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ON THE MAXIMAL OPERATORS OF

VILENKIN–FEJÉR MEANS ON HARDY SPACES
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Abstract. The main aim of this paper is to prove that when 0 < p < 1/2 the maximal operator
∼
σ
∗
p f := sup

n∈N

|σn f |
(n+1)1/p−2 is bounded from the martingale Hardy space Hp to the space Lp, where

σn is n -th Fejér mean with respect to bounded Vilenkin system.

1. Introduction

In one-dimensional case the weak type inequality for maximal operator of Fejér
means for trigonometric system can be found in Zygmund [21], in Schipp [11] for
Walsh system and in Pál, Simon [10] for bounded Vilenkin system. Fujii [4] and Simon
[13] verified that σ∗,w is bounded from H1 to L1, where σ∗,w denotes the maximal
operator of Fejér means of Walsh-Fourier series. Weisz [18] generalized this result and
proved the boundedness of σ∗,w from the martingale Hardy space Hp to the space Lp,
for 1/2 < p � 1. Simon [12] gave a counterexample, which shows that boundedness
of σ∗,w does not hold for 0 < p < 1/2. The counterexample for σ∗,w when p = 1/2
is due to Goginava [7] (see also [3, 14]). In the endpoint case p = 1/2 two positive
results were showed. Weisz [20] proved that σ∗,w is bounded from the Hardy space
H1/2 to the space L1/2,∞ . Goginava [6] proved that the maximal operator σ̃ ∗,w defined
by

σ̃∗,w f := sup
n∈N

|σw
n f |

log2 (n+1)

is bounded from the Hardy space H1/2 to the space L1/2, where σw
n is n -th Fejér

means of Walsh-Fourier series. He also proved, that for any nondecreasing function
ϕ : N → [1, ∞), satisfying the condition

lim
n→∞

log2 (n+1)
ϕ (n)

= +∞,

the maximal operator

sup
n∈N

|σw
n f |

ϕ (n)
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is not bounded from the Hardy space H1/2 to the space L1/2.
For Walsh-Kaczmarz system analogical theorem was proved in [9] and for bounded

Vilenkin system in [15].
The main aim of this paper is to prove that when 0 < p < 1/2 the maximal operator

σ̃∗
p f := sup

n∈N

|σn f |
(n+1)1/p−2

(1)

is bounded from the Hardy space Hp to the space Lp (see Theorem 1), where σn is
Fejér means of bounded Vilenkin-Fourier series.

We also prove that for any nondecreasing function ϕ : N → [1, ∞), satisfying the
condition

lim
n→∞

(n+1)1/p−2

ϕ (n)
= +∞, (2)

the maximal operator

sup
n∈N

|σn f |
ϕ (n)

is not bounded from the Hardy space Hp to the space Lp,∞ when 0 < p < 1/2. Actually,
we prove a stronger result (see Theorem 2) than the unboundedness of the maximal
operator σ̃∗

p from the Hardy space Hp to the spaces Lp,∞. In particular, we prove that
under condition (2) there exists a martingale f ∈ Hp (0 < p < 1/2) such that

sup
n∈N

∥∥∥∥ σn f
ϕ (n)

∥∥∥∥
Lp,∞

= ∞.

2. Definitions and Notations

Let N+ denote the set of the positive integers, N := N+∪{0}.
Let m := (m0,..., mn, ...) denote a sequence of the positive integers not less than 2.
Denote by

Zmk := {0,1, ..., mk −1}
the additive group of integers modulo mk.

Define the group Gm, as the complete direct product of the group Zmj , with the
product of the discrete topologies of Zmj

, s.
The direct product μ of the measures

μk ({ j}) := 1/mk, ( j ∈ Zmk ),

is the Haar measure on Gm, with μ (Gm) = 1.
If supn mn < ∞ , then we call Gm a bounded Vilenkin group. If the generating

sequence m is not bounded, then Gm is said to be an unbounded Vilenkin group. In
this paper we discuss bounded Vilenkin groups only.

The elements of Gm represented by sequences

x := (x0,x1, ...,x j, ...),
(
xk ∈ Zmk

)
.
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It is easy to give a base, for the neighborhood of x ∈ Gm :

I0 (x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, ..., yn−1 = xn−1}, (n ∈ N).

Denote In := In (0) , for n ∈ N and
−
In := Gm \ In.

Let

en := (0, ...,0,xn = 1,0, ...) ∈ Gm, (n ∈ N) .

Denote

Ik,l
N :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
IN(0, ...,0,xk �= 0,0, ...,0,xl �= 0,xl+1 , ...,xN−1 , ...),

where xi ∈ Zmi , i � l +1, for k < l < N,

IN(0, ...,0,xk �= 0,0, ..., ,xN−1 = 0, xN , ...),

where xi ∈ Zmi , i � N, for l = N.

and

Ik,α ,l,β
N := IN(0, ...,0,xk = α,0, ...,0,xl = β ,xl+1,..., xN−1 ), k < l < N ,

where xi ∈ Zmi , i � l +1.
It is evident

Ik,l
N =

mk−1⋃
α=1

ml−1⋃
β=1

Ik,α ,l,β
N (3)

and
−
IN =

(
N−2⋃
k=0

N−1⋃
l=k+1

Ik,l
N

)⋃(N−1⋃
k=1

Ik,N
N

)
. (4)

If we define the so-called generalized number system, based on m in the following
way :

M0 := 1, Mk+1 := mkMk , (k ∈ N)

then every n ∈ N can be uniquely expressed as n =
∞
∑

k=0
n jMj, where n j ∈ Zmj ( j ∈ N)

and only a finite number of n j‘s differ from zero. Let |n| := max { j ∈ N, n j �= 0}.
It is easy to show that

l

∑
A=0

MA � cMl . (5)

Denote by L1 (Gm) the usual (one dimensional) Lebesque space.
Next, we introduce on Gm an ortonormal system which is called the Vilenkin

system.
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At first define the complex valued function rk (x) : Gm → C, the generalized Ra-
demacher functions as

rk (x) := exp(2π ixk/mk) ,
(
i2 = −1, x ∈ Gm, k ∈ N

)
.

Now define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=
∞
Π

k=0
rnk
k (x) , (n ∈ N) .

Specifically, we call this system the Walsh one if m ≡ 2.
The Vilenkin system is ortonormal and complete in L2 (Gm) [1, 16].
Now we introduce analogues of the usual definitions in Fourier-analysis.
If f ∈ L1 (Gm) we can establish the the Fourier coefficients, the partial sums of

the Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the
Vilenkin system ψ in the usual manner:

f̂ (n) :=
∫

Gm

fψndμ , (n ∈ N) ,

Sn f :=
n−1

∑
k=0

f̂ (k)ψk , (n ∈ N+, S0 f := 0) ,

σn f :=
1
n

n−1

∑
k=0

Sk f , (n ∈ N+) ,

Dn :=
n−1

∑
k=0

ψk , (n ∈ N+) ,

Kn :=
1
n

n−1

∑
k=0

Dk, (n ∈ N+) .

Recall that

DMn (x) =
{

Mn, if x ∈ In,
0 , if x /∈ In.

(6)

It is well-known that

sup
n

∫
Gm

|Kn (x)|dμ (x) � c < ∞, (7)

and

n |Kn (x)| � c
|n|
∑
A=0

MA |KMA (x)| . (8)

The norm (or quasinorm) of the space Lp(Gm) is defined by

‖ f‖p :=
(∫

Gm

| f (x)|p dμ(x)
)1/p

, (0 < p < ∞) .
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The space Lp,∞ (Gm) consists of all measurable functions f , for which

‖ f‖Lp,∞(Gm) := sup
λ>0

λ pμ ( f > λ ) < +∞.

The σ−algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by

�n (n ∈ N) . Denote by f =
(

f (n),n ∈ N

)
a martingale with respect to �n (n ∈ N)

(for details see e.g. [17]). The maximal function of a martingale f is defend by

f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ .

In case f ∈ L1, the maximal functions are also be given by

f ∗ (x) = sup
n∈N

1
|In (x)|

∣∣∣∣∫
In(x)

f (u)μ (u)
∣∣∣∣ .

For 0 < p < ∞ the Hardy martingale spaces Hp (Gm) consist of all martingales
for which

‖ f‖Hp
:= ‖ f ∗‖p < ∞.

If f ∈ L1, then it is easy to show that the sequence (SMn ( f ) : n ∈ N) is a martin-

gale. If f =
(

f (n),n ∈ N

)
is a martingale, then the Vilenkin-Fourier coefficients must

be defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫
Gm

f (k) (x)Ψi (x)dμ (x) .

The Vilenkin-Fourier coefficients of f ∈L1 (Gm) are the same as martingale (SMn ( f ) : n ∈ N

obtained from f .
For the martingale f we consider maximal operators

σ∗ f := sup
n∈N

|σn f | ,

σ̃∗ f := sup
n∈N

|σn f |
log2 (n+1)

,

σ̃∗
p f := sup

n∈N

|σn f |
(n+1)1/p−2

.

A bounded measurable function a is p-atom, if there exist interval I , such that

a)
∫

I
adμ = 0,

b) ‖a‖∞ � μ (I)−1/p ,

c) supp(a) ⊂ I.
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3. Formulation of main results

THEOREM 1. Let 0 < p < 1/2. Then the maximal operator σ̃∗
p is bounded from

the Hardy martingale space Hp (Gm) to the space Lp (Gm) .

THEOREM 2. Let ϕ : N → [1, ∞) be a nondecreasing function, satisfying the
condition

lim
n→∞

(n+1)1/p−2

ϕ (n)
= +∞. (9)

Then there exists a martingale f ∈ H1/2 , such that

sup
n∈N

∥∥∥∥ σn f
ϕ (n)

∥∥∥∥
Lp,∞

= ∞.

4. Auxiliary propositions

LEMMA 1. [19] Suppose that an operator T is sublinear and for some 0 < p � 1

∫
−
I

|Ta|p dμ � cp < ∞,

for every p -atom a , where I denote the support of the atom. If T is bounded from L∞
to L∞, then

‖T f‖Lp(Gm) � cp‖ f‖Hp(Gm) .

LEMMA 2. [2, 8] Let 2 < A∈N+, k � s < A and qA = M2A +M2A−2+ ...+M2+
M0. Then

qA−1
∣∣KqA−1(x)

∣∣� M2kM2s

4
,

for

x ∈ I2A (0, ...,x2k �= 0,0, ...,0,x2s �= 0,x2s+1, ...x2A−1) ,

k = 0, 1, ..., A−3. s = k+2, k+3, ..., A−1.

LEMMA 3. [5] Let A > t, t,A ∈ N, z ∈ It\ It+1 . Then

KMA (z) =
{

0, if z− ztet /∈ IA,
Mt

1−rt(z)
, if z− ztet ∈ IA.
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LEMMA 4. Let x ∈ Ik,l
N , k = 0, ...,N−1, l = k+1, ...,N. Then

∫
IN
|Kn (x− t)|dμ (t) � cMlMk

M2
N

, when n � MN .

Proof. Let x ∈ Ik,α ,l,β
N . Then applying Lemma 3 we have

KMA (x) = 0, when A > l.

Let k < A � l . Then we get

|KMA (x)| = Mk

|1− rk (x)| � mkMk

2π α
. (10)

Let x ∈ Ik,l
N , for 0 � k < l � N − 1 and t ∈ IN . Since x− t ∈ Ik,l

N and n � MN ,
combining (3), (5), (8) and (10) we obtain

n |Kn (x)| � c
l

∑
A=0

MAMk � cMkMl

and ∫
IN
|Kn (x− t)|dμ (t) � cMkMl

M2
N

. (11)

Let x ∈ Ik,N
N , then applying (8) we have

∫
IN

n |Kn (x− t)|dμ (t) �
|n|
∑
A=0

MA

∫
IN
|KMA (x− t)|dμ (t) . (12)

Let{
x =

(
0, ...,0,xk �= 0,0, ...0,xN ,xN+1,xq, ...,x|n|−1, ...

)
,

t =
(
0, ...,0,xN , ...xq−1,tq �= xq,tq+1, ...,t|n|−1, ...

)
, q = N, ..., |n|−1.

Using Lemma 3 in (12) it is easy to show that∫
IN
|Kn (x− t)|dμ (t) � c

n

q−1

∑
A=0

MA

∫
IN

Mkdμ (t) � cMkMq

nMN
� cMk

MN
. (13)

Let {
x =

(
0, ...,0,xm �= 0,0, ...,0,xN ,xN+1,xq, ...,x|n|−1, ...

)
,

t =
(
0,0, ...,xN , ...,x|n|−1

, ...
)

.

If we apply Lemma 3 in (12) we obtain∫
IN
|Kn (x− t)|dμ (t) � c

n

|n|−1

∑
A=0

MA

∫
IN

Mkdμ (t) � cMk

MN
. (14)

Combining (11), (13) and (14) we complete the proof of Lemma 4. �
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5. Proofs of the Theorems

Proof of Theorem 1. By Lemma 1, the proof of Theorem 1 will be complete, if we
show that ∫

IN

(
sup
n∈N

|σna|
(n+1)1/p−2

)p

dμ � c < ∞,

for every p-atom a, where I denotes the support of the atom . The boundedness of
supn∈N |σn|/(n+1)1/p−2 from L∞ to L∞ follows from (7).

Let a be an arbitrary p-atom, with support I and μ (I) = M−1
N . We may assume

that I = IN . It is easy to see that σn (a) = 0, when n � MN . Therefore, we can suppose
that n > MN .

Since ‖a‖∞ � cM1/p
N we can write

|σn (a)|
(n+1)1/p−2

� 1

(n+1)1/p−2

∫
IN
|a(t)| |Kn (x− t)|dμ (t)

� ‖a‖∞

(n+1)1/p−2

∫
IN
|Kn (x− t)|dμ (t)

� cM1/p
N

(n+1)1/p−2

∫
IN
|Kn (x− t)|dμ (t) .

Let x ∈ Ik,l
N , 0 � k < l � N. From Lemma 4 we get

|σn (a)|
(n+1)1/p−2

� cM1/p
N

M1/p−2
N

MlMk

M2
N

= cMlMk. (15)

Combining (4) and (15) we obtain

∫
IN
|σ∗a(x)|p dμ (x)

=
N−2

∑
k=0

N−1

∑
l=k+1

mj−1

∑
x j=0, j∈{l+1,...,N−1}

∫
Ik,lN

|σ∗a(x)|p dμ (x)+
N−1

∑
k=0

∫
Ik,NN

|σ∗a(x)|p dμ (x)

� c
N−2

∑
k=0

N−1

∑
l=k+1

ml+1...mN−1

MN
(MlMk)

p + c
N−1

∑
k=0

1
MN

(MNMk)
p

� c
N−2

∑
k=0

N−1

∑
l=k+1

(MlMk)
p

Ml
+ c

N−1

∑
k=0

Mp
k

M1−p
N

= I + II.
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Then

I = c
N−2

∑
k=0

N−1

∑
l=k+1

1

M1−2p
l

(MlMk)
p

M2p
l

� c
N−2

∑
k=0

N−1

∑
l=k+1

1

M1−2p
l

� c
N−2

∑
k=0

N−1

∑
l=k+1

1

2l(1−2p)

� c
N−2

∑
k=0

1

2k(1−2p) < c < ∞.

It is evident
II � c

M1−2p
N

< c < ∞.

Which complete the proof of Theorem 1. �

Proof of Theorem 2. Let 0 < p < 1/2 and {λk; k ∈ N+} be an increasing se-
quence of the positive integers, such that

lim
k→∞

λ 1/p−2
k

ϕ (λk)
= ∞.

It is evident that for every λk, there exists a positive integers m,
k, such that q

m
′
k

< λk <

cqm,
k
. Since ϕ (n) is nondecreasing function, we have

lim
k→∞

M1/p−2
2m,

k

ϕ
(
qm,

k

) � c lim
k→∞

q1/p−2
m,

k

ϕ
(
qm,

k

)
� c lim

k→∞

λ 1/p−2
k

ϕ (λk)
= ∞. (16)

Let {nk; k ∈ N+} ⊂
{
m,

k; k ∈ N+
}

such that

lim
k→∞

M1/p−2
2nk

ϕ
(
qnk

) = ∞

and
fnk (x) = DM2nk+1 (x)−DM2nk

(x) , nk � 3.

It is evident

f̂nk (i) =
{

1, if i = M2nk
, ...,M2nk+1−1,

0,otherwise.
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Then we can write

Si fnk (x) =

⎧⎨⎩
Di (x)−DM2nk

(x) , if i = M2nk
, ...,M2nk+1−1,

fnk (x) , if i � M2nk+1,
0, otherwise.

(17)

From (6) we get∥∥ fnk

∥∥
Hp

=
∥∥∥∥sup

n∈N

SMn

(
fnk

)∥∥∥∥
Lp

=
∥∥∥DM2nk+1 −DM2nk

∥∥∥
Lp

=

(∫
I2nk

\ I2nk+1

Mp
2nk

dμ (x)+
∫
I2nk+1

(
M2nk+1 −M2nk

)p
dμ (x)

)1/p

=

⎛⎝m2nk
−1

M2nk+1
Mp

2nk
+

(
m2nk

−1
)p

M2nk
+1

Mp
2nk

⎞⎠1/p

� M1−1/p
2nk

.

By (17) we can write:∣∣∣σqnk
fnk (x)

∣∣∣
ϕ
(
qnk

) =
1

ϕ
(
qnk

)
qnk

∣∣∣∣∣
qnk−1

∑
j=0

S j fnk (x)

∣∣∣∣∣
=

1

ϕ
(
qnk

)
qnk

∣∣∣∣∣∣
qnk−1

∑
j=M2nk

S j fnk (x)

∣∣∣∣∣∣
=

1

ϕ
(
qnk

)
qnk

∣∣∣∣∣∣
qnk−1

∑
j=M2nk

(
Dj (x)−DM2nk

(x)
)∣∣∣∣∣∣

=
1

ϕ
(
qnk

)
qnk

∣∣∣∣∣∣
qnk−1−1

∑
j=0

(
Dj+M2nk

(x)−DM2nk
(x)
)∣∣∣∣∣∣ .

Since
Dj+M2nk

(x)−DM2nk
(x) = ψM2nk

D j, j = 1,2, ..,M2nk
−1,

we obtain ∣∣∣σqnk
fnk (x)

∣∣∣
ϕ
(
qnk

) =
1

ϕ
(
qnk

)
qnk

∣∣∣∣∣∣
qnk−1−1

∑
j=0

Dj (x)

∣∣∣∣∣∣
=

1

ϕ
(
qnk

) qnk−1

qnk

∣∣∣Kqnk−1 (x)
∣∣∣ .
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Let x ∈ I2s,2l
2nk

. Using Lemma 2 we obtain∣∣∣σqnk
fnk (x)

∣∣∣
ϕ
(
qnk

) � cM2sM2l

M2nk
ϕ
(
qnk

) .
Hence we can write:

μ

⎧⎪⎨⎪⎩x ∈ Gm :

∣∣∣σqnk
f
nk

(x)
∣∣∣

ϕ
(
q

nk

) � c

M
2nk

ϕ
(
q

nk

)
⎫⎪⎬⎪⎭

� μ

⎧⎪⎨⎪⎩x ∈ I2,4
2nk

:

∣∣∣σqnk
f
nk

(x)
∣∣∣

ϕ
(
q

nk

) � c

M
2nk

ϕ
(
q

nk

)
⎫⎪⎬⎪⎭

� μ
(
I2,4
2nk

)
> c > 0. (18)

From (18) we have

c

M
2nk

ϕ
(
qnk

)
⎛⎝μ

⎧⎨⎩x ∈ Gm :

∣∣∣∣σqnk
f
nk

(x)
∣∣∣∣

ϕ
(
qnk

) � c

M
2nk

ϕ
(
qnk

)
⎫⎬⎭
⎞⎠1/p

∥∥ fnk (x)
∥∥

Hp

� c

M
2nk

ϕ
(
q

nk

)
M1−1/p

2nk

= c
M1/p−2

2nk

ϕ
(
q

nk

) → ∞, when k → ∞.

Theorem 2 is proved. �
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[18] F. WEISZ, Cesàro summability of one and two-dimensional Fourier series, Anal. Math. 5 (1996),

353–367.
[19] F. WEISZ, Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic,

Dordrecht, 2002.
[20] F. WEISZ, Weak type inequalities for the Walsh and bounded Ciesielski systems, Anal. Math. 30, 2

(2004), 147–160.
[21] A. ZYGMUND, Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959.

(Received October 25, 2010) G. Tephnadze
Department of Mathematics

Faculty of Exact and Natural Sciences
Tbilisi State University

Chavchavadze str. 1
Tbilisi 0128, Georgia

e-mail: giorgitephnadze@gmail.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


