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Abstract. The aim of this paper is to establish new sequences which converge towards the Euler-
Mascheroni constant. Our results solve some open problems posed by Berinde [A new gener-
alization of Euler’s constant Creat. Math. Inform. 18 (2009) no. 2 123–128] and extend some
results of DeTemple, [A quicker convergence to Euler’s constant Amer. Math. Monthly 100
(1993) 468–470] and Sı̂ntămărian [A generalization of Euler’s constant, Numer. Algorithms 46
(2007), 141–151].

1. Introduction

One of the most important sequences in analysis of the form

γn = 1+
1
2

+
1
3

+ ...+
1
n
− lnn,

considered by Leonhard Euler in 1735, is known to converge towards the limit γ =
0.577215..., which is now called the Euler-Mascheroni constant. First of all, we recall
that the sequence (γn)n�1 converges to its limit like n−1 , since

1
2n+1

< γn − γ <
1
2n

, (1.1)

(see, e.g., Alzer [1], or Young [14]). Tóth [13] proved

1
2n+2/5

< γn− γ � 1
2n+1/3

, n � 1, (1.2)

then Qiu and Vuorinen [11] showed the double inequality

1
2n

− 1
2n2 < γn − γ � 1

2n
− γ −1/2

n2 , n � 1. (1.3)

Questions on the fast approximations of the Euler-Mascheroni constant γ were also
discussed by Karatsuba [4] and the following inequalities were obtained

1
2n

− 1
12n2 +

1
120n4 −

1
126n6 � γn− γ � 1

2n
− 1

12n2 +
1

120n4 . (1.4)
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For every a > 0, the numbers of the form

γ(a) = lim
n→∞

(
1
a

+
1

a+1
+ ...+

1
a+n−1

− ln
a+n−1

a

)

were introduced in the monograph by Knopp [5]. There are known now as the general-
ized Euler-Mascheroni constant, since γ(1) = γ. In the recent past, many authors were
preoccupied to give increasingly accurate estimates for γ (a) , similar to those given for
γ, like (1.1)–(1.4).

In this sense, we mention the following sequences

xn =
1
a

+
1

a+1
+ ...+

1
a+n−1

− ln
a+n

a

and

yn =
1
a

+
1

a+1
+ ...+

1
a+n−1

− ln
a+n−1

a

which converge to γ (a) like n−1, since Sı̂ntămărian [12] proved that for every integer
n � 1,

1
2(n+a)

< γ (a)− xn <
1

2(n+a)−2

and
1

2(n+a)
< yn− γ (a) <

1
2(n+a)−2

.

We give new better bounds for these sequences, showing the following

THEOREM 1. For every a > 0, and integer n � 2, we have

1

2(n+a)− 1
4

< γ (a)− xn <
1

2(n+a)− 1
3

(1.5)

and
1

2(n+a)− 4
3

< yn− γ (a) <
1

2(n+a)− 5
3

. (1.6)

In some sense, the constants 1
3 and 5

3 are sharp in (1.5)–(1.6), as we can see from
the following:

THEOREM 2. a) For every a � 13
30 and every integer n � 1, we have

1

2(n+a)− 1
3 + 1

18n

< γ (a)− xn.

b) For every a � 17
30 and every integer n � 1, we have

1

2(n+a)− 5
3 + 1

18n

< yn− γ (a) .
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Very recently, Berinde [2, Theorem 2.2] introduced the sequences

zn (a,b) =
1
a

+
1

a+1
+ ...+

1
a+n−1

− ln

(
a+n

a
+b

)

and

tn (a,b) =
1
a

+
1

a+1
+ ...+

1
a+n−1

− ln

(
a+n−1

a
+b

)

convergent to γ (a) , and proved that for every integer n � 1,

zn (a,b) < zn+1 (a,b) < γ (a) < tn (a,b) < tn+1 (a,b)

and

0 <
1
a
− ln

(
1+b+

1
a

)
< γ (a) <

1
a
− lnb.

It is introduced in [7] the following general class of sequences

μn(a,b,c) =
1
a

+
1

a+1
+ ...+

1
a+n−2

+
c

a+n−1
− ln

(
a+n−1

a
+b

)
,

depending on parameters a,b,c, with a > 0 and b > −(a+1)/a. Remark that
μn (a,b,1) = tn (a,b) . A particular case of [7, Theorem 2.1] solves an open problem
posed by Berinde [2] about the sequence (tn (a,b))n�1 . This answer is gathered in the
following

THEOREM 3. Let a, b ∈ R be given and satisfy a > 0 and b > −(a+1)/a.
a) If b �= 1

2a , the speed of convergence of the sequence (tn (a,b))n�2 is equal to n−1,
since

lim
n→∞

n(tn (a,b)− γ(a)) =
1
2
−ab �= 0.

b) If b = 1
2a , the speed of convergence of the sequence

βn =
1
a

+
1

a+1
+ ...+

1
a+n−2

+
1

a+n−1
− ln

(
a+n−1

a
+

1
2a

)

equals n−2, since

lim
n→∞

n2 (βn− γ(a)) =
1
24

.

The proof of this Theorem 3 is based on the following result, which was first used
in [6]–[10] to accelerate some convergences and to construct asymptotic expansions.

LEMMA 1. If (xn)n�1 is convergent to x and if there exists the limit

lim
n→∞

nk(xn− xn+1) = l ∈ R,

with k > 1, then there exists the limit

lim
n→∞

nk−1(xn − x) =
l

k−1
.
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For proof, see [9]. The following result gives a similar answer for the sequence
(zn)n�1 .

THEOREM 4. Let a, b ∈ R be given and satisfy a > 0 and b > −(a+1)/a.
a) If b �= − 1

2a , the speed of convergence of the sequence (zn (a,b))n�2 is equal to n−1,
since

lim
n→∞

n(zn (a,b)− γ(a)) = −1
2
−ab �= 0.

b) If b = − 1
2a , the speed of convergence of the sequence

δn =
1
a

+
1

a+1
+ ...+

1
a+n−2

+
1

a+n−1
− ln

(
a+n

a
− 1

2a

)

equals n−2, since

lim
n→∞

n2 (δn − γ(a)) =
1
24

.

We have

zn (a,b)− zn+1 (a,b) = − 1
a+n

− ln

(
a+n

a
+b

)
+ ln

(
a+n+1

a
+b

)
,

or, using a computer software, such as Maple,

zn (a,b)− zn+1 (a,b) =
(
−1

2
−ab

)
1
n2 +

(
a+ab+2a2b+a2b2 +

1
3

)
1
n3 +O

(
1
n4

)
.

(1.7)
Now, we have

lim
n→∞

n2 (zn (a,b)− zn+1 (a,b)) = −1
2
−ab,

and if ab = − 1
2 , then

lim
n→∞

n3 (zn (a,b)− zn+1 (a,b)) =
1
12

.

and Theorem 4 follows using Lemma 1.
Next we give some estimates of the sequences (βn)n�1 and (δn)n�1 .

THEOREM 5. a) For every integer n � 1, we have

1

24(n+a)2
< δn− γ (a) <

1

24(n+a−1)2

and
1

24(n+a)2
< βn− γ (a) <

1

24(n+a−1)2
.
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This result is an extension of DeTemple’s work [3] who defined the sequence

Rn = 1+
1
2

+ ...+
1
n
− ln

(
n+

1
2

)

and proved
1

24(n+1)2
< Rn− γ <

1
24n2 .

(case a = 1). Also Theorem 5 responses to an open problem posed by Berinde [2].

2. The proofs

Proof of Theorem 1. The sequences

x′n = xn +
1

2(n+a)− 1
4

, x′′n = xn +
1

2(n+a)− 1
3

are convergent to γ (a) . Our inequalities (1.5) follows, if we prove that the sequence
(x′n)n�1 is strictly increasing and the sequence (x′′n)n�1 is strictly decreasing. We have
x′n+1− x′n = c(n) , where

c(x) =
1

a+ x
− ln

a+ x+1
a

+ ln
a+ x

a
+

1

2(x+1+a)− 1
4

− 1

2(x+a)− 1
4

,

with the derivative

c′ (x) = − P(x)

(x+a+1)(x+a)2 (8x+8a−1)2 (8x+8a+7)2
,

where
P(x) = 512x3 +(1536a−128)x2 +

(
1536a2−256a−672

)
x

+512a3−128a2−672a+49.

As the polynomial P(x+2) has all coefficients positive, it results that P(n) > 0, for
every n � 2. Now, c(x) is strictly decreasing, with c(∞) = 0, so c > 0, on [2,∞).
Thus (x′n)n�2 is strictly increasing and consequently, x′n < γ (a) .

Let x′′n+1− x′′n = d (n) , where

d (x) =
1

a+ x
− ln

a+ x+1
a

+ ln
a+ x

a
+

1

2(x+1+a)− 1
3

− 1

2(x+a)− 1
3

,

with the derivative

d′ (x) =
216x2 +(432a+240)x+240a+216a2−25

(x+a+1)(x+a)2 (6x+6a−1)2 (6x+6a+5)2
> 0.

Now, d (x) is strictly increasing, with d (∞) = 0, so d < 0, on [2,∞). Thus (x′′n)n�2 is
strictly decreasing and consequently, x′′n > γ (a) .



284 V. BERINDE AND C. MORTICI

The sequences

y′n = yn− 1

2(n+a)− 4
3

, y′′n = yn− 1

2(n+a)− 5
3

are convergent to γ (a) . Our inequalities (1.6) follows, if we prove that the sequence
(y′n)n�1 is strictly decreasing and the sequence (y′′n)n�1 is strictly increasing. We have
y′n+1− y′n = e(n) , where

e(x) =
1

a+ x
− ln

a+ x
a

+ ln
a+ x−1

a
− 1

2(x+1+a)− 4
3

+
1

2(x+a)− 4
3

,

with the derivative

e′ (x) =
Q(x)

2(x+a−1)(x+a)2 (3x+3a−2)2 (3x+3a+1)2
,

where

Q(x) = 81x3 +(243a−81)x2 +
(
243a2−162a+24

)
x+24a−81a2+81a3 +8.

As the polynomial Q(x+2) has all coefficients positive, it results that Q(n) > 0, for
every n � 2. Now, e(x) is strictly increasing, with e(∞) = 0, so e < 0, on [2,∞). Thus
(y′n)n�2 is strictly decreasing and consequently, y′n > γ (a) .

Let y′′n+1− y′′n = j (n) , where

j (x) =
1

a+ x
− ln

a+ x
a

+ ln
a+ x−1

a
− 1

2(x+1+a)− 5
3

+
1

2(x+a)− 5
3

,

with the derivative

j′ (x) = − 216x2 +(432a−240)x+216a2−240a−25

(x+a−1)(x+a)2 (6x+6a−5)2 (6x+6a+1)2
< 0.

Now, j (x) is strictly decreasing, with j (∞) = 0, so j > 0, on [2,∞). Thus (y′′n)n�2 is
strictly increasing and consequently, y′′n < γ (a) . �

Proof of Theorem 2. As in the proof of Theorem 1, we define the sequences

un = xn +
1

2(n+a)− 1
3 + 1

18n

, vn = yn− 1

2(n+a)− 5
3 + 1

18n

and we prove that (un)n�1 is strictly increasing and (vn)n�1 is strictly decreasing.
First, we have un+1−un = k (n) , and vn+1− vn = l (n) , where

k (x) =
1

x+a
− ln

a+ x+1
a

+ ln
a+ x

a



NEW SHARP ESTIMATES OF THE GENERALIZED EULER-MASCHERONI CONSTANT 285

+
1

2(x+1+a)− 1
3 + 1

18(x+1)

− 1

2(x+a)− 1
3 + 1

18x

and

l (x) =
1

x+a
− ln

a+ x
a

+ ln
a+ x−1

a

− 1

2(x+1+a)− 5
3 + 1

18(x+1)

+
1

2(x+a)− 5
3 + 1

18x

,

with the derivatives

k′ (x)=− R(x)

(x+a+1)(x+a)2 (36x2−6x+36ax+1)2 (36x2 +66x+36ax+36a+31)2
,

respective

l′ (x) =
S (x)

(x+a−1)(x+a)2 (36x2−30x+36ax+1)2 (36x2 +42x+36ax+36a+7)2
,

where

R(x) = 15552(30a−13)x5 +
(
653184a+1166400a2−250128

)
x4

+
(
413424a+1842912a2+979776a3+37800

)
x3

+
(
272808a+1131408a2+1251936a3+326592a4+79200

)
x2

+
(
85248a+349272a2+498960a3+287712a4+46656a5−7440

)
x

+2232a+19224a2+58104a3+63504a4 +23328a5 +961

and
S (x) = 15552(30a−17)x5 +

(
1166400a2−653184a+247536

)
x4

+
(
979776a3−116640a2−239760a+360072

)
x3

+
(
267624a−501552a2+381024a3 +326592a4+13104

)
x2

+
(
132192a4−26568a2−60912a3−26208a+46656a5−2352

)
x

+504a−216a2−7560a3−14256a4 +23328a5 +49.

If we put a = 13
30 + a′, with a′ � 0, then R(n) becomes a polynomial with all coeffi-

cients positive. If we put a = 17
30 +a′′, with a′′ � 0, then S (n) becomes a polynomial

with all coefficients positive. In consequence, R > 0 and S > 0, for every positive
integer n and a � 13

30 , respective a � 17
30 .

Now, the function k is strictly decreasing, the function l is strictly increasing and
the conclusion follows using the same arguments of Theorem 1. �
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Proof of Theorem 5. Let us define the sequences

δ ′
n = δn − 1

24(n+a−1)2
, δ ′′

n = δn − 1

24(n+a)2
.

It suffices to show that (δ ′
n)n�1 is strictly increasing and (δ ′′

n )n�1 is strictly decreasing.
In this sense, let us put δ ′

n+1− δ ′
n = m(n) and δ ′′

n+1− δ ′′
n = p(n) , where

m(x) =
1

a+ x
− ln

(
a+ x+1

a
− 1

2a

)
+ ln

(
a+ x

a
− 1

2a

)

− 1

24(x+a)2
+

1

24(x+a−1)2

and

p(x) =
1

a+ x
− ln

(
a+ x+1

a
− 1

2a

)
+ ln

(
a+ x

a
− 1

2a

)

− 1

24(x+a+1)2
+

1

24(x+a)2
,

with the derivatives

m′ (x) = −24x3 +(72a−35)x2 +
(
72a2−70a+15

)
x+15a−35a2+24a3−1

12(2x+2a+1)(2x+2a−1)(x+a)3 (x+a−1)3
,

respective

p′ (x) =
24x3 +(72a+35)x2 +

(
70a+72a2+15

)
x+

(
70a+72a2+15

)
+1

12(2x+2a+1)(2x+2a−1)(x+a)3 (x+a+1)3
.

Now, the function m is strictly decreasing, p is strictly increasing, with m(∞) =
p(∞) = 0, so m > 0 and p < 0. Consequently, (δ ′

n)n�1 is strictly increasing and
(δ ′′

n )n�1 is strictly decreasing.
Let us define the sequences

β ′
n = βn− 1

24(n+a−1)2
, β ′′

n = βn− 1

24(n+a)2
.

It suffices to show that (β ′
n)n�1 is strictly increasing and (β ′′

n )n�1 is strictly decreasing.
In this sense, let us put β ′

n+1−β ′
n = q(n) and δ ′′

n+1− δ ′′
n = r (n) , where

q(x) =
1

a+ x
− ln

(
a+ x

a
+

1
2a

)
+ ln

(
a+ x−1

a
+

1
2a

)

− 1

24(x+a)2
+

1

24(x+a−1)2
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and

r (x) =
1

a+ x
− ln

(
a+ x

a
+

1
2a

)
+ ln

(
a+ x−1

a
+

1
2a

)

− 1

24(x+a+1)2
+

1

24(x+a)2
,

with the derivatives

q′ (x)=−24x3 +(72a−35)x2 +
(
72a2−70a+15

)
x+15a−35a2+24a3 +24n3−1

12(2x+2a−1)(2x+2a+1)(x+a)3 (x+a−1)3
,

respective

r′ (x) =
24x3 +(72a+35)x2 +

(
70a+72a2+15

)
x+15a+35a2+24a3 +1

12(2x+2a−1)(2x+2a+1)(x+a)3 (x+a−1)3
.

Now, the function q is strictly decreasing, r is strictly increasing, with q(∞) = r (∞) =
0, so q > 0 and r < 0. Consequently, (β ′

n)n�1 is strictly increasing and (β ′′
n )n�1 is

strictly decreasing. �

Finally, we are convinced that our new method is suitable for establishing other
new estimates for the gamma and polygamma functions, or for the generalized har-
monic sums.
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