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A HOFFMANN–JØRGENSEN INEQUALITY OF NA RANDOM
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Abstract. In this paper, we prove the Hoffmann-Jørgensen inequality for the negatively associ-
ated (NA) random variables. As an application, it is consequently used for the construction of
the convergence rate for tail probabilities of partial sums of NA random variables. Our results
extends the conclusions of Li and Spǎtaru’s (2005).

1. Introduction

Li, Rao, Jiang and Wang (1995) gave a very general theorem about complete
convergence for independent and identically distributed (i.i.d) random variables. The
proofs of their theorems depended on the Hoffmann-Jørgensen inequality of indepen-
dent randomvariables. Later, Ghosal and Chandra (1998) proved a Hoffmann-Jørgensen
inequality for martingale differences sequence. And they also obtained a result similar
to that of Li et al (1995). Recently, Li and Spǎtaru (2005) strengthened both the Hsu-
Robbins-Erdos theorem on complete convergence and the results of Davis (1968), Lai
(1974) and Gut (1980). Li and Spǎtaru’s (2005) results are on the integrability of the
following function:

f (x) = ∑
n

anP(|Sn| > xbn), x > 0,

where an > 0 and ∑n an = ∞ , and bn is either n1/p (0 < p < 2),
√

n logn or
√

n loglogn .
They studied the equivalent conditions on∫ ∞

ε
f (xq)dx < ∞, ε > 0. (1.1)

It is well known that complete convergence implies almost sure convergence in
view of the Borel-Cantelli Lemma. Bibliography and discussion on the convergence
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rate for independent random variables were concerned for many years, and for a more
comprehensive understanding, one can refer to Li et al.(1995) and Li and Spǎtaru (2005)
for details. Particularly, in Li and Spǎtaru’s (2005) work, a different approach for build-
ing the necessary and sufficient moment conditions for (1.1) was involved. Their main
idea was based on the symmetrization and independent type Hoffmann-Jørgensen in-
equality to get the tail probabilities of the partial sum of the random variables. Since
Hoffmann-Jørgensen inequality can be used as an important tool for deriving the com-
plete rate, we are driven to establish the analogous results for negatively associated
random variables; thus, we can extend the results of independent case to dependent
one.

The random variables X1 , X2 , · · · , Xn are said to be negatively associated (NA) if
for every pair of disjoint subset A1 , A2 of {1,2, · · · ,n} ,

Cov( f (Xi, i ∈ A1),g(Xj, j ∈ A2)) � 0,

whenever f and g are increasing. NA is one qualitative version of negative dependence
among random variables, and a great many basic theoretical properties have been de-
rived for NA random variables. In this paper, we give a Hoffmann-Jørgensen inequality
of NA random variables first. By applying the inequality, we establish several gen-
eral results on the complete convergence for NA random variables, which extend the
theorems in Li et al.(1995) and Li and Spǎtaru (2005). .

Here we give some notations. Throughout the paper, we will assume that {X , Xn;
n � 1} is an independent copy of {X , Xn; n � 1}, and we will consider the sym-
metrized random variables Xs = X −X , Xs

n = Xn−Xn, Ss
n = Xs

1 + ...+Xs
n , n � 1. And

let {X∗,X∗
n , n � 1} denote a sequence of independent random variables, satisfying

X
d= X∗ , Xn

d= X∗
n , n � 1. In the sequel, log+ x = log(e∨x), x � 0, ∼ between expres-

sions will mean that the limit of their ratio is 1, and [x] will denote the greatest integer
less or equal than x .

This paper is organized as follows. In section 2, we will list some auxiliary lemmas
and give the Hoffmann-Jørgensen inequality for NA random variables. Some general
theorems on convergence rate and the proofs are collected in section 3. Comparing our
results with that of independent random variable, we summarize our work in section 4.

2. Auxiliary Lemmas and the Hoffmann-Jørgensen inequality
for NA Random Variables

In this section, we would state the Hoffmann-Jørgensen type inequality for NA
random variables. In order to obtain the inequality and establish the general results on
the complete convergence, some auxiliary lemmas will be given first. Lemma 2.1 is
a useful version of the maximal inequality of Hoffmann-Jørgensen (see Li, Rao, Jiang
and Wang (1995)) .

LEMMA 2.1. Let {Vk : 1 � k � n} be a finite sequence of independent symmetric
real random variables and Sn = ∑n

k=1Vk . Then for each integer j � 1 , there exist
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positive numbers Cj and Dj depending only on j such that for all t > 0 ,

P (|Sn| � 2 jt) � CjP

(
max

1�k�n
|Vk| � t

)
+Dj(P(|Sn| � t)) j.

Using Theorem 2.12 p. 71 in Hoffmann-Jørgensen (1977), we obtain the following
contraction lemma (Lemma 2.2).

LEMMA 2.2. (Contraction Lemma) Let X = (X1 , X2 , · · · , Xn) be a symmetric
random vector and let φ1 , · · · , φn : R→R be odd Borel functions satisfying |φk(x)|� x
for all x ∈ R and all k = 1, · · · ,n. Then we have

P

(
|

n

∑
k=1

φk(Xk)| > 5c

)
� 6P

(
|

n

∑
k=1

Xk| > c

)
,∀c > 0.

Proof. Let c > 0 be given and let (ε1 , · · · , εn) be a Bernoulli vector which is
independent of (X1 , · · · , Xn) . By Theorem 2.15 p. 71 in Hoffmann-Jørgensen (1977),
We have

P

(
|

n

∑
k=1

εkφk(yk)| > 5c

)
� 6P

(
|

n

∑
k=1

εkyk| > c

)
, ∀(y1, · · · ,yn) ∈ Rn.

Since (X1 , X2 , · · · , Xn) is symmetric and independent of (ε1 , · · · , εn ), we have that
(X1 , X2 , · · · , Xn ) and (ε1X1 , · · · , εnXn ) are equidistributied and since φk is odd, we
have φk(εkXk) = εkφk(Xk) . Hence, if PX denote the distribution of X , we have

P(|
n

∑
k=1

φk(Xk)| > 5c) = P(|
n

∑
k=1

φk(εkXk)| > 5c) = P(|
n

∑
k=1

εkφk(Xk)| > 5c)

=
∫

Rn
P(|

n

∑
k=1

εkφk(yk)| > 5c)PX (dy)

� 6
∫

Rn
P(|

n

∑
k=1

εkyk| > c)PX(dy)

= 6P(|
n

∑
k=1

εkXk| > c) = 6P(|
n

∑
k=1

Xk| > c). �

LEMMA 2.3. For each n � 1 , let {Xnk,k ∈ Z} be a sequence of NA real random
variables, and {X∗

nk,k ∈ Z} be a sequence of independent real random variables such
that X∗

nk has the same distribution as Xnk for each n � 1 , k ∈ Z , and the series ∑k∈Z X∗
k

converges a.s. Suppose that

S∗n = ∑
k∈Z

X∗
nk

P−→ 0,

sup
k∈Z

|med (Xnk)| → 0.
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Then, we have

Sn = ∑
k∈Z

Xnk
P−→ 0.

Proof. By the proof of Theorem 1 p. 326 of Chow and Teicher (1978) with some

necessary modifications, we can get that S∗n = ∑k∈Z X∗
nk

P−→ 0 implies

∑
k∈Z

P(|Xnk| � ε) → 0,

∑
k∈Z

Var(XnkI{|Xnk| < ε}) → 0,

∑
k∈Z

EXnkI{|Xnk| < ε}→ 0.

And by the classical truncated method, we can get Sn = ∑k∈Z Xnk
P−→ 0. �

The next lemma comes from Li and Spǎtaru (2005).

LEMMA 2.4. Let {Un; n � 1} be a sequence of random variables such that Un
P→

0 , {U ′
n; n � 1} be an independent copy of {Un; n � 1} , and let {an; n � 1} be

a sequence of nonnegative numbers, suppose q > 0 and δ � 0 . The following are
equivalent:

(i) ∫ ∞

ε

(
∑
n�1

anP(|Un| > xq)

)
dx < ∞, ε > δ 1/q;

(ii) there exists a > δ 1/q such that

∫ ∞

a

(
∑
n�1

anP(|Un−U ′
n| > xq)

)
dx < ∞,

and

∑
n�1

anP(|Un| > ε) < ∞, ε > δ .

The following result on the approximation of sums of independent random vari-
ables is due to Sakhanenko (1980,1984,1985).

LEMMA 2.5. For any sequence of independent random variables {ξn;n � 1} with
mean zero and finite variance, there exist a sequence of independent normal variables
{ηn;n � 1} with Eηn = 0 and Eη2

n = Eξ 2
n such that, for all Q > 2 and y > 0 ,

P
(

max
k�n

|
k

∑
i=1

ξi −
k

∑
i=1

ηi| � y
)

� (AQ)Qy−Q
n

∑
i=1

E|ξi|Q,

whenever E|ξi|Q < ∞ , i = 1, . . . ,n. Here, A is a universal constant.
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The next lemma is the comparison theorem in Shao (2000), which will be used in
the proof of Lemma 2.7.

LEMMA 2.6. (The Comparison Theorem) Let {Xi,1 � i} be a negatively asso-
ciated sequence, and let {X∗

i ,1 � i} be a sequence of independent random variables
such that X∗

i and Xi have the same distribution for each i = 1,2, · · · ,n. Then

E f

(
n

∑
i=1

Xi

)
� E f

(
n

∑
i=1

X∗
i

)
(2.1)

for any convex function f on R1 , whenever the expectation on the right hand side of
(2.1) exists. If f is a non-decreasing convex function, then

E f

(
max

1�k�n

k

∑
i=1

Xi

)
� E f

(
max

1�k�n

k

∑
i=1

X∗
i

)
(2.2)

whenever the expectation on the right hand side of (2.2) exists.

To end this section, we state the following Hoffmann-Jørgensen type inequality
for NA random variables which is one of our main tools.

LEMMA 2.7. (Hoffmann-Jørgensen inequality for NA randomvariables) Let {Xk,
k ∈ Z} be a NA-sequence of symmetric random variables, and {X∗

k ,k ∈ Z} be a se-
quence of independent real random variables such that X∗

k has the same distribution as
Xk for all k ∈ Z and the series ∑k∈Z X∗

k converges a.s. Let ε > 0 and j ∈ N be given
and let Y ∗

k = (− ε
10 j )∨ (X∗

k ∧ ε
10 j ) denote the standard truncation of X∗

k at level ε
10 j .

Then the series ∑k∈Z Y ∗
k and ∑k∈Z Xk converges a.s. and if we define Sk = ∑i�k Xi , then

we have

P(sup
k∈Z

|Sk| > 2ε) � P

(
sup
k∈Z

|Xk| > ε
10 j

)
+

4 j

ε

∫ ∞

ε

(
P(| ∑

k∈Z

Y ∗
k | >

x
2 j

)

) j

dx (2.3)

� P

(
sup
k∈Z

|Xk| > ε
10 j

)
+

24 j

ε

∫ ∞

ε

(
P(| ∑

k∈Z

X∗
k | >

x
4 j

)

) j

dx. (2.4)

Proof. Let Yk = (−ε/(10 j))∨ (Xk ∧ (ε/(10 j))) . We assume the right of the in-
equality is finite. We have

P(sup
l∈Z

|∑
k�l

Xk| > 2ε) � P

(
sup
k∈Z

|Xk| > ε
10 j

)
+P(sup

l∈Z
|∑
k�l

Yk| > 2ε).
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Let f (x) = (x− ε)+ = (x− ε)∨ 0, obviously, f is a non-decreasing convex function,
then according to Lemma 2.6, we have

P(sup
l∈Z

|∑
k�l

Yk| > 2ε) = lim
m,t→∞

P( sup
−t�l�m

| ∑
−t�k�l

Yk| > 2ε)

� lim
m,t→∞

{
P( sup

−t�l�m
∑

−t�k�l

Yk > ε)+P( sup
−t�l�m

(− ∑
−t�k�l

Yk
)

> ε)
}

� lim
m,t→∞

1
ε

{
E{ max

−t�l�m
∑

−t�k�l

Yk − ε}+ +E{ max
−t�l�m

(− ∑
−t�k�l

Yk)− ε}+

}

� lim
m,t→∞

1
ε

{
E{ max

−t�l�m
∑

−t�k�l

Y ∗
k − ε}+ +E{ max

−t�l�m
(− ∑

−t�k�l

Y ∗
k )− ε}+

}

� lim
m,t→∞

2
ε
E{ max

−t� j�m
| ∑
−t�k�l

Y ∗
k |− ε}+

= lim
m,t→∞

2
ε

∫ ∞

ε
P( max

−t�l�m
| ∑
−t�k�l

Y ∗
k | > x)dx � 4

ε

∫ ∞

ε
P(| ∑

k∈Z

Y ∗
k | > x)dx,

where the last inequality follows from Lévy inequality. Since |Y ∗
k |� ε/(10 j) , we have

P(|Y ∗
k |� x/(2 j)) = 0 for x � ε . Applying Lemma 2.1 with Cj := 4 j−1

3 and Dj := 4 j−1

we get

P(sup
l∈Z

|∑
k�l

Yk| > 2ε) � 4 j

ε

∫ ∞

ε

(
P(| ∑

k∈Z

Y ∗
k | >

x
2 j

)

) j

dx.

This proves (2.3). For (2.4), notice that Lemma 2.2 implies

P

(
| ∑
k∈Z

Y ∗
k | >

x
2 j

)
� 6P

(
| ∑
k∈Z

X∗
k | >

x
10 j

)
,

therefore, combining with (2.3) and the Lévy inequality, we fulfill the proof of Lemma
2.7. �

3. Some general convergence results

In this section, we give some general results on the convergence rate of the tail
probabilities of sums of NA random variables, which extend those of Li and Sǎtaru
(2005).

THEOREM 3.1. Let {kn} be an increasing sequence. Suppose {Xnk,1 � k � kn}
be a sequence of NA real random variables. Let {X∗

nk,1 � k � kn} be a sequence of

independent r.v.’s, for which Xnk
d= X∗

nk , and {Cn} be a sequence of constants. If for
every ε > 0 , we have

P

(
|

kn

∑
k=1

X∗
nk| � ε

)
= O(n−α) as n → ∞ , for some α > 0 chosen independently of ε ,

(3.1)
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and

P

(
|

kn

∑
k=1

Xnk| � ε

)
→ 0, as n → ∞ (3.2)

∑
n�1

Cn

kn

∑
k=1

P(|Xnk| � ε) < ∞, (3.3)

∑
n�1

Cnkn

nr < ∞ for some r > 0. (3.4)

Then, for every ε > 0 ,

∑
n�1

CnP

(
|

kn

∑
k=1

Xnk| � ε

)
< ∞. (3.5)

Furthermore, if max1�k�kn |med(Xnk)| → 0 as n → 0 , then condition (3.2) can be
dropped.

Proof. Let {Xnk,1 � k � kn} be an independent copy of {Xnk,1 � k � kn} for
each n � 1. It is easy to show that {Xnk−Xnk,1 � k � kn} is a sequence of NA random
variables. Write Znk = Xnk −Xnk . Let {X∗

nk,1 � k � kn} be an independent copy of
{X∗

nk,1 � k � kn} , Z∗
nk = X∗

nk − X
∗
nk . Let c = ε/(10 j) , where j is an integer to be

specified later. Define

Ynk := ZnkI{|Znk| � c}+ cI{Znk > c}− cI{Znk < −c} and S
′
n =

kn

∑
k=1

Ynk,

Y ∗
nk := Z∗

nkI{|Z∗
nk| � c}+ cI{Z∗

nk > c}− cI{Z∗
nk < −c} and S∗

′
n =

kn

∑
k=1

Y ∗
nk,

by (3.2), we have ∑kn
k=1 Xnk

P→ 0. Therefore, by the desymmetrization inequality (see
Lemma 4.1 p. 81 in Hoffmann-Jørgensen (1977)), there exists an integer nε � 1 satis-
fying

P

(∣∣∣∣∣
kn

∑
k=1

Xnk

∣∣∣∣∣> ε

)
� 2P

(∣∣∣∣∣
kn

∑
k=1

Znk

∣∣∣∣∣> ε/2

)
∀n � nε

Since |S′∗
n |� ckn and 2 jc = ε

5 , by the NA type Hoffmann-Jørgensen inequality (Lemma
2.7), we have,

P

(∣∣∣∣∣
kn

∑
k=1

Znk

∣∣∣∣∣> ε/2

)
� P( max

1�k�kn
|Znk| > c/4)+

4 j+1

ε

∫ ∞

ε/4

(
P(|S∗′n | �

x
2 j

)
) j

dx

=: I1 + I2.
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Notice that

I1 �
kn

∑
k=1

P(|Znk| > c/4) � 2
kn

∑
k=1

P(|Xnk| > c/8),

and

I2 =
4 j+1

ε

∫ 2 jckn

ε/4

(
P(|S∗′n | �

x
2 j

)
) j

dx � 4 j+1

ε
· ε
5
kn

(
P(|S∗′n | �

ε
8 j

)
) j

Hence, it follows that

P

(∣∣∣∣∣
kn

∑
k=1

Xnk

∣∣∣∣∣> ε

)
� 2P

(∣∣∣∣∣
kn

∑
k=1

Znk

∣∣∣∣∣> ε/2

)

� 4
kn

∑
k=1

P(|Xnk| > c/8)+4 jkn

(
P(|S∗′n | �

ε
8 j

)
) j

Applying the contraction lemma (Lemma 2.2), we get

P

(
|S∗′n | �

x
8 j

)
� 6P

(
|S∗′n | �

ε
40 j

)
� 12P

(∣∣∣∣∣
kn

∑
k=1

Xnk

∣∣∣∣∣> ε
80 j

)

Therefore, by (3.1), we have

I2 � 12 ·4 jknn
− jα .

By choosing jα > r , we get (3.5) from (3.3) and (3.4).
If max1�k�kn |med(Xnk)| → 0 as n → 0, then by Lemma 2.3, we can obtain that

∑kn
k=1 Xnk

P→ 0. �

THEOREM 3.2. For each n � 1 , let {Xnk,k ∈Z} be a sequence of NA real random
variables, and {X∗

nk,k ∈ Z} be defined as before. If for every ε > 0 and some j � 1 ,
we have

∫ ∞

ε
P

(
| ∑
k∈Z

X∗
nk| � x

) j

dx � C, C does not depend on n (3.6)

and

P

(
| ∑
k∈Z

X∗
nk| � ε

)
→ 0, sup

k∈Z
|med (Xnk)| → 0, as n → ∞, (3.7)

then,

∑
n�1

CnP

(
| ∑
k∈Z

X∗
nk| � ε

)
< ∞ for every ε > 0 (3.8)
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implies

∑
n�1

CnP

(
| ∑
k∈Z

Xnk| � ε

)
< ∞ for every ε > 0. (3.9)

REMARK 3.1. Theorem 3.2 is very general convergence result. The conditions
(3.6) and (3.7) are very easy to be checked by using Markov’s inequality. For example,
by checking (3.6) and (3.7), one can easily show that Theorem 2.2, Theorem 2.3, the ”if
part” of Theorem 2.4, Theorem 2.6 and Theorem 3.2 in Li, et. al. (1995) also hold for
NA random variables. Moreover, by using Theorem 3.1 or Theorem 3.2 and a similar
method of Li, et al. (1995) we can extend Theorem 2.1 of Li et al. (1995) to NA random
variables. We do not restate these theorems here.

Proof. Let S∗n = ∑k∈Z X∗
nk , S∗nk = ∑i�k X∗

ni . By (3.7) we have S∗sn
P→ 0 and so

P(sup j∈Z |S∗sn, j| � ε) → 0 follows the Lévy inequality, where Xs denotes the sym-
metrization of a random variable X . Hence,

P(sup
j∈Z

|X∗s
n j | � ε) → 0 as n → ∞. (3.10)

From (3.8) and the weak symmetric inequality, we have

∑
n�1

CnP

(
| ∑
k∈Z

X∗s
nk | � ε

)
< ∞ for every ε > 0.

By the Lévy inequality, we get

∑
n�1

CnP

(
sup
j∈Z

|X∗s
n j | � ε

)
< ∞ for every ε > 0,

which implies

∑
n�1

Cn ∑
j∈Z

P
(|X∗s

n j | � ε
)

< ∞ for every ε > 0 (3.11)

by (3.10). Moreover, by Lemma 2.3, we get Sn
P→ 0. So

∑
n�1

CnP

(
| ∑
k∈Z

Xnk| � 4ε

)
� C ∑

n�1

CnP

(
| ∑
k∈Z

Xs
nk| � ε

)

� C ∑
n�1

CnP(sup
j∈Z

|Xs
nk| �

ε
20 j

)+C ∑
n�1

Cn

∫ ∞

ε

(
P(| ∑

k∈Z

X∗s
nk | �

x
8 j

)

) j+1

dx

� C+C ∑
n�1

Cn

∫ ∞

ε

(
P(| ∑

k∈Z

X∗
nk| �

x
16 j

)

) j+1

dx (by (3.11))

� C+C ∑
n�1

CnP(| ∑
k∈Z

X∗
nk| �

ε
16 j

) (by (3.6))

< ∞ (by (3.8)).
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This completes the proof. �

Next, we extend Theorem 1 of Li and Sp ă taru (2005) to NA random variables.

THEOREM 3.3. For each n � 1 , let {Xnk; 1 � k � n} be a finite sequence of NA
symmetric random variables. Let {an; n � 1} be a sequence of nonnegative numbers,
and let q > 0 and δ � 0. Assume that, for some ρ > 0,

sup
n�1

P

(∣∣∣∣∣
n

∑
k=1

X∗
nk

∣∣∣∣∣> x

)
= O(x−ρ) as x → ∞. (3.12)

The following are equivalent:
(i) ∫ ∞

ε

(
∑
n�1

anP

(
max
1�l�n

∣∣∣∣∣
l

∑
k=1

Xnk

∣∣∣∣∣> xq

))
dx < ∞, ε > δ 1/q;

(ii) there exists a > δ 1/q such that

∫ ∞

a

(
∑
n�1

anP

(
max

1�k�n
|Xnk| > xq

))
dx < ∞, (3.13)

and

∑
n�1

anP

(
max
1�l�n

∣∣∣∣∣
l

∑
k=1

Xnk

∣∣∣∣∣> ε

)
< ∞, ε > δ . (3.14)

Proof. Clearly, (i)=⇒(3.13), and (i)=⇒(3.14). Thus we only need to show that
(ii)=⇒(i). Obviously, we can assume a > ε . Set j = [(ρq)−1]+2, T = (20 j)1/q , and

f (x) = ∑
n�1

anP

(
max
1�l�n

∣∣∣∣∣
l

∑
k=1

Xnk

∣∣∣∣∣> x

)
, x > 0.

Then, by Lemma 2.7, for any ε > δ 1/q , (3.12)-(3.14) imply

∫ ∞

ε
f (xq)dx =

∫ Ta

ε
f (xq)dx+

∫ ∞

Ta
f (xq)dx � Ta f (εq)+T

∫ ∞

a
f (20 jxq)dx

� Ta f (εq)+TCj

∫ ∞

a

(
∑
n�1

anP

(
max

1�k�n
|Xnk| > xq

))
dx

+TCj f (aq)
∫ ∞

ε

1
xq

∫ ∞

xq

(
P(| ∑

1�k�n

X∗
nk| � y)

) j−1

dydx < ∞. �

In order to extend Theorem 4 and Theorem 6 of Li and Spǎtaru (2005). We first
prove a general version of complete convergence theorem. Let g(x) > 0 be a nonde-
creasing function, which satisfies the following assumption.
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ASSUMPTION 3.1. For some t � 1 , define p(x) = g−1(x)/xt , for some c0 > 0

p(x2) � c0p(x1), ∀x2 � x1 > 0

Now set X
′
k = (−g(n))∨ Xk ∧ g(n)− E(−g(n))∨ Xk ∧ g(n) , 1 � k � n , S

′
k =

∑k
i=1 X

′
k , ξi = ∑im

k=(i−1)m+1 X
′
k , 1 � i � [n/m] , m ∈ N , Tk = ∑k

i=1 ξi . Let {ξ ∗
i } is an

independent copy of {ξi} , T ∗
k = ∑k

i=1 ξ ∗
i , M∗

[n/m] = max1�k�[n/m] |T ∗
k | .

THEOREM 3.4. Let {X ,Xn : n � 1} be a zero mean strictly stationary NA se-
quence, and Sn = ∑n

k=1 Xk . Suppose g(x) satisfies Assumption 3.1, r � 1 , rt > 1 . We
assume the following conditions hold.

(1) There exist ε0 � 0 and m ∈ N such that for every ε > ε0 ,

∞

∑
n=1

nr−2
√

[n/m]Eξ 2
1

g(n)
exp
(
− ε2g2(n)

2[n/m]Eξ 2
1

)
< ∞; (3.15)

(2) E(g−1(|X |))r < ∞ , M∗
[n/m]/g(n) P→ 0 for m in (1) and

sup
n�1

P
(
M∗

[n/m] � xg(n)/(12 j)
)

= O(x−δ ) as x → ∞ for some δ > 0;

(3) ∑k
n=1 nr−1/g(n) � Ckr/g(k) .

Then, we have

∞

∑
n=1

nr−2P( max
1�k�n

|Sk| � εg(n)) < ∞ for every ε > ε0. (3.16)

Proof. By Assumption 3.1, we can get

E|X |I{|X |� g(n)}
g(n)

� Eg−1(|X |)I{|X |� g(n)}
n

.

Hence,

nE(−g(n))∨Xk∧g(n)
g(n)

→ 0 as n → ∞.

Therefore, we have

I :=
∞

∑
n=1

nr−2P
(

max
1�k�n

|Sk| � εg(n)
)

�
∞

∑
n=1

nr−1P(|X | � g(n))+C
∞

∑
n=1

nr−2P
(

max
1�k�n

|S′
k| � (1−a)εg(n)

)
=: I1 + I2.
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It is easy to see that I1 < ∞ since E(g−1(|X |))r < ∞ . And for every 0 < a < 1,

I2 � C
1
a

∞

∑
n=1

nr−2

g(n)
E{ max

1�k�n
|S′

k|−
1−a
1+a

εg(n)}+

� C
1
a

∞

∑
n=1

nr−2

g(n)
E{ max

1�k�[n/m]
|Tk|− (1−a

′
)εg(n)}+

+C
1
a

∞

∑
n=1

nr−2

g(n)
E{ max

1�i�[n/m]+1
max

(i−1)m+1�l�im
|

l

∑
k=(i−1)m+1

X
′
k|−aεg(n)}+

=: I3 + I4,

where 1− a
′
= (1− 2a− a2)/(1+ a) . Using the same argument for proving Lemma

2.7, by Theorem 1 of Shao (2000) we have

I3 � C
1
a

∞

∑
n=1

nr−2

g(n)
E{ max

1�k�[n/m]
|T ∗

k |− (1−a
′
)εg(n)}+

= C
1
a

∞

∑
n=1

nr−2

g(n)

∫ ∞

(1−a′ )εg(n)
P
(
M∗

[n/m] � x
)
dx

� C
∞

∑
n=1

nr−2P
(
M∗

[n/m] � (1−a
′
)εg(n)

)
+C

1
a

∞

∑
n=1

nr−2

g(n)

∫ ∞

Δ
P
(
M∗

[n/m] � x
)
dx

=: I5 + I6,

where Δ = Qεg(n) , Q will be specified later. By noting condition (2) and using Lemma
2.1, we get

I6 � C
1
a

∞

∑
n=1

nr−2

g(n)

∫ ∞

Δ
P
(
M∗s

[n/m] � x/2
)
dx

� C
1
a

∞

∑
n=1

nr−2

g(n)

∫ ∞

Δ
P
(
M∗s

[n/m] � x/(6 j)
) j

dx

� C
1
a

∞

∑
n=1

nr−2P
(
M∗

[n/m] � Qεg(n)/(12 j)
)∫ ∞

Qε
sup
n�1

P
(
M∗

[n/m] � xg(n)/(12 j)
) j−1

dx

� CI5,

where we let Q be large enough such that Δ > 12 jmg(n) . So we only need to estimate
I4 , I5 . For I5 , by applying Lemma 2.4, we have

I5 � C
∞

∑
n=1

nr−2P
(

max
1�k�[n/m]

|
k

∑
i=1

Yi| � (1−2a
′
)εg(n)

)

+C
∞

∑
n=1

nr−2P
(

max
1�k�[n/m]

|
k

∑
i=1

(ξ ∗
i −Yi)| � a

′
εg(n)

)
=: I7 + I8,
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where Yi ∼ N(0,Eξ 2
i ) . Since P(N � x) ∼ (

√
2πx)−1 exp(−x2/2) as x → ∞ , we have

I7 � C
∞

∑
n=1

nr−2
√

[n/m]Eξ 2
1

g(n)
exp
(
− (1−2a

′
)2ε2g2(n)

2[n/m]Eξ 2
1

)
< ∞

by letting a be small enough such that (1− 2a
′
)ε > ε0 . And by Assumption 3.1, we

get that for p � t , x1/p/g(x) � Cy1/p/g(y) for every x > y . Hence

I8 � C
∞

∑
n=1

nr−1 E|X |qI{|X |� g(n)}
gq(n)

� C
∞

∑
n=1

nr−1

gq(n)

n

∑
j=1

E|X |qI{ j−1 � g−1(|X |) � j}

� C
∞

∑
j=1

E|X |qI{ j−1 � g−1(|X |) � j}
∞

∑
n= j

nr−1−q/pnq/p/gq(n)

� C
∞

∑
j=1

E|X |qI{ j−1 � g−1(|X |) � j}
∞

∑
n= j

nr−1−q/p jq/p/gq( j)

� C
∞

∑
j=1

gq( j)P( j−1 � g−1(|X |) < j)
jr

gq( j)

� CE(g−1(|X |))r < ∞.

For I4 , by (3) we have

I4 � C
∞

∑
n=1

nr−1

g(n)
E|X |I{|X |� aεg(n)}

� C
∞

∑
n=1

nr−1

g(n)

∞

∑
n=k

g(k)P(aεg(k) � |X | � aεg(k+1))

=
∞

∑
k=1

k

∑
n=1

nr−1

g(n)
g(k)P(aεg(k) � |X | � aεg(k+1))

� C
∞

∑
k=1

krP(aεg(k) � |X | � aεg(k+1)) � CE(g−1(|X |))r < ∞.

This completes the proof. �

Theorem 3.5 and Theorem 3.6 below extend Theorem 4 and Theorem 6 of Li and
Spǎtaru (2005) respectively.

THEOREM 3.5. Let r > 1 and q > 0 , and put

f (x) = ∑
n�1

nr−2P( max
1�k�n

|Sk| > x
√

n logn), x > 0.
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(i) If
∫ ∞

ε f (xq)dx < ∞ holds for some ε > 0 , then{
E|X |1/q < ∞ if q � 1/2r,

E[|X |2r(log+ |X |)−r] < ∞ if q > 1/2r.
(3.17)

(ii) If (3.17) holds and 0 < σ2 := EX2 + ∑∞
k=1 EX1Xk+1 < ∞ , then

∫ ∞
ε f (xq)dx < ∞ ,

ε > (σ
√

2r−2)1/q .

Proof. We prove (ii) first. Let f (s)(x) be defined in the same way as f (x) with Ss
k

taking the place of Sk . By Theorem 3.4, we can get

f (s)(x) < ∞ ε > 2σ
√

r−1 and f (x) < ∞ ε > σ
√

2(r−1)

(3.17) implies that
∫ ∞

a

( ∞

∑
n=2

nr−2P
(

max
1�k�n

|Xs
k | > xq

√
n logn

))
dx < ∞, a > 0.

By Markov’s inequality, we have

P( max
1�k�n

|Ss
k| > x

√
n logn) � E(Xs)2

x2 , n � 2.

Then, by Theorem 3.3 it follows that∫ ∞

ε
f (s)(xq)dx < ∞, ε > 2σ

√
r−1.

Now the proof is completed by Lemma 2.4.
The proof for (i) is standard and we omit it here. �

THEOREM 3.6. Let q > 0 , and put

f (x) = ∑
n�3

1
n
P( max

1�k�n
|Sk| > x

√
n loglogn), x > 0.

(i) If
∫ ∞

ε f (xq)dx < ∞ for some ε > 0 , then⎧⎨
⎩

E|X |1/q < ∞ if q < 1/2
E[|X |2(log+ |X |)/ log+ log+ |X |] < ∞ if q = 1/2

EX2 < ∞ if q > 1/2
. (3.18)

(ii) If (3.18) holds and 0 < σ2 := EX2+∑∞
k=1 EX1Xk+1 < ∞ , then

∫ ∞
ε f (xq)dx < ∞ ,

ε > (σ
√

2)1/q .

Proof. Since the proof of (i) is standard. We only prove (ii) here. By Theorem
3.1, we can get

∑
n�1

1
n
P( max

1�k�n
|Ss

k| > ε
√

n loglogn), ε > 2σ and f (x) < ∞, ε > σ
√

2.
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(3.18) implies that

∫ ∞

a

( ∞

∑
n=2

1
n
P
(

max
1�k�n

|Xs
k | > xq

√
n loglogn

))
dx < ∞, a > 0.

By Markov’s inequality, we have

P( max
1�k�n

|Ss
k| > x

√
n loglogn) � E(Xs)2

x2 , n � 2.

Then, by Theorem 3.3 and Lemma 2.4, we complete the proof. �

4. Conclusion

Now we will end this paper with the following summary. This article establishes
an NA type Hoffmann-Jørgensen inequality first. As an application, the inequality is
used to get some general theorems on complete convergence for NA random variables.
For independent cases, Li et al. (1995) provided some relaxed conditions to guarantee
the convergence rate. Li and Spǎtaru (2005) employed the symmetrization method and
the independent Hoffmann-Jørgensen inequality to derive the necessary and sufficient
moment condition for (1.1). By using the NA type Hoffmann-Jørgensen inequality,
we obtain the analogous results. With (3.6) and (3.7) being checked, one can easily
show that Theorem 2.2, Theorem 2.3, the ”if part” of Theorem 2.4, Theorem 2.6 and
Theorem 3.2 in Li, et. al. (1995) also hold for NA random variables. By using Theorem
3.1 or Theorem 3.2 and a similar method of Li, et al. (1995) we can extend Theorem
2.1 of Li et al. (1995) to NA random variables. Moreover, our Theorem 3.3, Theorem
3.5 and Theorem 3.6 are the extensions of Theorem 1, Theorem 4 and Theorem 6 of Li
and Spǎtaru (2005). Therefore, our work can be regarded as the extensions of results of
Li et al. (1995) and Li and Spǎtaru (2005).
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