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Abstract. The changes in the nonnegative and positive polar factors of generalized polar de-
composition and polar decomposition are studied under the additive perturbation. Some new
perturbation bounds are obtained. These bounds are different from precious ones in form and
measure and, in some cases, may be smaller than the corresponding existing ones. Furthermore,
the corresponding perturbation bounds for generalized nonnegative and positive polar factors of
(M,N) weighted polar decomposition are also presented as the straightforward corollaries.

1. Introduction and preliminaries

Let C
m×n and C

m×n
r denote the set of m×n complex matrices and the subset of

Cm×n comprising matrices with rank r , respectively. Let Ir be the identity matrix of
order r . Given A∈ Cm×n , the symbols A∗ , A† , R(A) , ‖A‖2 , ‖A‖F , and ‖A‖ stand for
its conjugate transpose, Moore–Penrose inverse, range, spectral norm, Frobenius norm,
and unitarily invariant norm, respectively.

For a matrix A ∈ Cm×n
r , there is a partial isometric matrix Q ∈ Cm×n and a Her-

mitian positive semidefinite matrix H ∈ Cn×n such that

A = QH. (1.1)

The decomposition (1.1) is called the generalized polar decomposition of A (e.g., [2,
25]), and Q and H are called the subunitary polar factor and nonnegative polar factor
of this decomposition, respectively. Usually, when rank(A) = n , the decomposition
(1.1) is called the polar decomposition and H is the positive polar factor.

In general, the generalized polar decomposition is not unique, while it has been
proved that it is unique if the decomposition satisfies

R(Q∗) = R(H). (1.2)
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The condition (1.2) can be found in [2]. Under this condition, the generalized polar
decomposition (1.1) can be calculated from the singular value decomposition [2]

A = U

(
Σ 0
0 0

)
V ∗ = U1ΣV ∗

1 (1.3)

by

Q = U1V
∗
1 and H = V1ΣV ∗

1 , (1.4)

where U = (U1,U2) ∈ Cm×m
m and V = (V1,V2) ∈ Cn×n

n are unitary, U1 ∈ Cm×r
r ,V1 ∈

Cn×r
r , Σ = diag(σ1, · · · ,σr) , and σ1 � · · · � σr > 0 are the nonzero singular values of

A . In this paper, we assume that the condition (1.2) is always satisfied. Note that the
condition (1.2) is automatic when rank(A) = n and in this case

A = U

(
Σ
0

)
V ∗ = U1ΣV ∗,Q = U1V

∗, and H =VΣV ∗. (1.5)

The problem of estimating the perturbation bounds for the generalized polar de-
composition and polar decomposition has been studied by many authors for the additive
perturbation in various norms (e.g., [1, 3–10, 12–15, 17–22, 25, 30]). The additive per-
turbation refers to the situation when the perturbed matrix Ã is represented as A+E .
In the past works, most attention was given to how the subunitary or unitary factor Q
changed (e.g., [1, 3, 6–10, 12, 14, 15, 18–22, 25, 30]), but only some to how the non-
negative or positive polar factor H changed (e.g., [1, 3–6, 8, 10, 12, 13, 17, 22, 25, 30]).
In the present paper, we focus our attention on the perturbation bounds for nonnegative
and positive polar factors, and derive some new bounds in the unitary invariant norm,
spectral norm, and Frobenius norm. These new bounds are different from precious ones
in form and measure. As a result, they may be smaller than the corresponding exist-
ing bounds including the ones that are considered to be best. In addition, as pointed
out in [28, 30], the (M,N) weighted polar decomposition, as a generalization of the
generalized polar decomposition and polar decomposition, also has some important
applications. Therefore, we also provide the corresponding perturbation bounds for
generalized nonnegative and positive polar factors of this decomposition in Section 3.

The following are several existing perturbation bounds for nonnegative and posi-
tive polar factors, which will be used to compare with the results obtained in this paper.

Let A = QH and Ã = Q̃H̃ be the generalized polar decompositions or polar de-
compositions of A and Ã = A+E , respectively. If A, Ã ∈ C

n×n
n , the following result

holds, which could be found in [3]:∥∥∥H̃−H
∥∥∥ �

(
1+

2min{σ1, σ̃1}
σn + σ̃n

)
‖E‖ , (1.6)

where σ1,σn and σ̃1, σ̃n are the biggest and smallest nonzero singular values of A and
Ã , respectively. If A, Ã ∈ Cm×n

n and ‖E‖2 � σn , Chen and Li [6] improved the bound
(1.6) to some extent and obtained the following result:∥∥∥H̃−H

∥∥∥ �
[
(κ(A)+1)ω(

∥∥A†
∥∥

2 ‖E‖2)−1
]‖E‖ (1.7)
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� κ(A)
1−‖A†‖2 ‖E‖2

‖E‖ , (1.8)

where ω(ε) = 1
ε ln 1

1−ε and κ(A) = ‖A‖2

∥∥A†
∥∥

2 .
As the special case of the result given in [30], we have the following perturbation

bound for nonnegative polar factor, i.e, if A, Ã ∈ C
m×n
r , then∥∥∥H̃−H

∥∥∥ �
(

2+
σ1 + σ̃1

σr + σ̃r

)
‖E‖ , (1.9)

where σr, σ̃r are the smallest nonzero singular values of A, Ã , respectively. Moreover,
an alternative perturbation bound for positive polar factor can be also got from [30], i.e,
if A, Ã ∈ Cm×n

n or A, Ã ∈ Cn×n
n , then∥∥∥H̃−H

∥∥∥ �
(

σ1 + σ̃1

σn + σ̃n

)
‖E‖ . (1.10)

This bound was rediscovered by Chen [5] recently. Furthermore, in [5], Chen also
presented the following perturbation bound for the positive polar factor:∥∥∥H̃ −H

∥∥∥ �
(

σ1σ̃1

σ1 + σ̃1

)(∥∥EA†
∥∥+

∥∥∥EÃ†
∥∥∥)

. (1.11)

In the spectral norm, the following perturbation bound for positive polar factor can
be found in [4], i.e., if A, Ã ∈ Cn×n

n , then∥∥∥H̃−H
∥∥∥

2
�

(
1+ log(max{σ1, σ̃1}max{ 1

σn
,

1
σ̃n

}
)
‖E‖2 . (1.12)

Moreover, in [4], Bhatia also presented the following bound∥∥∥H̃−H
∥∥∥

2
� C(n)‖E‖2 , (1.13)

where C(n) = O(logn) and is considered to be best possible.
In Frobenius norm, the following perturbation bound for nonnegative or positive

polar factor can be found in [10, 13, 22, 25], i.e., if A, Ã ∈ Cm×n
r , Cm×n

n , or Cn×n
n , then∥∥∥H̃−H

∥∥∥
F

�
√

2‖E‖F . (1.14)

In general, the factor
√

2 is considered to be best possible. Chen and Li [8] improved
the bound (1.14) for positive polar factor, i.e., if A, Ã ∈ Cm×n

n , then

∥∥∥H̃−H
∥∥∥

F
�
√

2max

⎧⎨
⎩

√
σ2

1 + σ̃2
n

σ1 + σ̃n
,

√
σ̃2

1 + σ2
n

σ̃1 + σn

⎫⎬
⎭‖E‖F . (1.15)

In order to obtain the results of this paper, two lemmas are needed, where Lemma
1.1 can be found in [11] and Lemma 1.2 can be found in [16].
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LEMMA 1.1. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and S ∈
Cs×t , and

Δ = [α,β ] ⊂ R, Δ
′
= R\ [α − δ ,β + δ ], δ > 0.

Let λ (Ω) and λ (Γ) denote the eigenvalue sets of Ω and Γ , respectively. If

λ (Ω) ⊂ Δ, λ (Γ) ⊂ Δ
′
,

then the equation ΩX −XΓ = S has a unique solution X ∈Cs×t , and moreover, ‖X‖�
‖S‖
δ for any unitarily invariant norm.

LEMMA 1.2. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and let
λ (Ω) and λ (Γ) denote the sets of eigenvalues of Ω and Γ , respectively. If λ (Ω)∩
λ (Γ) = /0 , then for any E,F ∈ Cs×t the equation ΩX −XΓ = ΩE +FΓ has a unique
solution X ∈ Cs×t , and moreover,

‖X‖F � 1
η

√
‖E‖2

F +‖F‖2
F ,

where η = minω∈λ (Ω),γ∈λ (Γ)
|ω−γ|√
|ω|2+|γ|2

. If, in addition, F = 0 , then we have a better

bound

‖X‖F � 1
η
‖E‖F ,

where η = minω∈λ (Ω),γ∈λ (Γ)
|ω−γ |
|ω| .

2. New perturbation bounds for nonnegative
and positive polar factors

Let the perturbed matrix be Ã ∈ C
m×n
r . Similar to (1.1) and (1.3), we present the

generalized polar decomposition and singular value decomposition of Ã as follows:

Ã = Q̃H̃, Ã = Ũ

(
Σ̃ 0
0 0

)
Ṽ ∗ = Ũ1Σ̃Ṽ ∗

1 , (2.1)

in which

Q̃ = Ũ1Ṽ
∗
1 , H̃ = Ṽ1Σ̃Ṽ ∗

1 , (2.2)

where Ũ = (Ũ1,Ũ2) ∈ C
m×m
m and Ṽ = (Ṽ1,Ṽ2) ∈ C

n×n
n are unitary, Ũ1 ∈ C

m×r
r , Ṽ1 ∈

Cn×r
r , Σ̃ = diag(σ̃1, · · · , σ̃r) , and σ̃1 � · · · � σ̃r > 0 are the nonzero singular values of

Ã . When rank(Ã) = n ,

Ã = Ũ

(
Σ̃
0

)
Ṽ ∗ = Ũ1Σ̃Ṽ ∗,Q̃ = Ũ1Ṽ

∗, and H̃ = Ṽ Σ̃Ṽ ∗. (2.3)

In the following, we first consider the perturbation bounds for nonnegative polar
factors.
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THEOREM 2.1. Let A = QH, Ã = Q̃H̃ be the generalized polar decompositions
of A, Ã = A+E ∈ Cm×n

r , respectively. Then

∥∥∥H̃ −H
∥∥∥ �

(
σ2

1

σr + σ̃r
+ σ̃1 + σ1

)∥∥∥(Ã∗Ã−A∗A)(A∗A)†
∥∥∥ , (2.4)

where σ1,σr and σ̃1, σ̃r are the biggest and smallest nonzero singular values of A and
Ã , respectively.

Proof. Using the singular value decomposition of A in (1.3), the Moore-Penrose
inverse of A can be expressed as

A† = V

(
Σ−1 0
0 0

)
U∗ = V1Σ−1U∗

1 . (2.5)

Thus, considering (1.3) and (2.1), we have

A∗A = V1Σ2V ∗
1 , (A∗A)† = V1Σ−2V ∗

1 , Ã∗Ã = Ṽ1Σ̃2Ṽ ∗
1 .

From the above equations and some simple computations, it follows that

(Ã∗Ã−A∗A)(A∗A)† = Ṽ1Σ̃2Ṽ ∗
1 V1Σ−2V ∗

1 −V1V
∗
1 . (2.6)

Premultiplying (2.6) by Ṽ ∗
1 and postmultiplying it by V1 , and noting Ṽ ∗

1 Ṽ1 =V ∗
1 V1 = Ir

implies
Ṽ ∗

1 (Ã∗Ã−A∗A)(A∗A)†V1 = Σ̃2Ṽ ∗
1 V1Σ−2− Ṽ ∗

1 V1. (2.7)

Postmultiplying (2.7) by Σ2 gives

Ṽ ∗
1 (Ã∗Ã−A∗A)(A∗A)†V1Σ2 = Σ̃2Ṽ ∗

1 V1− Ṽ ∗
1 V1Σ2,

which can be rewritten as

Σ̃(Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ)+ (Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ)Σ = Ṽ ∗
1 (Ã∗Ã−A∗A)(A∗A)†V1Σ2. (2.8)

Applying Lemma 1.1 to (2.8) with Ω = Σ̃,Γ = −Σ , X = Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ , and

S = Ṽ ∗
1 (Ã∗Ã−A∗A)(A∗A)†V1Σ2

leads to

‖X‖ � 1
η
‖S‖ , (2.9)

where η = σr + σ̃r and

‖S‖ =
∥∥∥Ṽ ∗

1 (Ã∗Ã−A∗A)(A∗A)†V1Σ2
∥∥∥ � σ2

1

∥∥∥(Ã∗Ã−A∗A)(A∗A)†
∥∥∥ . (2.10)
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Note that

Ṽ ∗(H̃ −H)V = Ṽ ∗(Ṽ1Σ̃Ṽ ∗
1 −V1ΣV ∗

1 )V =
(

Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ Σ̃Ṽ ∗
1 V2

−Ṽ ∗
2 V1Σ 0

)
. (2.11)

Then ∥∥∥H̃ −H
∥∥∥ =

∥∥∥Ṽ ∗(H̃−H)V
∥∥∥ � ‖X‖+

∥∥∥Σ̃Ṽ ∗
1 V2

∥∥∥+
∥∥∥Ṽ ∗

2 V1Σ
∥∥∥

� ‖X‖+ σ̃1

∥∥∥Ṽ ∗
1 V2

∥∥∥+ σ1

∥∥∥Ṽ ∗
2 V1

∥∥∥ . (2.12)

Considering that Ṽ ∗V =
(

Ṽ ∗
1 V1 Ṽ ∗

1 V2

Ṽ ∗
2 V1 Ṽ ∗

2 V2

)
is unitary, we have

∥∥∥Ṽ ∗
1 V2

∥∥∥ =
∥∥∥Ṽ ∗

2 V1

∥∥∥ , (2.13)

which together with (2.12) gives∥∥∥H̃−H
∥∥∥ � ‖X‖+(σ̃1 + σ1)

∥∥∥Ṽ ∗
2 V1

∥∥∥ . (2.14)

Moreover, premultiplying (2.6) by Ṽ ∗
2 and postmultiplying it by V1 , and noting Ṽ ∗

2 Ṽ1 =
0,V ∗

1 V1 = Ir yields

Ṽ ∗
2 (Ã∗Ã−A∗A)(A∗A)†V1 = −Ṽ ∗

2 V1.

Thus, ∥∥∥Ṽ ∗
2 V1

∥∥∥ =
∥∥∥Ṽ ∗

2 (Ã∗Ã−A∗A)(A∗A)†V1

∥∥∥ �
∥∥∥(Ã∗Ã−A∗A)(A∗A)†

∥∥∥ . (2.15)

Then, it follows from (2.14), (2.9), (2.10), and (2.15) that the bound (2.4) holds. �

If the unitary invariant norm in Theorem 2.1 is replaced by the spectral norm, we
have the following smaller perturbation bound.

COROLLARY 2.2. Assume that the conditions of Theorem 2.1 hold. Then

∥∥∥H̃−H
∥∥∥

2
�

(
σ2

1

σr + σ̃r
+max{σ̃1,σ1}

)∥∥∥(Ã∗Ã−A∗A)(A∗A)†
∥∥∥

2
. (2.16)

Proof. Note that (2.11) can be rewritten as

Ṽ ∗(H̃ −H)V =
(

Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ 0
0 0

)
+

(
0 Σ̃Ṽ ∗

1 V2

−Ṽ ∗
2 V1Σ 0

)
.
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Then∥∥∥H̃−H
∥∥∥

2
=

∥∥∥Ṽ ∗(H̃ −H)V
∥∥∥

2
�

∥∥∥Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ
∥∥∥

2
+

∥∥∥∥
(

0 Σ̃Ṽ ∗
1 V2

−Ṽ ∗
2 V1Σ 0

)∥∥∥∥
2

� ‖X‖2 +max
{

σ̃1

∥∥∥Ṽ ∗
1 V2

∥∥∥
2
,σ1

∥∥∥Ṽ ∗
2 V1

∥∥∥
2

}
.

Thus, the bound (2.16) follows from (2.9), (2.10), (2.13), and (2.15). �
If we replace the unitary invariant norm in Theorem 2.1 with the Frobenius norm,

the following alternative perturbation bound can be obtained.

THEOREM 2.3. Assume that the conditions of Theorem 2.1 hold. Then∥∥∥H̃ −H
∥∥∥

F
�

√
σ2

1 + σ̃2
1

∥∥∥(Ã∗Ã−A∗A)(A∗A)†
∥∥∥

F
. (2.17)

Proof. Note that (2.8) can be rewritten as

Σ̃(Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ)+ (Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ)Σ = Ṽ ∗
1 (Ã∗Ã−A∗A)(A∗A)†V1ΣΣ. (2.18)

Then, applying Lemma 1.2 to (2.18) with Ω = Σ̃ , Γ = −Σ , X = Σ̃Ṽ ∗
1 V1 − Ṽ ∗

1 V1Σ ,
E = 0, and F = −Ṽ ∗

1 (Ã∗Ã−A∗A)(A∗A)†V1Σ , we have

‖X‖F � 1
η
‖F‖F , (2.19)

where η = σ1+σ̃r
σ1

and

‖F‖F � σ1

∥∥∥Ṽ ∗
1 (Ã∗Ã−A∗A)(A∗A)†V1

∥∥∥
F

. (2.20)

From (2.11), we have∥∥∥H̃−H
∥∥∥2

F
=

∥∥∥Ṽ ∗(H̃ −H)V
∥∥∥2

F
=

∥∥∥Σ̃Ṽ ∗
1 V1− Ṽ ∗

1 V1Σ
∥∥∥2

F
+

∥∥∥Σ̃Ṽ ∗
1 V2

∥∥∥2

F
+

∥∥∥Ṽ ∗
2 V1Σ

∥∥∥2

F

� ‖X‖2
F + σ̃2

1

∥∥∥Ṽ ∗
1 V2

∥∥∥2

F
+ σ2

1

∥∥∥Ṽ ∗
2 V1

∥∥∥2

F
. (2.21)

Substituting (2.19), (2.20), (2.13), and (2.15) into (2.21) and considering the property
of Frobenius norm implies∥∥∥H̃−H

∥∥∥2

F
� σ2

1

η2

∥∥∥Ṽ ∗
1 (Ã∗Ã−A∗A)(A∗A)†V1

∥∥∥2

F

+(σ̃2
1 + σ2

1 )
∥∥∥Ṽ ∗

2 (Ã∗Ã−A∗A)(A∗A)†V1

∥∥∥2

F

=
σ2

1

η2

∥∥∥(Ṽ1,Ṽ2)∗(Ã∗Ã−A∗A)(A∗A)†V1

∥∥∥2

F

+
(

σ̃2
1 +(1− 1

η2 )σ2
1

)∥∥∥Ṽ ∗
2 (Ã∗Ã−A∗A)(A∗A)†V1

∥∥∥2

F



356 H. LI, H. YANG AND H. SHAO

� σ2
1

η2

∥∥∥(Ã∗Ã−A∗A)(A∗A)†
∥∥∥2

F

+
(

σ̃2
1 +(1− 1

η2 )σ2
1

)∥∥∥(Ã∗Ã−A∗A)(A∗A)†
∥∥∥2

F

= (σ̃2
1 + σ2

1 )
∥∥∥(Ã∗Ã−A∗A)(A∗A)†

∥∥∥2

F
.

Taking the square root on both sides gives the bound (2.17). �

Now, we consider the perturbation bounds for positive polar factors.

THEOREM 2.4. Let A = QH, Ã = Q̃H̃ be the polar decompositions of A, Ã = A+
E ∈ Cm×n

n , respectively. Then

∥∥∥H̃−H
∥∥∥ � σ2

1

σn + σ̃n

∥∥∥(Ã∗Ã−A∗A)(A∗A)−1
∥∥∥ , (2.22)

where σ1,σn are the biggest and smallest singular values of A, respectively, and σ̃n is
the smallest singular value of Ã .

Proof. Note that when rank(A)= n , V1 =V and V2 = 0. In this case, (2.5) reduces
to

A† = V (Σ−1,0)U∗ = VΣ−1U∗
1 . (2.23)

Thus, similar to the proof of Theorem 2.1 and observing (1.5) and (2.3), we can get

S = Ṽ ∗(Ã∗Ã−A∗A)(A∗A)−1VΣ2,

X = Ṽ ∗(H̃ −H)V = Σ̃Ṽ ∗V − Ṽ ∗VΣ. (2.24)

The remaining proof is similar to the corresponding proof of Theorem 2.1. �

THEOREM 2.5. Assume that the conditions of Theorem 2.4 hold. Then

∥∥∥H̃−H
∥∥∥

F
� σ2

1

σ1 + σ̃n

∥∥∥(Ã∗Ã−A∗A)(A∗A)−1
∥∥∥

F
. (2.25)

Proof. Similar to the proof of Theorem 2.3, from (2.23), (1.5), and (2.3), it follows
that

F = −Ṽ ∗(Ã∗Ã−A∗A)(A∗A)−1VΣ

and (2.24) holds. The remaining proof is similar to the corresponding proof of Theorem
2.3. �
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REMARK 2.6. From the proofs of Theorems 2.4 and 2.5, and the forms of the
bounds (2.22) and (2.25), it is easy to find that the bounds (2.22) and (2.25) also hold
when A, Ã = A+E ∈ Cn×n

n .

REMARK 2.7. In the theorems and corollary above, the expansion of Ṽ ∗(H̃ −
H)V is used to study the perturbation bounds for nonnegative and positive polar factors.
Similarly, we can also use the expansion of V ∗(H̃ −H)Ṽ to investigate these bounds.
Whereas, the results obtained by the two ways are the same. In fact,∥∥∥V ∗(H̃ −H)Ṽ

∥∥∥ =
∥∥∥(

V ∗(H̃ −H)Ṽ
)∗∥∥∥ =

∥∥∥Ṽ ∗(H̃−H)V
∥∥∥ .

REMARK 2.8. The perturbation bounds for nonnegative and positive polar factors
obtained above are different from previous ones in form and measure (e.g., [1, 3–6, 8,
10, 12, 13, 17, 22, 25, 30]). None of these types of bounds are generally uniformly
better than the others though some bounds such as (1.13) and (1.14) are deemed to be
best. In some cases, the bounds derived in this paper may be smaller. Three examples
are given below for which the bounds (2.16), (2.17), (2.22), and (2.25) are a little better
than the corresponding ones listed in Section 1. In practical computation, the unitarily
invariant norm is replaced by the spectral norm.

EXAMPLE 2.9. Let

A =
(

5.4699 0
0 4.1691

)
∈ C

2×2
2 , Ã =

(
5.4699 −0.0017
0.0024 4.1692

)
∈ C

2×2
2 .

Then, we can get the bounds (1.6), (1.10)–(1.13), and (2.22):(
1+

2min{σ1, σ̃1}
σn + σ̃n

)
‖E‖2 = 0.0056,

(
σ1 + σ̃1

σn + σ̃n

)
‖E‖2 = 0.0032,(

σ1σ̃1

σ1 + σ̃1

)(∥∥EA−1
∥∥

2 +
∥∥∥EÃ−1

∥∥∥
2

)
= 0.0024,(

1+ log(max{σ1, σ̃1}max{ 1
σn

,
1

σ̃n
}
)
‖E‖2 = 0.0056, (logn)‖E‖2 = 7.2373×10−4,

σ2
1

σn + σ̃n

∥∥∥(Ã∗Ã−A∗A)(A∗A)−1
∥∥∥

2
= 2.3589×10−4.

In addition, we can also get the bounds (1.15) and (2.25):

√
2max

⎧⎨
⎩

√
σ2

1 + σ̃2
n

σ1 + σ̃n
,

√
σ̃2

1 + σ2
n

σ̃1 + σn

⎫⎬
⎭‖E‖F = 0.0030,

σ2
1

σ1 + σ̃n

∥∥∥(Ã∗Ã−A∗A)(A∗A)−1
∥∥∥

F
= 2.0896×10−4.



358 H. LI, H. YANG AND H. SHAO

EXAMPLE 2.10. Let

A =

⎛
⎝2.176668561308338 0

0 8.294322803399506
0 0

⎞
⎠ ∈ C

3×2
2 ,

Ã =

⎛
⎝ 2.176677950165361 0.000034598006502

−0.000003566450528 8.294298211401168
0.000294393953112 0.000318584423070

⎞
⎠ ∈ C

3×2
2 .

Then, we can get ‖E‖2 = 4.354273275372769×10−4 < σn = 2.1767, and the bounds
(1.7), (1.10), (1.11), and (2.22):[

(κ(A)+1)ω(
∥∥A†

∥∥
2 ‖E‖2)−1

]‖E‖2 = 0.001659430825011,(
σ1 + σ̃1

σn + σ̃n

)
‖E‖2 = 0.001659215242030,(

σ1σ̃1

σ1 + σ̃1

)(∥∥EA†
∥∥

2 +
∥∥∥EÃ†

∥∥∥
2

)
= 0.001167155001170,

σ2
1

σn + σ̃n

∥∥∥(Ã∗Ã−A∗A)(A∗A)−1
∥∥∥

2
= 2.155014797359645×10−4.

In addition, we can also get the bounds (1.15) and (2.25):

√
2max

⎧⎨
⎩

√
σ2

1 + σ̃2
n

σ1 + σ̃n
,

√
σ̃2

1 + σ2
n

σ̃1 + σn

⎫⎬
⎭‖E‖F = 5.049204182305015×10−4,

σ2
1

σ1 + σ̃n

∥∥∥(Ã∗Ã−A∗A)(A∗A)−1
∥∥∥

F
= 9.380800465787683×10−5.

EXAMPLE 2.11. Let

A =

⎛
⎜⎜⎝

1 0 0
0 1.5 0
0 0 0
0 0 0

⎞
⎟⎟⎠ ∈ C

4×3
2 , Ã = A+

⎛
⎜⎜⎝

0 0 0
0 0.001 0
0 0.002 0
0 0 0

⎞
⎟⎟⎠ ∈ C

4×3
2 .

Then, we have the bounds (1.14) and (2.17):
√

2
∥∥∥Ã−A

∥∥∥
F

= 0.003162277660168,√
σ2

1 + σ̃2
1

∥∥∥(Ã∗Ã−A∗A)(A∗A)†
∥∥∥

F
= 0.002834086966442.

Furthermore, we also have the bounds (1.9) and (2.16)(
2+

σ1 + σ̃1

σr + σ̃r

)∥∥∥Ã−A
∥∥∥

2
= 0.007827357444956,(

σ2
1

σr + σ̃r
+max{σ̃1,σ1}

)∥∥∥(Ã∗Ã−A∗A)(A∗A)†
∥∥∥

2
= 0.003507170668442.
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3. New perturbation bounds for generalized nonnegative
and positive polar factors

In this section, let A#
MN and A†

MN denote the weighted conjugate transpose and the
weighted Moore–Penrose inverse of A , respectively, whose definitions can be found in
[23, 27]. In addition, without specification, we always assume that the weight matrices
M ∈ Cm×m

m and N ∈ Cn×n
n are Hermitian positive definite.

For a matrix A ∈ C
m×n
r , there is an (M,N) weighted partial isometric matrix Q

(e.g., [28, 29]) and a matrix H satisfying NH ∈ Cn
� such that

A = QH. (3.1)

The above decomposition is a generalization of the generalized polar decomposition
and polar decomposition and is called the (M,N) weighted polar decomposition [28]
of A . The matrices Q and H are called the (M,N) weighted unitary polar factor
and generalized nonnegative polar factor of this decomposition, respectively. When
rank(A) = n , H is the generalized positive polar factor.

Like the generalized polar decomposition, the (M,N) weighted polar decomposi-
tion is not unique generally. It will be unique if the decomposition satisfies

R(Q#
MN) = R(H). (3.2)

The above condition was given by Yang and Li [31]. Under this condition, the (M,N)
weighted polar decomposition can be calculated from the (M,N) singular value de-
composition [23, 26]

A = U

(
Σ 0
0 0

)
V ∗ = U1ΣV ∗

1

by

Q = U1V
∗
1 and H = N−1V1ΣV ∗

1 ,

where U = (U1,U2)∈Cm×m
m and V = (V1,V2)∈Cn×n

n satisfy U∗MU = Im and V ∗N−1V =
In , U1 ∈Cm×r

r ,V1 ∈Cn×r
r , Σ = diag(σ1, · · · ,σr) , and σ1 � · · ·� σr > 0 are the nonzero

(M,N) singular values of A . In this section, we assume that the decomposition (3.1)
always satisfies the condition (3.2).

Note that if A = QH is the (M,N) weighted polar decomposition of A , then

M1/2AN−1/2 = (M1/2QN−1/2)(N1/2HN−1/2)

is the generalized polar decomposition or polar decomposition of M1/2AN−1/2 , and
vice versa. Therefore, if the weighted norms are defined as in Definition 3.1 below,
the perturbation bounds for generalized nonnegative and positive polar factors, as the
counterparts of the corresponding bounds of nonnegative and positive polar factors, can
be obtained as the straightforward corollaries.
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DEFINITION 3.1. Let A ∈ Cm×n
r . We call the norms ‖A‖(MN) =

∥∥M1/2AN−1/2
∥∥ ,

‖A‖2(MN) =
∥∥M1/2AN−1/2

∥∥
2 , and ‖A‖F(MN) =

∥∥M1/2AN−1/2
∥∥

F the weighted unitary
invariant norm, the weighted spectral norm, and the weighted Frobenius norm of A ,
respectively.

It is worth pointing out that the weighted spectral norm of A is synonymous with
the weighted norm of A defined as ‖A‖MN =

∥∥M1/2AN−1/2
∥∥

2 in [27], and the weighted
unitary invariant norm is equivalent to the (M,N)-invariant norm defined by Rao and
Rao [24] in essence.

In the following, we present the the perturbation bounds for generalized nonnega-
tive and positive polar factors without proof.

THEOREM 3.2. Let A = QH, Ã = Q̃H̃ be the (M,N) weighted polar decomposi-
tions of A, Ã = A+E ∈ Cm×n

r , respectively. Then

∥∥∥H̃−H
∥∥∥

(NN)
�

(
σ2

1

σr + σ̃r
+ σ̃1 + σ1

)∥∥∥(Ã#
MNÃ−A#

MNA)(A#
MNA)†

NN

∥∥∥
(NN)

, (3.3)

where σ1,σr and σ̃1, σ̃r are the biggest and smallest nonzero (M,N) singular values
of A and Ã , respectively.

COROLLARY 3.3. Assume that the conditions of Theorem 3.2 hold. Then

∥∥∥H̃ −H
∥∥∥

2(NN)
�

(
σ2

1

σr + σ̃r
+max{σ̃1,σ1}

)∥∥∥(Ã#
MNÃ−A#

MNA)(A#
MNA)†

NN

∥∥∥
2(NN)

.

THEOREM 3.4. Assume that the conditions of Theorem 3.2 hold. Then

∥∥∥H̃−H
∥∥∥

F(NN)
�

√
σ2

1 + σ̃2
1

∥∥∥(Ã#
MNÃ−A#

MNA)(A#
MNA)†

NN

∥∥∥
F(NN)

. (3.4)

THEOREM 3.5. Let A = QH, Ã = Q̃H̃ be the (M,N) weighted polar decomposi-
tions of A, Ã = A+E ∈ Cm×n

n , respectively. Then

∥∥∥H̃−H
∥∥∥

(NN)
� σ2

1

σn + σ̃n

∥∥∥(Ã#
MNÃ−A#

MNA)(A#
MNA)†

NN

∥∥∥
(NN)

, (3.5)

where σ1 and σn are the biggest and smallest (M,N) weighted singular values of A,
respectively, and σ̃n is the smallest (M,N) singular value of Ã .

THEOREM 3.6. Assume that the conditions of Theorem 3.5 hold. Then

∥∥∥H̃−H
∥∥∥

F(NN)
� σ2

1

σ1 + σ̃n

∥∥∥(Ã#
MNÃ−A#

MNA)(A#
MNA)†

NN

∥∥∥
F(NN)

. (3.6)
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4. Concluding remarks

In this paper, we mainly consider the perturbation bounds for nonnegative and pos-
itive polar factors of generalized polar decomposition and polar decomposition. The
corresponding perturbation bounds for generalized nonnegative and positive polar fac-
tors of (M,N) weighted polar decomposition are also presented as the straightforward
corollaries. It is worth pointing out that those bounds are confined to the condition that
the ranks of the original matrix and perturbed matrix are the same. It is interesting to
relax this restriction as did in [5] and [8]. We will consider this topic in the future.
In addition, note that H = (A∗A)1/2 if H is the nonnegative or positive polar factor

and H = (A#
MNA)1/2

if H is the generalized nonnegative or generalized positive polar
factor. Then the results derived in this paper can also be regarded as the perturbation
bounds for the square root of the positive semidefinite matrix or the generalized positive
semidefinite matrix.

Acknowledgements. The authors would like to thank the editor and the reviewer
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