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Abstract. The aim of this paper is to establish new sequences which converge towards the Euler-
Mascheroni constant. Our results solve some open problems posed by Berinde [A new gener-
alization of Euler’s constant Creat. Math. Inform. 18 (2009) no. 2 123-128] and extend some
results of DeTemple, [A quicker convergence to Euler’s constant Amer. Math. Monthly 100
(1993) 468-470] and Sintamarian [A generalization of Euler’s constant, Numer. Algorithms 46
(2007), 141-151].

1. Introduction

One of the most important sequences in analysis of the form

1 1 1
considered by Leonhard Euler in 1735, is known to converge towards the limit y =
0.577215..., which is now called the Euler-Mascheroni constant. First of all, we recall
that the sequence (), converges to its limit like n~!, since

1
— — — 1.1
2n+1 ShoY< o (.1
(see, e.g., Alzer [1], or Young [14]). Téth [13] proved
1
~ . A - < ) 2 17 12
mr2s ST YS s (12)
then Qiu and Vuorinen [ 1] showed the double inequality
1 1 1 y—1/2
- —y - n>1l. 1.3
2n  2n? Shov 2n n? (1.3)

Questions on the fast approximations of the Euler-Mascheroni constant y were also
discussed by Karatsuba [4] and the following inequalities were obtained

1 1 1 1 1 1 1

—— + — <Hh—Y¥<S————+——. 1.4
122 12000 126m0 ST VS 20T 122 T 12008 (14
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For every a > 0, the numbers of the form

. 1 1 1 at+n—1
=1 -t —t.. -1
7ta) ng}c}o<a+a—|—1+ +a—|—n—1 S )

were introduced in the monograph by Knopp [5]. There are known now as the general-
ized Euler-Mascheroni constant, since y(1) = 7. In the recent past, many authors were
preoccupied to give increasingly accurate estimates for y(a), similar to those given for
Y, like (1.1)—(1.4).

In this sense, we mention the following sequences

1 1 1 a+n
Xy, = —+ +...+ —In
a a—+1 a+n—1 a
and 1 1 1 + 1
at+n-—
= - —1
n a+a+1+ +a—|—n—1 n a

which converge to y(a) like n~!, since Sintimirian [12] proved that for every integer
n=1,

1 1
2(n+a) <vl@) =< 2(n+a)—2
and
1 1
2(n+a) <n—vla)< 2(n+a)—2"

We give new better bounds for these sequences, showing the following

THEOREM 1. Forevery a > 0, and integer n > 2, we have

1 1
SN S 15
2(n+a)—%<y<a) x<2(n—|—a)—% (1)
and
@< —1 (1.6)
2(n+a)—3 ey 2(n+a)—3 '

In some sense, the constants % and % are sharp in (1.5)—(1.6), as we can see from
the following:

THEOREM 2. a) For every a > % and every integer n > 1, we have

1
2(n+a)— 5+

1
n

< y(a)—x,.

b) For every a > % and every integer n > 1, we have

1
<yn—7(a).
2(n+a)— 3+
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Very recently, Berinde [2, Theorem 2.2] introduced the sequences

1 1 1
am(ab)=—+—+.+ S
a a—+1 a+n—1 a
and 1 1 1 1
ta(a,b) = -+ 4o F BN (s i
a a—+1 a+n—1 a

convergent to ¥ (a), and proved that for every integer n > 1,
zn(a,b) < zpy1(a,b) < y(a) <ty(a,b) <t,+1(a,b)
and

1 1 1
0< ——ln<1+b+—> <7v(a) < ——Inb.
a a a

It is introduced in [7] the following general class of sequences

(@be)=tqp oy L € m(nt o,
n(a,b,c) = — —In ,
Hnlat; b5 a a+1 a+n—2 a+n—1

depending on parameters a,b,c, with a >0 and b > —(a+1)/a. Remark that
W, (a,b,1) =1, (a,b). A particular case of [7, Theorem 2.1] solves an open problem
posed by Berinde [2] about the sequence (7, (a,b)),~ . This answer is gathered in the
following

THEOREM 3. Let a, b € R be given and satisfy a >0 and b > — (a+1) /a.
a)If b # ﬁ, the speed of convergence of the sequence (ty(a,b)),, is equal to n!,
since

lim 11 (a,5) — 7(a)) = % —ab £0.

b)If b= ﬁ, the speed of convergence of the sequence

1 1 1 1 at+n—1 1
Bn=—+ +.. 4 + In +—

a a—+1 a+n—2 a—l—n—l_ a 2a

equals n™2, since

. 1
tim 1 (B, ~ (@) = 5.

The proof of this Theorem 3 is based on the following result, which was first used
in [6]-[10] to accelerate some convergences and to construct asymptotic expansions.

LEMMA 1. If (xn),~ is convergent to x and if there exists the limit

lim nk(xn —Xpr1) =1 ER,

n—oo

with k > 1, then there exists the limit

l
lim nf 1 (x, —x) = =1
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For proof, see [9]. The following result gives a similar answer for the sequence
(Z")nZI '

THEOREM 4. Let a, b € R be given and satisfy a >0 and b > —(a+1) /a.
a)lf b# — %, the speed of convergence of the sequence (z, (a,b)),~, is equal to n!,
since

lim n (z, (a,b) — y(a)) = —% —ab #0.

n—oo

b)Ifb=— 21—a, the speed of convergence of the sequence

S S B S BN R
"Ta a+1 7 a4+n—-2 a+n-—1 a 2a

equals n™2, since

lim n? (8, — y(a)) = i

n—oo 24
We have
1 a-+n a+n+1
(@) =zt (@0) =~ - (4 ) i (T ),
or, using a computer software, such as Maple,
1 1 2 2,0 1Y) 1 1

zn(a,b) — zp41 (a,b) = ~3 —ab n—2+ a+ab+2a"b+a'b”+ 3 n_3+0 )

(1.7)

Now, we have

1
lim n* (2, (a,b) = zn11 (a,b)) = -3 —ab,

n—00

and if ab = —1, then

. 1
lim 7 (2 (@,5) — 2011 (a,D)) = .

and Theorem 4 follows using Lemma 1.
Next we give some estimates of the sequences (fB,),~; and (0n),> -

THEOREM 5. a) For every integer n > 1, we have

1 1
——<&—v@)< —
24(n+a) 24(n+a—1)

and

1 <Bn—7v(a) < :

24 (n+a)? ! 24(n+a—1)>*
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This result is an extension of DeTemple’s work [3] who defined the sequence
1 1 1
R, = l+§+...+;—ln<n+§>

and proved
1 1

— <R —Y< —.
24(n+1) TS a2

(case a = 1). Also Theorem 5 responses to an open problem posed by Berinde [2].

2. The proofs

Proof of Theorem 1. The sequences

1 " 1
X, =Xp+—————, X, =X+ ———
e 2(n+a)—% " ! 2(n+a)—%
are convergent to y(a). Our inequalities (1.5) follows, if we prove that the sequence
(x;l)n21 is strictly increasing and the sequence (x// )u>1 is strictly decreasing. We have
X1 —x, =c(n), where
1 a+x+1 a+x 1 1

n +

= —1 In + T— T
a+x a a 2(x+1+a)—7 2(x+a)—3z

c(x)

with the derivative
P(x)
(x+a+1)(x+a)* (8x+8a— 1) (8x+8a+7)*

where
P (x) =512x + (1536a — 128)x* + (1536a* — 256a — 672)x

+512a° — 128a* — 672a + 49.

As the polynomial P (x-+2) has all coefficients positive, it results that P (n) > 0, for
every n > 2. Now, c¢(x) is strictly decreasing, with ¢(e0) =0, so ¢ > 0, on [2,00).
Thus (x,),, is strictly increasing and consequently, x;, < y(a).

Let X, ; —x, =d(n), where
1 1 1 1
d(x)z —lna+x+ +1na+x T 10
a+x a a 2(x+1+a)—5 2(x+a)—5

with the derivative

70 — 216x 4 (432a + 240)x +240a + 216a> — 25
(x+a+1)(x+a)? (6x+6a— 1) (6x+6a+5)*

Now, d (x) is strictly increasing, with d (e) =0, so d <0, on [2,0). Thus (x}),, is
strictly decreasing and consequently, x,, > ¥ (a).
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The sequences

y/ =y — ; y// R ;
T St =3 T Sra 2

are convergent to ¥ (a). Our inequalities (1.6) follows, if we prove that the sequence
(¥n)u>1 is strictly decreasing and the sequence (v),; is strictly increasing. We have

Vi1 — Yo =e(n), where

nz

1 a+x at+x—1 1 1
—In +1In —

= —|— s
a+x a a 2(x—|—1+a)—% 2(x+a)—12

e(x)

with the derivative

e (x) = o)
2(x+a—1)(x+a)* Bx+3a—27 Bx+3a+1)*

where
0 (x) = 81x + (243a — 81)x” + (243a* — 162a+ 24) x + 24a — 81a*+ 814’ + 8.

As the polynomial Q (x+2) has all coefficients positive, it results that Q (n) > 0, for
every n > 2. Now, e (x) is strictly increasing, with e (e2) =0, so e <0, on [2,e0). Thus
(Vp)s is strictly decreasing and consequently, y;, > ¥(a).
Let y/, , —y, = j(n), where
. 1 a+x a+x—1 1 1
Jj(x)= —1In +In - s+ 3
a+x a a 2(x+14a)—5 2(x+a)—3

with the derivative

216x 4 (432a — 240)x +216a> — 240a — 25

J= Trra- D+ ar(6v+6a—5) (6x+6at 1)

Now, j(x) is strictly decreasing, with j(e0) =0, so j >0, on [2,0). Thus (y,),, is
strictly increasing and consequently, y/, < y(a). O

Proof of Theorem 2. As in the proof of Theorem 1, we define the sequences

1 1

Up = Xp+ s Vn=Yn—
TN 2(mta) -t T 2(nta) - 34

and we prove that (uy),,~ is strictly increasing and (v),~; is strictly decreasing.
First, we have u,4| —u, = k(n), and v, ; —v, =1(n), where

1 1
k()= —— —p Xl et

xX+a a a
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1 1
+2(x+l+a)—%+m 2 ta)— i+
and
[(x) = 1 _lna—l—x_Hna—l—x—l
x+a a a
1 1

)

+
20+ 1+a) =3+ g 2(ta) -3+

with the derivatives

, R(x
K== (x+a+1)(x+a)* (36x% —6x+ 36ax(+)1)2 (36x2 4 66x + 36ax +36a+31)*
respective
I'(x) = 2 S 2 29
(x+a—1)(x+a)” (36x2 —30x + 36ax+ 1) (36x% + 42x + 36ax+ 36a+7)
where

R(x) =15552(30a — 13)x° + (653 184a + 1166400a* — 250 128) x*

+ (4134240 + 18429124+ 9797764 +37800) x°
+(272808a + 1131408a>+ 12519364 + 3265924 +79200) x*

+ (85 248a + 3492724+ 498960a° + 287712a" + 46 656a° — 7440) x

+2232a+ 192244% + 58 104a> + 63 504a* +233284° + 961

and
S(x) = 15552(30a — 17)x° + (1166 400a* — 653 184a + 247 536) x*

+(979776a° — 116640a* —239760a + 360072) x*
+(267624a — 5015524 + 381024 + 326 592a* + 13 104) x*

+ (132 1924* — 265684% — 609124° — 262084 + 46 6564° — 2352) X

+504a — 216a* — 7560a° — 14256a* +233284° + 49.

If we put a = % +d, with @ > 0, then R(n) becomes a polynomial with all coeffi-
cients positive. If we put a = % +d", with @’ > 0, then S (n) becomes a polynomial
with all coefficients positive. In consequence, R > 0 and S > 0, for every positive
integer n and a > %, respective a > %.

Now, the function « is strictly decreasing, the function [ is strictly increasing and
the conclusion follows using the same arguments of Theorem 1. [l
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Proof of Theorem 5. Let us define the sequences

S e
! 24(n+a—17> " 24 (n+a)?

It suffices to show that (&), is strictly increasing and (8,),~, is strictly decreasing.

In this sense, let us put &, | — &, =m(n) and &), ; — &, = p(n), where

) 1 In a+x+1 1 i n a-+x 1
m(x) = — - — -
* a-+x a 2a a 2a

1 1
7t 2
24 (x+a)” 24(x+a-—1)

1 a+x+1 1 at+x 1
= -1 - 1 - =
P () at+x n< a Za) * n( a 2a>

1 1
7T 2
24(x+a+1)" 24(x+a)

and

with the derivatives

24x° 4 (72a — 35)x* + (72a* — 10a+ 15) x + 15a — 354>+ 24a° — 1

m' (x) = 3 3 >
122x+2a+1)2x+2a—1)(x+a)’ (x+a—1)
respective
% 24x% 4 (72a+35)x* + (70a + 72a* + 15) x + (70a + 724>+ 15) + 1
p(x)= .

12(2x+2a+1)(2x+2a—1)(x+a)’ (x+a+ 1)}

Now, the function m is strictly decreasing, p is strictly increasing, with m(eo) =
p(=) =0, so m >0 and p <0. Consequently, (5,),-, is strictly increasing and
(04),>1 is strictly decreasing.

Let us define the sequences

1 1
’glzﬁn—z

ﬁn:Bn_24 W

(n+a—1)"

It suffices to show that (f;),,-, is strictly increasing and (), is strictly decreasing.
In this sense, let us put ., — B, = ¢(n) and 8, | — 6, = r(n), where

) 1 In a+x+ 1 I cH—x—l+ 1
X) = — —_— —_— R
9 a+x a 2a a 2a

1 1
2+ 2
24 (x+a)” 24(x+a—1)
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1 a-+x 1 a+x—1 1
r(x)= —In +—)+h|(—+—
a+x a 2a a 2a

1 1
7T 2
24(x+a+1) 24(x+a)

and

with the derivatives

24x3 + (72a —35)x* + (72a* — 70a + 15) x + 15a — 35a> + 24a® + 24n® — 1
12(2x+2a—1)(2x+2a+1)(x+a)’ (x+a—1)

)

q (x)=

respective

24x° +(72a+35)x% 4 (70a+72a* 4 15) x+ 15a+ 350 + 244’ + |
B 12(2x4+2a—1)(2x+2a+1) (x+a)* (x+a—1)° '

' (x)

Now, the function ¢ is strictly decreasing, r is strictly increasing, with g (o) = r(e0) =
0, so ¢ >0 and r < 0. Consequently, (B,),, is strictly increasing and (), is
strictly decreasing. [J

Finally, we are convinced that our new method is suitable for establishing other
new estimates for the gamma and polygamma functions, or for the generalized har-
monic sums.
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