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Abstract. In this paper we present a theoretical analysis in order to establish maximal and min-
imal vectors with respect to the majorization order of particular subsets of ℜn. Afterwards we
apply these issues to the calculation of bounds for a topological descriptor of a graph known as
the second Zagreb index. Finally, we show how our bounds may improve the results obtained in
the literature, providing some theoretical and numerical examples.

1. Introduction

The notion of majorization ordering was introduced by Hardy, Littlewood and
Polya ([12]) and is closely connected with the economic theory of disparity indices
([2]). But this concept was first presented by Schur ([21]) who investigated functions
which preserve the majorization order, the so-called Schur-convex functions and can
be also found in Karamata ([13]). Using this property and characterizing maximal and
minimal vectors with respect to majorization order under suitable constraints, many
inequalities involving such functions can be derived ([18]). A significant application of
this approach concerns the localization of ordered sequences of real numbers as they
occur in the problem of finding estimates of eigenvalues of a matrix ([4], [20], [22]
and [23]). Another field of interest concerns the network analysis, where the same
methodology can be useful applied in order to provide bounds for some topological
indicators of graphs which can be usefully expressed as a Schur-convex function, in
terms of the degree sequence of the graph (see [7]).

In this paper, after some preliminary definitions and notations, we perform a theo-
retical analysis aimed at determining maximal and minimal vectors with respect to the
majorization order of suitable subsets of ℜn . In Section 3 and 4 we extend the results,
obtained by Marshall and Olkin [18] into more specific sets of constraints determining
their extremal elements. In Section 5, we provide an application of these results, dealing
with the problem of computing bounds for the second Zagreb index, M2(G) of a partic-
ular class of graphs with a given number of pendant vertices. This index is extensively
studied in graph theory, as a chemical molecular structure descriptor ([8], [9], [10], [19]
and [24]) and, more generally, in network analysis, as a measure of degree-assortativity,
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quantifying how well a network is connected, ([1], [14] and [15]). In the latter context
the Zagreb index M2(G) is renamed S(G). Since determining S(G) requires a specific
algorithm ([14]), many bounds have been proposed in the literature ([5], [6], [17], [25]
and [26]). Recently Grassi et al. in [7] obtained different bounds through a majoriza-
tion technique. Using this approach, we derive new bounds in terms of graph degree
sequence and present some theoretical and numerical examples comparing our results
with the literature. Our conclusions are presented in Section 6.

2. Notations and preliminaries

Let ej, j = 1, ...n, be the fundamental vectors of R
n and set:

s0 = 0, sj =
j

∑
i=1

ei, j = 1, ...n,

vn = 0, vj =
n

∑
i= j+1

ei, j = 0, ...(n−1).

Recalling that the Hadamard product of two vectors x,y ∈ R
n is defined as follows:

x ◦ y = [x1y1,x2y2, ...,xnyn]
T

it is easy to verify the following properties, where 〈·, ·〉 denotes the inner product in
R

n :

i) 〈x ◦ y,z〉 = 〈x,y ◦ z〉
ii) 〈sh,vk〉 = h−min{h,k}
iii) sk ◦ sj = sh, h = min{k, j}
iv) vk ◦ sj = sj − sh = vh−vj, h = min{k, j}

DEFINITION 1. Assuming that the components of the vectors x , y ∈ R
n are ar-

ranged in nonincreasing order, the majorization order x � y means:〈
x,sk〉�

〈
y,sk〉 , k = 1, ...,(n−1)

and
〈x,sn〉 = 〈y,sn〉 .

In the sequel x∗(S) and x∗(S) will denote the maximal and the minimal elements
of a subset S ⊆ R

n with respect to the majorization order.
Given a positive real number a , it is well known [18] that the maximal and the

minimal elements of the set

Σa = {x ∈ R
n : x1 � x2 � ... � xn � 0,〈x,sn〉 = a}



MAJORIZATION UNDER CONSTRAINTS AND BOUNDS ON THE SECOND ZAGREB INDEX 331

with respect to the majorization order are respectively

x∗ (Σa) = ae1 and x∗ (Σa) =
a
n
sn.

Next sections are dedicated to the study of the maximal and the minimal elements,
with respect to the majorization order, of the particular subset of Σa given by

Sa = Σa ∩{x ∈ R
n : Mi � xi � mi, i = 1, ...n} , (1)

where m = [m1,m2, ...,mn]
T and M = [M1,M2, ...,Mn]

T are two assigned vectors ar-
ranged in nonincreasing order with 0 � mi � Mi, for all i = 1, ...n, and a is a positive
real number such that 〈m,sn〉 � a � 〈M,sn〉 . Notice that the intervals [mi,Mi] are not
necessarily disjointed unless the additional assumption Mi+1 < mi, i = 1, ...,(n−1) is
required. The existence of maximal and minimal elements of Sa are ensured by the
compactness of the set Sa and by the closure of the upper and lower level sets:

U(x) = {z ∈ Sa : x � z} , L(x) = {z ∈ Sa : z � x} .

3. The maximal element of Sa

We start computing the maximal element, with respect to the majorization order,
of the set Sa .

THEOREM 2. Let k � 0 be the smallest integer such that〈
M,sk〉+ 〈m,vk〉� a <

〈
M,sk+1

〉
+
〈
m,vk+1

〉
, (2)

and θ = a− 〈M,sk
〉− 〈m,vk+1

〉
. Then

x∗(Sa) = M◦ sk + θek+1 +m◦ vk+1 (3)

Proof. First of all we verify that x∗(Sa) ∈ Sa . It easy to see that 〈x∗(Sa), sn 〉 = a
and that mi � x∗i (Sa) �Mi for i 	= k+1. To prove that mk+1 � x∗k+1(Sa) �Mk+1 , notice
that from (2)

mk+1 =
〈
m,ek+1

〉
� a− 〈M,sk〉−〈m,vk+1

〉
= θ <

〈
M,ek+1

〉
= Mk+1.

Now we show that x � x∗(Sa) for all x ∈ Sa. By property i) follows〈
x∗(Sa),sj

〉
=
〈
M,sk ◦ sj

〉
+ θ
〈
ek+1,sj

〉
+
〈
m,vk+1 ◦ sj

〉
, j = 1, ...(n−1)

and by iii) and iv)〈
x∗(Sa),sj

〉
=
{ 〈

M,sj
〉

1 � j � k〈
M,sk

〉
+ θ +

〈
m,sj − sk+1

〉
(k+1) � j � (n−1)

.
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Thus, given a vector x ∈ Sa , for 1 � j � k we obtain〈
x,sj
〉

�
〈
M,sj

〉
=
〈
x∗(Sa),sj

〉
,

while for (k+1) � j � (n−1) , by iii),〈
x,sj
〉

= 〈x,sn〉−
〈
x,vj
〉

� a−
〈
m,vj

〉
=
〈
M,sk〉+θ +

〈
m,sj − sk+1

〉
=
〈
x∗(Sa),sj

〉
and the result follows. �

From this general result, the maximal element of particular subsets of Sa can be
deduced. We then focus on a specific case which will be useful in the application we
deal with in Section 5. We denote by 
x� the integer part of the real number x .

COROLLARY 3. Given 1 � h � n, let us consider the set

S[h]
a = Σa ∩{x ∈ R

n : M1 � x1 � ... � xh � m1,M2 � xh+1 � ... � xn � m2} , (4)

where
0 � m2 � m1, 0 � M2 � M1, mi < Mi, i = 1,2

and
hm1 +(n−h)m2 � a � hM1 +(n−h)M2.

Let a∗ = hM1 +(n−h)m2 and

k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌊
a−h(m1−m2)−nm2

M1 −m1

⌋
if a < a∗

⌊
a−h(M1−M2)−nm2

M2 −m2

⌋
if a � a∗

Then

x∗(S[h]
a ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣M1, .....,M1︸ ︷︷ ︸
k

,θ ,m1, .....,m1︸ ︷︷ ︸,
h−k−1

m2, .....,m2︸ ︷︷ ︸
n−h

⎤⎥⎦ if a < a∗

⎡⎢⎣M1, .....,M1︸ ︷︷ ︸
h

,M2, .....,M2︸ ︷︷ ︸
k−h

,θ ,m2, .....m2︸ ︷︷ ︸
n−k−1

⎤⎥⎦ if a � a∗

where M = M1sh +M2vh, m = m1sh +m2vh and θ = a− 〈M,sk
〉− 〈m,vk+1

〉
.

Proof. Easy computations give:

〈
M,sk〉=

{
hM1 +M2 (k−h) if k � h

kM1 if k < h
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〈
m,vk〉=

{
(n− k)m2 if k � h

(n−h)m2 +m1 (h− k) if k < h

and the values are linked for continuity when k = h. We distinguish two cases:

i) k � h : from (2) we have

k =
⌊

a−h(M1−M2)−nm2

M2 −m2

⌋
that is acceptable only if a � hM1 +(n−h)m2 = a∗. Then, from (3)

x∗(S[h]
a ) =

⎡⎢⎣M1, .....,M1︸ ︷︷ ︸
h

,M2, .....,M2︸ ︷︷ ︸
k−h

,θ ,m2, .....m2︸ ︷︷ ︸
n−k−1

⎤⎥⎦ .

ii) k < h : from (2) we get

k =
⌊

a−h(m1−m2)−nm2

M1 −m1

⌋
that is acceptable only if a < hM1 +(n−h)m2 = a∗. Then, from (3)

x∗(S[h]
a ) =

⎡⎢⎣M1, .....,M1︸ ︷︷ ︸
k

,θ ,m1, .....,m1︸ ︷︷ ︸,
h−k−1

m2, .....,m2︸ ︷︷ ︸
n−h

⎤⎥⎦ . �

REMARK 4. When a = a∗ it is worthwhile to note that k = h and θ = m2 so that

x∗(S[h]
a ) =

⎡⎢⎣M1, .....,M1︸ ︷︷ ︸
h

,m2, .....,m2︸ ︷︷ ︸
n−h

⎤⎥⎦ .

REMARK 5. The assumption mi < Mi in Corollary 3 can be relaxed to mi � Mi .

Indeed, if mi = Mi, i = 1,2, the set S[h]
a reduces to the singleton {m1sh+m2vh} , while if

m1 = M1,m2 < M2 the first h components of any x∈ S[h]
a are fixed and equal to m1 and

the maximal element of S[h]
a can be computed by the maximal element of Sa−hm1 ∈R

n−h

(see Corollary 6 below). The case m2 = M2,m1 < M1 is similar.

The next corollary is proved in [18] and it immediately follows from Corollary 3
when m1 = m2 = m and M1 = M2 = M .

COROLLARY 6. Let 0 � m < M and m � a
n

� M. Given the subset

S1
a = Σa ∩{x ∈ R

n : M � x1 � x2 � ... � xn � m}
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we have

x∗(S1
a) = Msk + θek+1 +mvk+1,

where k =
⌊

a−nm
M−m

⌋
and θ = a−Mk−m(n− k−1).

In particular when m = 0 we obtain

x∗(S1
a) = Msk + θek+1,

where k =
⌊ a
M

⌋
and θ = a−Mk.

It is worthwhile to notice that Sa is a subset of S1
a where m = mn and M = M1 .

Thus, the following inequality holds:

x∗(Sa) � x∗(S1
a). (5)

Finally we recall the following result (see [4]).

COROLLARY 7. Let 1 � h � n and 0 < α � a/h. Given the subset

S2
a = Σa∩{x ∈ R

n : xi � α, i = 1, ...h} ,

we have x∗(S2
a) = (a−hα)e1 + αsh.

Proof. The set S2
a can be obtained by (1) for m1 = α , m2 = 0, M1 = M2 = a.

Since a∗ = ha � a, two cases can be distinguished:

i) h = 1 : we have a∗ = a and from Remark 4 it immediately follows that k = 1
and θ = 0 so that

x∗(S2
a) = ae1.

ii) h > 1 : we have a∗ > a and Corollary 3 implies that k =
⌊

a−hα
a−α

⌋
= 0. Thus,

x∗(S2
a) =

⎡⎢⎣θ ,α, ...,α︸ ︷︷ ︸
h−1

,0, ...,0︸ ︷︷ ︸
n−h

⎤⎥⎦
where θ = a− (h−1)α , which leads to

x∗(S2
a) = θe1 + αsh −αe1 = (a−hα)e1 + αsh. �
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4. The minimal element of Sa

In this section we study the structure of the minimal element, with respect to the
majorization order, of the set Sa .

THEOREM 8. Let k � 0 and d � 0 be the smallest integers such that

1) k+d < n

2) mk+1 � ρ � Mn−d where ρ =
a−〈m,sk〉− 〈M,vn−d〉

n− k−d
.

Then
x∗(Sa) = m◦ sk + ρ(sn−d− sk)+M◦ vn−d.

Proof. The minimal element of the set Σa is x◦(Σa) = a
n sn . If m1 � x∗(Σa) � Mn ,

then x∗(Σa) ∈ Sa and x∗(Sa) = x∗(Σa) (notice that in this case k = d = 0).
If x∗(Σa) /∈ Sa , let k and d the smallest integers satisfying conditions 1) and 2)

above. It is easy to verify that x∗(Sa) ∈ Sa. In order to prove that it is the minimal
element, we must show that for all x ∈ Sa

〈x∗(Sa),sh〉 � 〈x,sh〉, h = 1, · · ·(n−1). (6)

We distinguish three cases:

i) 1 � h � k . Since 〈x∗(Sa),sh〉 = 〈m,sh〉 , the inequality (6) is straightforward.

ii) k + 1 � h � n− d . We prove the inequality (6) for h = k + 1. By induction,
similar arguments can be applied to prove the inequality for h = k+2, · · ·(n−d) .

By contradiction, let us assume that there exists x ∈ Sa such that

〈x∗(Sa),sk+1〉 = 〈m,sk〉+ ρ > 〈x,sk〉+ xk+1.

Then x j � xk+1 < 〈m,sk〉+ ρ −〈x,sk〉 , for j = k+2, · · ·n and thus,

〈x,sn−d〉 = 〈x,sk〉+ 〈x,sn−d− sk〉 < 〈x,sk〉+(n−d− k)(〈m,sk〉+ ρ −〈x,sk〉).
Taking into account that

〈x,sn−d〉 = a−〈x,vn−d〉 � a−〈M,vn−d〉,
we get

a−〈M,vn−d〉 < (1−n+d+ k)〈x,sk〉+(n−d− k)(〈m,sk〉+ ρ).

Using the expression of ρ , we obtain

0 < (1−n+d+ k)(〈x,sk〉− 〈m,sk〉).
Since (1−n+d +k) � 0 and 〈x,sk〉� 〈m,sk〉 , the inequality above is false, and
we have got the contradiction.
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iii) n−d+1 � h < n . For any x ∈ Sa we have

〈x∗(Sa),sh〉 = 〈x∗(Sa),sn−d〉+ 〈x∗(Sa),sh − sn−d〉 =

= 〈m,sk〉+(n−d− k)ρ + 〈M,sh − sn−d〉 =

= a−〈M,vn−d〉+ 〈M,sh − sn−d〉 =

= a−〈M,sn− sh〉 =

= 〈x,sh〉+ 〈x,sn− sh〉− 〈M,sn− sh〉
� 〈x,sh〉. �

Now we analyze the minimal element of particular subsets of Sa . We start consid-
ering the intervals [mi,Mi], i = 1, · · · ,n disjointed. Notice that this additional assump-
tion does not modify the choice of the maximal element, while it simplifies the choice
of the minimal element.

COROLLARY 9. Let us consider the set Sa and assume

Mi+1 < mi for i = 1, ...(n−1). (7)

Let k � 0 be the smallest integer such that〈
m,sk+1

〉
+
〈
M,vk+1

〉
� a <

〈
m,sk〉+ 〈M,vk〉 (8)

and ρ = a− 〈m,sk
〉− 〈M,vk+1

〉
. Then

x∗(Sa) = m◦ sk + ρek+1 +M◦ vk+1

Proof. By condition 2) in Theorem 8 and assumption (7), we get

Mk+2 < mk+1 � ρ � Mn−d .

Thus, k > n− d− 2. Since k is an integer such that k < n− d , we have necessarily
k = n−d−1 and the thesis follows. �

Another case of practical interest regards the set studied in Corollary 3.

COROLLARY 10. Given 1 � h � n, let us consider the set

S[h]
a = Σa∩{x ∈ R

n : M1 � x1 � ... � xh � m1,M2 � xh+1 � ... � xn � m2} ,

where 0 � m2 � m1 , 0 � M2 � M1 , mi < Mi , i = 1,2 and

hm1 +(n−h)m2 � a � hM1 +(n−h)M2.
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If m1 � a
n

� M2 we have x∗(S
[h]
a ) = a

n sn . Otherwise, let ã = hm1 +(n−h)M2 .

If

{
a < m1n
a � ã

, given ρ =
a−hm1

n−h
, we have

x∗(S
[h]
a ) = m1sh + ρvh =

⎡⎢⎣m1, .....,m1︸ ︷︷ ︸
h

,ρ , .....,ρ︸ ︷︷ ︸
n−h

⎤⎥⎦ .

If

{
a > M2n
a � ã

, given ρ =
a−M2(n−h)

h
, we have

x∗(S
[h]
a ) = ρsh +M2vh =

⎡⎢⎣ρ , ...,ρ︸ ︷︷ ︸
h

,M2, ...,M2︸ ︷︷ ︸
n−h

⎤⎥⎦ .

Proof. Let us investigate when the best choice k = d = 0 is admissible. Under
this assumption, from condition 2) in Theorem 8 we have

m1 � ρ =
a
n

� Mn = M2. (9)

If the condition above holds, the minimal element is x∗(S
[h]
a ) =

a
n
sn.

Otherwise if condition (9) does not hold, we begin with the case k = 0. We have

ρ =
a−〈M,vn−d〉

n−d

and
x∗(S

[h]
a ) = ρsn−d +M◦ vn−d.

From condition 2) in Theorem 8, we have m1 � ρ � Mn−d and, taking into account

that the elements in x∗(S
[h]
a ) are in nonincreasing order, ρ � Mn−d+1 . We distinguish

three cases:

i) if n−d > h then necessarily ρ = M2 , but this contradicts (9).

ii) if n−d < h then ρ = M1 and this is admissible only if a = M1h+M2(n−h), so
that

x∗(S
[h]
a ) =

⎡⎢⎣M1, .....,M1︸ ︷︷ ︸
h

,M2, .....,M2︸ ︷︷ ︸
n−h

⎤⎥⎦ .

iii) if n−d = h, then ρ =
a−M2d
n−d

and

x∗(S
[h]
a ) =

⎡⎢⎣ρ , .....,ρ︸ ︷︷ ︸
h

,M2, .....,M2︸ ︷︷ ︸
n−h

⎤⎥⎦ .
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This result is admissible only if ρ > M2 and m1 � ρ � M1 , i.e., if

{
a > M2n
a � ã

.

A symmetric case occurs when d = 0, so we have

ρ =
a−〈m,sk〉

n− k

and
x∗(S

[h]
a ) = m◦ sk + ρvk.

From condition 2) in Theorem 8, we have that mk+1 � ρ � M2 and, taking into account

that the elements in x∗(S
[h]
a ) are in nonincreasing order, ρ � mk . We distinguish three

cases:

i) if k < h then necessarily ρ = m1 , but this contradicts (9).

ii) if k > h, then ρ = m2 and this is possible only if a = hm1 +m2(n−h), so that

x∗(S
[h]
a ) =

⎡⎢⎣m1, .....,m1︸ ︷︷ ︸
h

,m2, .....,m2︸ ︷︷ ︸
n−h

⎤⎥⎦ .

iii) if k = h , then ρ =
a−hm1

n−h
and

x∗(S
[h]
a ) =

⎡⎢⎣m1, .....,m1︸ ︷︷ ︸
h

,ρ , .....,ρ︸ ︷︷ ︸
n−h

⎤⎥⎦ .

This result is admissible only if m2 � ρ � M2 and ρ < m1 , i.e., only if

{
a < m1n
a � ã

.

�
Corollary 10 distinguishes the minimal element of S[h]

a whether{
a < m1n
a � ã

or

{
a > M2n
a � ã

.

We note that, if m1 � M2 , the first inequality in the systems above is always stronger
than the second one, while, if M2 < m1 , the second one is stronger than the first. Thus,

we can summarize the minimal element of S[h]
a in a more accessible way according to

the following scheme:

i) If m1 � M2 then

x∗(S
[h]
a ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a
n
sn if m1 � a

n
� M2

m1sh +
a−hm1

n−h
vh if

a
n

< m1

a−M2(n−h)
h

sh +M2vh if
a
n

> M2

(10)
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and the vectors are linked for continuity.

ii) If M2 < m1 then

x∗(S
[h]
a ) =

⎧⎪⎨⎪⎩
m1sh +

a−hm1

n−h
vh if a < ã

a−M2(n−h)
h

sh +M2vh if a � ã.

(11)

REMARK 11. When a = ã it is worthwhile to note that

x∗(S
[h]
a ) = m1sh +M2vh =

⎡⎢⎣m1, .....,m1︸ ︷︷ ︸
h

,M2, .....,M2︸ ︷︷ ︸
n−h

⎤⎥⎦ .

REMARK 12. We note that the minimal element of the set S[h]
a does not necessar-

ily have integer components, while this is not the case for the maximal element. For

some applications, it is meaningful to find the minimal vector in S[h]
a with integer com-

ponents. We illustrate below the procedure to follow. Let us consider, for instance, the

vector x∗(S
[h]
a ) =

a
n
sn which corresponds to the case m1 � a

n
� M2 (see (10)). If

a
n

is

not an integer, let us find the index k , 1 � k � n , such that(⌊a
n

⌋
+1
)

k+
⌊a
n

⌋
(n− k) = a

i.e., k = a−
⌊a
n

⌋
n . The vector

x1
∗ =
(⌊a

n

⌋
+1
)

sk +
⌊a
n

⌋
vk

is the minimal element of S[h]
a with integer components.

With slight modification, the same procedure can be applied also in the other cases

illustrated in (10) or (11), where only some of the components of x∗(S
[h]
a ) can be non

integer.

To complete our analysis, we show how from Corollary 10, particular cases can be
deduced. More precisely, assuming in Corollary 10 m1 = m2 , M1 = M2 or h = n we
obtain the results proved in [18].

COROLLARY 13. Let 0 � m < M and m � a
n

� M. Given the subset

S1
a = Σa∩{x ∈ R

n : M � x1 � ... � xn−1 � xn � m}

we have x∗(S1
a) =

a
n
sn .
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As we did with the maximal element, it is clear that the vector provided by Corol-
lary 10 majorizes the vector in Corollary 13, i.e., the following inequality holds:

x∗(S1
a) � x∗(Sa). (12)

Assuming m1 = α , m2 = 0, M1 = M2 = a or m1 = m2 = 0 and M2 = α , M1 = a
we easily obtain the following two corollaries (see [4]).

COROLLARY 14. Let 1 � h � n and 0 < α � a/h. Given the subset

S2
a = Σa∩{x ∈ R

n : xi � α, i = 1, ...h} ,

we have

x∗(S2
a) =

⎧⎨⎩
a
n
sn if α � a

n
αsh + ρvh with ρ =

a−αh
n−h

if α >
a
n

COROLLARY 15. Let 1 � h � (n−1) and 0 < α < a. Given the subset

S3
a = Σa ∩{x ∈ R

n : xi � α, i = h+1, ...n},

we have

x∗(S3
a) =

⎧⎨⎩
a
n
sn if α � a

n

ρsh + αvh with ρ =
a− (n−h)α

h
if α <

a
n

5. New bounds for the second Zagreb index

Let G = (V,E) a simple, connected, undirected graph with fixed order |V | = n
and fixed size |E| = m. Denote by π = (d1,d2, ..,dn) the degree sequence of G, being
di the degree of vertex vi , arranged in nonincreasing order d1 � d2 � · · · � dn . We
recall that the sequences of integers which are degree sequences of a simple graph were
characterized by Erdős and Gallai (see [11]). The second Zagreb index is defined as

S(G) = ∑did j

(vi,v j)∈E

or equivalently ([7])

S(G) =

∑
(vi,v j)∈E

(di +d j)
2−

n
∑
i=1

d3
i

2
. (13)

In order to compute upper and lower bounds for S(G) we refer to [7], where a method-
ology based on majorization order was proposed. Before presenting our results, we
briefly describe the procedure we will follow.
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Let π be a fixed degree sequence and x ∈ R
m the vector whose components are

di +d j , (vi,v j) ∈ E . In [16] it is shown that

∑
(vi,v j)∈E

(di +d j) =
n

∑
i=1

d2
i

and thus, ∑m
i=1 xi = ∑n

i=1 d2
i is a constant. Given a suitable subset S of

Σa =

{
x ∈ R

m : x1 � x2 � ... � xm � 0,
m

∑
i=1

xi = a

}
,

where a = ∑n
i=1 d2

i , the Schur-convex function f (x) =
m
∑
i=1

x2
i attains its minimum and

maximum on S at f (x∗(S)) and f (x∗(S)) respectively, being x∗(S) and x∗(S) the
extremal vectors of S with respect to the majorization order (see [18]). Hence from
(13) the maximum and the minimum of S(G) can be easily deduced.

Let Cπ be the class of graphs G = (V,E) with h pendant vertices and degree
sequence

π = (d1,d2, ..,dn−h−1,dn−h︸ ︷︷ ︸
n−h

,1, ...,1︸ ︷︷ ︸
h

), n � 4,n−h � 2,h � 1

and let us consider graphs G ∈ Cπ with maximum vertex degree upper bounded by
dn−h +dn−h−1 , i.e.,, d1 < dn−h +dn−h−1 , or equivalently

1+d1 � dn−h +dn−h−1. (14)

For G ∈ Cπ , we note that this constraint is always satisfied, for example, if the maxi-
mum vertex degree is at most three, as for some graphs of chemical interest where the
maximum degree is four.

We observe that for i, j = 1, ...,n−h and (vi,v j) ∈ E :

dn−h +dn−h−1 � di +d j � d1 +d2,

while for i = n−h+1, ...,n , j = 1, ...,n−h and (vi,v j) ∈ E :

1+dn−h � di +d j � 1+d1.

Furthermore, inequality (14) assures that the above intervals are concatenated so
that the vector x ∈ R

m can be arranged in nonincreasing order with the h pendant
vertices in the last h positions.

Setting m1 = dn−h +dn−h−1 , m2 = 1+dn−h , M1 = d1 +d2 , M2 = 1+d1, let
us consider the set

Sm−h
a = Σa ∩{x ∈ R

n : M1 � x1 � ...xm−h � m1,M2 � xm−h+1 � ...xm � m2} .
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Applying Corollaries 3 and 10 we can compute maximal and minimal elements of
Sm−h

a with respect to the majorization order and from (13) we obtain:

∥∥x∗(Sm−h
a )

∥∥2
2−

n
∑
i=1

d3
i

2
� S(G) �

∥∥x∗(Sm−h
a )

∥∥2
2 −

n
∑
i=1

d3
i

2
, (15)

where ‖·‖2 stands for the euclidean norm.
In spite of inequalities (5) and (12), these bounds can’t be worse than those in [7],

and they are often sharper.

It is noteworthy that both equalities in (15) are attained if and only if the set S[h]
a

reduces to a singleton, that is, by Remark 5 , mi = Mi, i = 1,2.

The condition m2 = 1+ dn−h = M2 = 1+ d1 implies that in G = (V,E) all non-
pendant vertices have the same degree. Some examples of this kind of graphs are:

i) all trees with degree sequence

π =

⎛⎜⎝k, ...,k︸ ︷︷ ︸
r

, 1, ...,1︸ ︷︷ ︸
rk−2r+2

⎞⎟⎠ , (16)

including, as particular case, for k = 2, the path.
ii) graphs obtained by adding the same number s of pendant vertices to each

vertex of a k− regular graph on r vertices, being kr even, 2 � k � r−1, i.e.,

π =

⎛⎝k+ s, ...,k+ s︸ ︷︷ ︸
r

,1, ...,1︸ ︷︷ ︸
sr

⎞⎠ .

Computing S(G) , from Remark 5 and (15), we get k (2kr−2r− k+2) and
1
2r
(
2s+ ks+ k2

)
(k+ s) respectively.

In the following we provide some significant examples, computing bounds for
graphs belonging to Cπ and satisfying (14). Furthermore, a comparison with some
other known bounds (see [5], [6], [17], [25] and [26]) are provided.

EXAMPLE 1. Let us consider the classes of trees Tt,s with degree sequences πi

(i = 1,2,3) given by:

i) π1 =

⎛⎜⎝t,s, ....,s︸ ︷︷ ︸
t

,1, ....,1︸ ︷︷ ︸
t(s−1)

⎞⎟⎠ , 2 � s < t < 2s

ii) π2 =

⎛⎜⎝s, ....,s︸ ︷︷ ︸
t

, t,1, ....,1︸ ︷︷ ︸
t(s−1)

⎞⎟⎠ , s > t � 2
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iii) π3 =

⎛⎜⎝t, ....,t︸ ︷︷ ︸
t+1

,1, ...,1︸ ︷︷ ︸
t(t−1)

⎞⎟⎠ , t � 2

Case i) .

M1 = t + s m1 = 2s
M2 = t +1 m2 = s+1

m = ts h = t(s−1)

Applying Corollary 3 and Remark 4 it follows that:

x∗ (Tt,s) =

⎡⎣(t + s) , .....,(t + s)︸ ︷︷ ︸
t

,(s+1) , ....,(s+1)︸ ︷︷ ︸
st−t

⎤⎦
while from (10), (11) and Remark 12 we get

x∗ (Tt,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣2s, ....,2s︸ ︷︷ ︸
t

,s+2, .....,s+2︸ ︷︷ ︸,
t(t−s)

s+1, .....,s+1︸ ︷︷ ︸
t(2s−t−1)

⎤⎥⎦ if t < 2s−1

⎡⎣2s, ....,2s︸ ︷︷ ︸
t

,s+2, .....,s+2︸ ︷︷ ︸
st−t

⎤⎦ if t = 2s−1

. (17)

Taking into account (15), the following inequalities hold:{ 1
2 t
(
3t− t2−5s+2st +3s2

)
� S(Tt,s) � ts(s+ t−1) if t < 2s−1

1
2 (2s−1)

(
3s+3s2−4

)
� S(Tt,s) � s(2s−1)(3s−2) if t = 2s−1

. (18)

We note that in (17) the right-hand equality holds if Tt,s is the tree obtained by the
union of t stars, each one of order s (see Figure 1).

Case ii) .

M1 = 2s m1 = t + s
M2 = s+1 m2 = t +1

m = ts h = t(s−1)

By Corollary 3 follows

x∗ (Tt,s) =

⎡⎢⎣2s, ....,2s︸ ︷︷ ︸
t

,(s+1), ....,(s+1)︸ ︷︷ ︸
st−2t

,(t +1) , ....,(t +1)︸ ︷︷ ︸
t

⎤⎥⎦
while from Remark (11) we get

x∗ (Tt,s) =

⎡⎣s+ t, ....,s+ t︸ ︷︷ ︸
t

,(s+1), ....,(s+1)︸ ︷︷ ︸
st−t

⎤⎦ .
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s

s

s

s

s

s
t

Figure 1: Example illustrating tree Tt,s for 2 � s < t < 2s .

Taking into account (15), the following inequalities hold:

ts(s+ t−1) � S(Tt,s) � t(t−2s+2s2) (19)

We note that the left-hand equality holds if Tt,s is the tree obtained by the union of
t stars each one of order s (see Figure 2).

s

st

s

Figure 2: Example illustrating tree Tt,s for s > t � 2 .

Case iii) . This is a particular case of (16), for k = t and r = t +1, such that

S(Tt,s) = 2t3− t2. (20)
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Finally we observe that for the class of trees with degree sequence π1,π2 or π3 ,
our upper bounds always perform better than those in [6]. Indeed, in the presence of
pendant vertices and with m = ts and n = ts+1, the bound in [6] becomes:

S(G) � 2m2− (n−1)m = t2s2 (21)

which is always greater than the upper bound in (18), (19), (20).

EXAMPLE 2. Let us consider a unicyclic graph G , i.e., a graph with n = m having
the following degree sequence

π = (3,3,3,3,2,2,2,2,2,1,1,1,1).

Being (14) satisfied, by Remark 12, (15) gives

64 � S(G) � 74.

The comparison (see Table 1) with bounds in [5], [6], [7], [17] and [25] shows that
our bounds always perform better. Indeed, we obtain:

Bounds Lower Upper
ours 64 74
[5] x 277.9
[6] x 182
[7] 61.462 77
[17] 28 76
[25] 64 92

Table 1: Lower and upper bounds for S(G)

EXAMPLE 3. Consider the graphs G and H with degree sequences π1 = (3,2,2,1)
and π2 = (3,3,3,3,2,1,1) respectively, as in Examples 2.2 and 2.3 in [7]. Besides the
bounds discussed in [7], we add the comparison with those in [6], [25] and [26]. Ob-
serving that G is a unicyclic graph (m = n) and H is a bicyclic graph (m = n + 1) ,
both with pendant vertices, bounds in [25] and [26] can also be respectively properly
applied.

Bounds for S(G) are shown in Table 2.
Our bounds are sharper than [5], [7] and [17]. The best one is provided by [25]

and has been specifically constructed for this class of graph.
Bounds for S(G) are shown in Table 3.

Note that our bounds perform better than all the others and in particular better than
[26] which is properly designed for bicyclic graphs as H is.
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Ref. Lower Upper
ours 19 20
[5] x 22.511
[6] x 20
[7] 18.5 20
[17] 18 22
[25] 19 19

Table 2: Lower and upper bounds for S(G) .

ref. lower upper
ours 54 58
[5] x 99.75
[6] x 80
[7] 51.25 58
[17] 40 59
[26] 50 68

Table 3: Lower and upper bounds for S(H) .

6. Conclusion

The purpose of this paper is to establish maximal and minimal vectors with respect
to the majorization order under sharper constraints than those presented by Marshall
and Olkin in [18]. We have shown how these results can provide a simple methodology
for localizing the second Zagreb index of a particular class of graphs. Some numerical
examples have been discussed, showing that our bounds often provide sharper bounds
than those in the literature. Moreover, in network analysis, there are a variety of poten-
tial applications for this kind of approach, considering other topological indices which
can be defined by a suitable Schur-convex function.
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