — v in WoL®(Q) implies

Proof of Theorem 1.1. Since we have J(0) =0, Lemmata 4.1, 4.2 and Proposi-
tion 6.1, we can apply the Mountain Pass Theorem (Theorem 2.7) which together with
Lemma 4.5 gives us a Palais-Smale sequence {u;} C WoL®(Q) approaching a Palais-
Smale level ¢ such that

O<c< (¥(1“>>Y fort=1 (5.10)

n

(—K[‘l;“’> 7 forl>2

Passing to a subsequence we can further suppose that we have (5.5).

By Lemma 5.3 we know that the function u € WoL®(Q) given by (5.5) is a weak
solution to (1.3) and thus it remains to show that u is non-trivial. For the sake of
contradiction suppose that we have « = 0. From (5.1), (5.7), u = 0 and from (5.10) we
obtain ¢ > ¢ such that for k sufficiently large we have

(—KI;;"“ (1 - %)) T fort=1
/ o(|Vi) <e< gy P\,
@ (—“;“’)7 for £ >2
Hence Proposition 3.2 together with estimate (1.11) and Holder’s inequality give us

f X, U ) Ug ko o
e
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Therefore (5.2) with v =1 and (5.3) imply
/ @' (Vi) Vi | =570
Next, as @ is a Young function, we have ®(z) < t®'(¢) for every ¢ > 0 and thus we

obtain from above
[ (Vi) =0
Q

However, in view of (5.1) and (5.7) (recall F(x,0) = 0 by the definition) this contradicts
¢ > 0. Hence u is non-trivial. [
6. Functional J is C!

PROPOSITION 6.1. For the functional J defined by (1.14) we have
J € CY(WoL®(Q),R) and its Fréchet derivative is (1.15).

Sketch of proof. The proof using the approach from [4, Proof of Theorem A.V] is

similar as the one given in [8, Section 6]. Therefore we sketch it.
It is shown in [8, Lemma 6.2] that the functional

:/q)(\Vu\)7 u € WoL®(Q)
Q
satisfies J; € C!'(WoL®(Q),R) and
/ / Vu [
Viwo) = [ @(VU) Ve, wg e WLY(Q).
Q Vul

In fact, paper [8] concerns Young functions satisfying (1.5) with £ =1 only, but the
proof is still valid for any ¢ € N.
Next, we show that

() = /Q Flew e wr® (@)

x|

satisfies J, € C!'(WoL®(Q),R) and

/f L e e WLO(Q) .

\X\“
This time we have to modify the proof from [8] a bit. Let us start showing that J, is

Gateaux differentiable everywhere on WoL®(Q). For a.e. x € Q it is easy to see that
the point wise limit satisfies

Flrau()+19(x))  F(xu(x)
: R T flrux)
}L{% t - ‘X‘a (p(x) : (61)
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Moreover, we may use the Mean Value Theorem and (1.11) to obtain

F(xu+t@)  F(xu)

x| x|

t

expyg (B(Jul+[¢])7)
Pr o]

lp| <C

N

(6.2)

27| ul? 27|V
<C<GXP[€](B |ul )+CXP[e](ﬁ o )>| B

e[ e[

Now, fix p € (1,%) (hence ap < n). Let p’' = %. We know that ¢ € L' (Q) and
thus we may apply Holder’s inequality on the right-hand side of (6.2) and using (2.1)
together with Theorem 3.1(i) we easily obtain that the right-hand side of (6.2) is inte-
grable. Thus, it follows from the Lebesgue Dominated Convergence Theorem applied
to (6.1) that

lim a(u +t(p / flx for every u, ¢ € WoL®(Q) .
t—0 |x|“
This is the Gateaux differentiability everywhere on WoL®(Q).

To prove that J}(u) is continuous, let u; — u in WoL®(Q). Passing to a subse-
quence, we can suppose that u; — u a.e. in  and moreover that there is a majorant
V € WoL®(Q), i.e. |ug| <V for every k. The existence of a common majorant is
shown in a standard way dealing with a subsequence (still denoted {u;}) satisfying
|etx — ul |y < 27% and setting V = |u| + X7 |ux —ul.

Next, fix p € (1, \/g) (hence ap? < n). From (1.11), (2.1) and Theorem 3.1(i) we
obtain

/(\f(xvuk)\yz <C/ expyg (p* Blux|?) <C/ expy (P*BIV[Y) _
Q Q Q

oF o o

P
The boundedness in L’ () and the point wise convergence a.e. implies that A (lx |”") e

A ‘( ‘a) This, the continuous embedding of WoL®(Q) into LF' (Q) and Holder’s inequal-
ity finally imply

172 () = ()l | cworo )y = sup /Q(f(x’“k> _ f(%”))(p)

V9]0 <1 e[ e[
flou)  flx u) koo
<||Fe = w19l 0
x| x| ) V]l 00 <! -

7. Sub-critical case

We can use our methods to obtain the existence of a non-trivial weak solution
to (1.3) also in the sub-critical case. It is, instead of (1.11) we have
for every b > 0 there is C;, > 0 such that

7.1
|f(x,2)| < Cp expy (blt]")  wheneverz € Randx € Q. @1
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In this case we do not need to assume (1.7) and (1.13).

THEOREM 7.1. Let L €N, n>2, a<n—1, a €[0,n) and let Q C R" be
a bounded domain containing the origin. Suppose that the C'-Young function ® :
[0,00) — [0,00) satisfies (1.5) and (1.6). Let f:Q xR +— R be a function satisfy-
ing (1.9), (1.10), (7.1) and (1.12). Then problem (1.3) has a non-trivial weak solution.

Proof. Since assumptions (1.7) and (1.13) were used in the proof of Lemma 4.5
only, we can use all our partial results but Lemma 4.5.

Fix w € WoL®(Q) such that w > 0 and w # 0. By Lemma 4.1 and non-negativity
of F (see (1.9)), we observe that

sup J(tw) < oo. (7.2)
1€[0,00)

Since we have J(0) = 0, Lemmata 4.1, 4.2 and Proposition 6.1, we can apply the
Mountain Pass Theorem (Theorem 2.7) which together with (7.2) gives us a Palais-

Smale sequence {u;} C WoL®(Q) approaching a Palais-Smale level ¢ € (0,c0).
Moreover, we can find by > 0 small enough so that ¢ € (0,((1 — %)K‘b—g”‘)?)
Finally, since assumption (7.1) implies inequality (1.11) with b = by, we conclude the

proof in the same way as the proof of Theorem 1.1. [
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