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THE FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES

WITH VARIABLE EXPONENT ON UNBOUNDED DOMAINS

KWOK-PUN HO

(Communicated by I. Perić)

Abstract. The boundedness of fractional integral operator on Morrey spaces with variable expo-
nent on unbounded domains is established.

1. Preliminaries and Definitions

The main results of this paper consist of the boundedness of the fractional integral
operator and the boundedness of the fractional maximal operator on Morrey spaces with
variable exponent on Rn .

For any 0 < α < n , the fractional integral operator (Riesz potential) Iα is defined
by

(Iα f )(x) =
∫

Rn

f (y)
|x− y|n−α dy.

The corresponding fractional maximal operator is defined by

(Mα f )(x) = sup
Q�x

1

|Q|1− α
n

∫
Q
| f (y)|dy

where the supremum is taking over all cube containing x .
The boundedness of the fractional integral operator on Lebesgue spaces is also

called as the Hardy-Littlewood-Sobolev theorem. It is classic and well known. The
boundedness of Iα on Morrey spaces is given in [1, 30, 33, 34]. For any 1 � p < ∞ ,
denote the class of locally Lp -integrable functions by Lp

loc . For any x ∈ Rn and r > 0,
write B(x,r) = {y ∈ Rn : |x− y|< r} . In addition, define B = {B(x,r) : x ∈ Rn,r > 0} .

Recall that the classical Morrey space is given by

Mp,λ (Rn) = { f ∈ Lp
loc : ‖ f‖Mp,λ (Rn) < ∞}

where 0 � λ < n and

‖ f‖Mp,λ (Rn) = sup
B∈B

(
1

rλ

∫
B
| f (x)|pdx

)1/p

.

Peetre presented Spanne’s result on the boundedness of the fractional integral operator
on [34].
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THEOREM 1.1. If 0 < α < n, 1 < p < q < ∞ , 0 � λ < μ < n, − n
p + α = − n

q

and λ
p = μ

q , then Iα : Mp,λ (Rn) → Mq,μ(Rn) is bounded.

An improvement on the above result is given by Adams [1].

THEOREM 1.2. If 0 < α < n, 1 < p < q < ∞ , 0 � λ < n, − n
p + nα

n−λ =− n
q , then

Iα : Mp,λ (Rn) → Mq,λ (Rn) is bounded.

For the study of the fractional integral operators on Morrey spaces defined on
quasi-metric spaces, the reader is referred to [19, 23, 24, 36]. In [23], they consider
the boundedness of fractional integral operators on variable Morrey spaces defined on a
space of homogeneous type (X ,μ) with μ(X) < ∞ and they extend the result to quasi-
metric space with non-doubling measure μ satisfying μ(X) < ∞ in [24]. For the study
of the fractional integral operator on generalized Morrey spaces on bounded domains,
the reader is referred to [20].

The reader may also consult the survey [31] for the boundedness results of the
fractional integral operators on some other function spaces arising in analysis such as
Orlicz spaces, Herz spaces and Hardy spaces. For the boundedness result of the frac-
tional integral operator on Herz-Morrey spaces with variable exponent, the reader is
referred to [22].

In [2, 14, 23, 24, 27, 28], the boundedness of the maximal operator on theirs Mor-
rey space with variable exponent is established. More precisely, the results in [2] give
the boundedness of the Hardy-Littlewood maximal operator on the Morrey spaces with
variable exponent on bounded domains. This result is extended to R

n in [14, 27, 28].
In [17, 18], the boundedness of vector-valued singular integral operator and the

Fefferman-Stein vector-valued maximal inequalities for Mp(·),u are obtained (see Def-
inition 1.5). Furthermore, their applications on the study of variable Triebel-Lizorkin-
Morrey spaces are shown.

In this paper, we extend the Hardy-Littlewood-Sobolev theorem to Morrey spaces
with variable exponent on Rn . The technique used in [19, 23, 24, 36] to obtain the
boundedness of the fractional integral operator on Morrey spaces with variable expo-
nent is restricted to Morrey spaces defined on bounded domains only.

We present an alternative idea so that the boundedness of fractional integral oper-
ator on Morrey spaces defined on unbounded domains can be established. For brevity,
we only consider the Morrey spaces defined on Rn and our result can be extended to
Morrey spaces defined on any unbounded domain. The drawback of our technique is
that we can only establish Spanne’s type result.

In order to introduce our Morrey spaces with variable exponent, we recall the
definition of Lebesgue space with variable exponent [25].

Let P denote the set of Lebesgue measurable functions p : R
n → [1,∞) satisfying

p− = essinf{p(x) : x ∈ R
n} > 1 and p+ = esssup{p(x) : x ∈ R

n} < ∞.

DEFINITION 1.1. Let p ∈ P be a Lebesgue measurable function. The variable
Lebesgue space with variable exponent Lp(·)(Rn) consists of all Lebesgue measurable
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functions f : Rn → C such that

‖ f‖Lp(·)(Rn) = inf

{
λ > 0 :

∫
Rn

∣∣∣∣ f (x)
λ

∣∣∣∣
p(x)

dx � 1

}
< ∞.

We call p(x) the exponent function of Lp(·)(Rn) .

THEOREM 1.3. If 1 < p(x)< ∞ , then the associate space of Lp(·)(Rn) is Lp′(·)(Rn)
where p′ satisfies 1

p(x) + 1
p′(x) = 1 .

The function p′(x) is called the conjugate function of p(x) .
Let B denote the set of all p(·) belonging to P such that the Hardy-Littlewood

maximal operator M is bounded on Lp(·)(Rn) . For the study of the boundedness of the
maximal operator on Lp(·)(Rn) , the reader is referred to [6, 9, 14, 32].

We recall the following characterization of B given by Diening in [9].

THEOREM 1.4. Let p(·) ∈ P . Then the following conditions are equivalent:

1. p(·) ∈ B .

2. p′(·) ∈ B .

3. p(·)/q ∈ B for some 1 < q < p− .

4. (p(·)/q)′ ∈ B for some 1 < q < p− .

We recall some notations introduced in [17] for Banach function spaces.

DEFINITION 1.2. For any p(·)∈B , let κp(·) denote the supremumof those q > 1
such that p(·)/q ∈ B . Let ep(·) be the conjugate of κp′(·) .

We call ep(·) the index of p(·) . Theorem 1.4 ensures that κp(·) is well-defined and
satisfies 1 < κp(·) � p− . Moreover, p+ � ep(·) . We present some basic properties

satisfied by Lp(·)(Rn) when p(·) ∈ B .

PROPOSITION 1.5. Let p(·) ∈ B , then we have a constant C > 0 so that for any
B ∈ B ,

|B| � ‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn) � C|B|. (1.1)

The preceding result is a direct consequence of the one-weight inequality in Lp(·)(Rn)
spaces by taking constant weight in the Muckenhoupt-type weight condition in [7, 10].

The above inequalities can be considered as a generalization of the result for
rearrangement-invariant Banach function spaces given in [3, Chapter 2, Theorem 5.2]
to Lebesgue spaces with variable exponent. The above inequality was also obtained in
[17, 18] and [21, Lemma 2].
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DEFINITION 1.3. Let p ∈ L∞ . For any B ∈ B , define pB by

1
pB

=
1
|B|

∫
B

1
p(x)

dx.

Proposition 1.5 and [8, Lemma 3.4] generates the subsequent estimate of ‖χB‖Lp(·)(Rn) .

PROPOSITION 1.6. Let p ∈ B and 1 < p− � p+ < ∞ . There exist C1,C2 > 0 so
that for any B ∈ B ,

C1|B|
1
pB � ‖χB‖Lp(·)(Rn) � C2|B|

1
pB . (1.2)

For the classical Morrey spaces, the weight function is given by |B| 1
p− 1

q , B ∈ B ,
with 0 < q � p < ∞ . On the other hand, we learn from [15, 30] that our result is
also valid for Morrey spaces associated with weight functions defined in the following
definition.

DEFINITION 1.4. Let p ∈ L∞ and 1 < p(x) < ∞ . A Lebesgue measurable func-
tion u(x,r) : Rn × (0,∞) → (0,∞) is said to be a Morrey weight function for Lp(·)(Rn)
if there exists a constant C > 0 such that for any x ∈ Rn and r > 0, u fulfills

∞

∑
j=0

‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2 j+1r)‖Lp(·)(Rn)
u(x,2 j+1r) < Cu(x,r). (1.3)

We denote the class of Morrey weight functions by Wp(·) .

Condition (1.3) is also used in [16] for the study of the Fefferman-Stein vector-
valued inequalities in weighted Morrey spaces and the atomic decompositions of weigh-
ted Hardy-Morrey spaces.

In particular, when p(x) ≡ p , 1 < p < ∞ , is a constant function, we find that
condition (1.3) can be rewritten as an integral condition. More precisely, assume that u
satisfies

r � t � 2r ⇒C−1u(x,r) � u(x,t) � Cu(x,r), ∀x ∈ R
n

for some C > 0. Note that this is a well-known condition imposed on u , see [20, (3.2)]
and [30, (1.1)]. We find that

∞

∑
j=0

‖χB(x,r)‖Lp

‖χB(x,2 j+1r)‖Lp
u(x,2 j+1r) =

∞

∑
j=0

u(x,2 j+1r)

2( j+1) n
p

and
∞

∑
j=0

∫ 2 j+1r

2 jr

u(x,t)

t
n
p

dt
t
∼

∞

∑
j=0

u(x,2 jr)

(2 jr)
n
p +1

2 jr.

Thus, condition (1.3) is equivalent to

∫ ∞

r

u(x,t)

t
n
p

dt
t

� C
u(x,r)

r
n
p

, r > 0, ∀x ∈ R
n.
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Let 0 < α < n . Recall that the condition imposed on the Morrey weight functions
in [30] is ∫ ∞

r

up(x,t)
tn−α p+1 dt � C

up(x,r)
rn−α p , r > 0, ∀x ∈ R

n (1.4)

for some C > 0. Note that we rewrite the condition stated in [30] to match with our
Morrey space with variable exponent in Definition 1.5.

For any u satisfying (1.4), Hölder’s inequality assures that

∫ ∞

r

u(x,t)

t
n
p

dt
t

�
(∫ ∞

r

up(x,t)
tn−α p

dt
t

) 1
p
(∫ ∞

r

1

tα p′
dt
t

) 1
p′

where p′ is the conjugate of p .
Condition (1.4) yields∫ ∞

r

u(x,t)

t
n
p

dt
t

� u(x,r)

r
n
p−α r−α � u(x, t)

r
n
p

.

Thus, condition (1.3) is weaker than (1.4) for constant exponent. Hence, our re-
sults also extend the boundedness of fractional integral operator on classical weighted
Morrey spaces [30].

Furthermore, when 0 < α < n , p(x) = p , 1 < p < ∞ , is a constant function and
1
p − 1

q = α
n , recall that the condition satisfied by the weight functions considered in [20]

is given by ∫ ∞

r

u(x,t)

t
n
q

dt
t

� u(x,r)

r
n
q

, r > 0, ∀x ∈ R
n. (1.5)

for some C > 0. We obtain the preceding condition by inserting ω1(x,t) = u(x, t)t−
n
p ,

ω2(x, t) = u(x, t)t−
n
q and α(x) = n

p − n
q in [20, (5.3)] (see Definition [20, Definition 3.1]

for their definition of Morrey spaces with variable exponent). Moreover, we modify the
condition given in [20, (5.3)] into our setting on unbounded domains by replacing l
with ∞ on the upper limit of the above integral. For any u fulfilling (1.5), we have∫ ∞

r

u(x,t)

t
n
p

dt
t

� 1

r
n
p− n

q

∫ ∞

r

u(x,t)

t
n
q

dt
t

� C
u(x,r)

r
n
p

.

That is, (1.3) is in some sense weaker than (1.5) for constant p and (1.5) is equivalent
with the condition u ∈ Wq(·) when q(x) = q .

The definition for the Morrey weight functions (1.3) involves a summation includ-

ing the terms
‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2 j+1r)‖Lp(·)(Rn)
. Some properties satisfied by the Lebesgue spaces with

variable exponent Lp(·)(Rn) can provide a pointwise estimate on these quotients.

PROPOSITION 1.7. Let p ∈ B . For any 1 < q < κp(·) and 1 < s < κp′(·) , there
exist constants C1,C2 > 0 such that for any x0 ∈ Rn and r > 0 , we have

C22
jn(1− 1

s ) �
‖χB(x0,2 j r)‖Lp(·)(Rn)

‖χB(x0,r)‖Lp(·)(Rn)
� C12

jn
q , ∀ j ∈ N. (1.6)
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Proof. For any B = B(x0,r) ∈ B and j ∈ N , we have a constant C > 0 such that

C2− jn � M(χB)(x)

when x ∈ B(x0,2 jr) , j ∈ N . Thus, for any q < κp(·) , there exists a q < q̃ so that
p(·)/q̃ ∈ B . Subsequently,

2− jn‖χB(x0,2 j r)‖Lp(·)/q̃ � C‖M(χB)‖Lp(·)/q̃ � C‖χB‖Lp(·)/q̃ .

Since, for any B∈B and q > 0, ‖χB‖Lp(·)/q = ‖χB‖q
Lp(·) , we obtain the second inequality

of (1.6).
According to Theorem 1.4, p′(·) ∈ B . Thus, for any s < κp′(·) , we also have

‖χB(x0,2 jr)‖Lp′(·)(Rn)

‖χB(x0,r)‖Lp′(·)(Rn)
� C12

jn
s , ∀ j ∈ N.

Therefore, Proposition 1.5 yields the first inequality in (1.6). �
A similar result is obtained in [21, Lemma 1]. The above result is a special case

of the general result in [17] for Banach function spaces.
The notion of Boyd’s indices gives us an estimate of the operator norm of the

dilation operator Dt f (x) = f (tx) , t > 0, on rearrangement-invariant Banach function
spaces [3, p.148-149]. Although the Boyd indices is not necessarily well defined on
Lp(·)(Rn) , the preceding result provides some pivotal estimate of the action of the dila-
tion operators on the characteristic function of B(x0,r) .

Using Proposition 1.7, we find that for any 0 � λ < 1
ep(·)

whenever a weight func-

tion u : Rn× (0,∞) → (0,∞) satisfies

u(x,2r)
u(x,r)

� 2nλ

for all x ∈ R
n and r > 0, it belongs to Wp(·) . More precisely, for any λ < 1

ep(·)
, there

exists a s < κp′(·) such that λ < 1− 1
s < 1− 1

κp′(·)
= 1

ep(·)
. Moreover, Proposition 1.7 is

valid for any 1 < s < κp′(·) . By using the first inequality in (1.6), we have

∞

∑
j=0

‖χB(x,r)‖Lp(·)(Rn)

‖χB(x,2 j+1r)‖Lp(·)(Rn)

u(x,2 j+1r)
u(x,r)

� C
∞

∑
j=0

2− jn(1− 1
s )2 jnλ � C.

For instance, the weight function u(x,r) = rλ (x) where 0 � λ (x) � λ+ < 1
ep(·)

is a

member of Wp(·) .

DEFINITION 1.5. Let p(x) ∈ B and u(x,r) ∈ Wp(·) . The Morrey space with
variable exponent Mp(·),u is the collection of all Lebesgue measurable functions f
satisfying

‖ f‖Mp(·),u = sup
z∈Rn,R>0

1
u(z,R)

‖χB(z,R) f‖Lp(·)(Rn) < ∞.
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We state a result concerning the boundedness of the fractional integral operator on
Lebesgue spaces with variable exponent given in [4, 6].

PROPOSITION 1.8. Let α > 0 and p(x),q(x) ∈ P satisfy p+ < n
α and

1
p(x)

− 1
q(x)

=
α
n

, a.e on R
n.

If there exists q0 , n
n−α < q0 < ∞ , such that q(·)

q0
∈ B , then

‖Iα f‖Lq(·)(Rn) � C‖ f‖Lp(·)(Rn) (1.7)

and
‖Mα f‖Lq(·)(Rn) � C‖ f‖Lp(·)(Rn)

for some C > 0 .

2. Main Result

The following is the Hardy-Littlewood-Sobolev theorem for Morrey spaces with
variable exponent Mp(·),u .

THEOREM 2.1. Let α > 0 , p(x),q(x) ∈ B . Suppose that p(x) , q(x) and α
satisfy p+ < n

α and
1

p(x)
− 1

q(x)
=

α
n

, a.e on R
n.

If u ∈ Wq(·) and there exists a q0 < ∞ satisfying n
n−α < q0 < ∞ and q(·)

q0
∈ B ,

then
‖Iα f‖Mq(·),u � C‖ f‖Mp(·),u (2.1)

and
‖Mα f‖Mq(·),u � C‖ f‖Mp(·),u

for some C > 0 .

Proof. We only consider the fractional integral operator as the proof for the frac-
tional maximal operator follows from the boundedness of Iα and the fact that Mα f �
Iα f for non-negative f .

Let f ∈ Mp(·),u . For any z ∈ R
n and r > 0, write f (x) = f0(x) + ∑∞

j=1 f j(x) ,
where f0 = χB(z,2r) f and f j = χB(z,2 j+1r)\B(z,2 jr) f , j ∈ N\{0} . Proposition 1.8 shows
that ‖Iα f0‖Lq(·)(Rn) � C‖ f0‖Lp(·)(Rn) . Thus, we find that

1
u(z,r)

‖χB(z,r)(Iα f0)‖Lq(·)(Rn) � C
1

u(z,2r)
‖χB(z,2r) f‖Lp(·)(Rn)

� C sup
y∈Rn
r>0

1
u(y,r)

‖χB(y,r) f‖Lp(·)(Rn)
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because inequality (1.3) and Proposition 1.7 imply that u(z,2r) < Cu(z,r) for some
constant C > 0 independent of z ∈ Rn and r > 0.

Furthermore, there is a constant C > 0 such that, for any j � 1

χB(z,r)(x)|(Iα f j)(x)| � C2− j(n−α)r−n+α χB(z,r)(x)
∫

B(z,2 j+1r)
| f (y)|dy. (2.2)

The generalized Hölder inequality given in [25, Theorem 2.1] ensures that∫
B(z,2 j+1r)

| f (y)|dy � C
∥∥χB(z,2 j+1r) f

∥∥
Lp(·)(Rn)‖χB(z,2 j+1r)‖Lp′(·)(Rn)

for some C > 0.
Subsequently, applying the norm ‖ · ‖Lq(·)(Rn) on both sides of (2.2), we have

‖χB(z,r)(Iα f j)‖Lq(·)(Rn) �C2− j(n−α)r−n+α‖χB(z,r)(x)‖Lq(·)(Rn)

×∥∥χB(z,2 j+1r) f
∥∥

Lp(·)(Rn)‖χB(z,2 j+1r)‖Lp′(·)(Rn). (2.3)

Applying Proposition 1.5 with B = B(z,2 j+1r) , we have

‖χB(z,2 j+1r)‖Lp′(·)(Rn) � C
2( j+1)nrn

‖χB(z,2 j+1r)‖Lp(·)(Rn)
.

Using the above inequality on (2.3), we obtain

‖χB(z,r)(Iα f j)‖Lq(·)(Rn)

� C2− j(n−α)r−n+α
‖χB(z,r)(x)‖Lq(·)(Rn)

∥∥χB(z,2 j+1r) f
∥∥

Lp(·)(Rn)2
( j+1)nrn

‖χB(z,2 j+1r)‖Lp(·)(Rn)

� C2 jαrα
‖χB(z,r)‖Lq(·)(Rn)

‖χB(z,2 j+1r)‖Lp(·)(Rn)

∥∥χB(z,2 j+1r) f
∥∥

Lp(·)(Rn).

In view of the fact that for any B ∈ B ,

1
|B|

∫
B

1
p(x)

dx− 1
|B|

∫
B

1
q(x)

dx =
1
pB

− 1
qB

=
α
n

,

Proposition 1.6 assures that

C2|B| α
n �

‖χB‖Lp(·)(Rn)

‖χB‖Lq(·)(Rn)
� C1|B| α

n , ∀B ∈ B (2.4)

for some constants C1 > C2 > 0 independent of B ∈ B .
Hence, using (2.4) with B = B(z,2 j+1r) , we have

C2
2 jαrα

‖χB(z,2 j+1r)‖Lp(·)(Rn)
� 1

‖χB(x,2 j+1r)‖Lq(·)(Rn)
.
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Therefore,

‖χB(z,r)(Iα f j)‖Lq(·)(Rn) � C
‖χB(x,r)‖Lq(·)(Rn)

‖χB(x,2 j+1r)‖Lq(·)(Rn)

∥∥χB(z,2 j+1r) f
∥∥

Lp(·)(Rn).

Thus,

‖χB(z,r)(Iα f j)‖Lq(·)(Rn)

� C
‖χB(x,r)‖Lq(·)(Rn)

‖χB(x,2 j+1r)‖Lq(·)(Rn)

u(z,2 j+1r)
u(z,2 j+1r)

‖χB(z,2 j+1r) f‖Lp(·)(Rn)

� C
‖χB(x,r)‖Lq(·)(Rn)

‖χB(x,2 j+1r)‖Lq(·)(Rn)
u(z,2 j+1r) sup

y∈Rn
R>0

1
u(y,R)

‖χB(y,R) f‖Lp(·)(Rn).

As u ∈ Wq(·) we obtain

1
u(z,r)

‖χB(z,r)(Iα f )‖Lq(·)(Rn) � 1
u(z,r)

∞

∑
j=0

‖χB(z,r)(Iα f j)‖Lq(·)(Rn)

� C sup
y∈Rn
R>0

1
u(y,R)

‖χB(y,R) f‖Lp(·)(Rn)

where the constant C > 0 is independent of r and z . Taking supremum over z ∈ Rn

and r > 0 gives (2.1). �
We have the following generalization of the above result. We find that an inte-

gral condition on the Schwartz kernel of a linear operator is sufficient to assure the
boundedness of the linear operator on Morrey spaces with variable exponent.

THEOREM 2.2. Let α, p(x),q(x) and u(x,r) satisfy the conditions in Theorem
2.1 and T : Lp(·)(Rn) → Lq(·)(Rn) . If the Schwartz kernel of T , K(x,y) , satisfies

(
1

|B(z,μ)|
∫

B(z,μ)
|K(x,y)|εdy

) 1
ε

� Cμα−n

for some ep(·) < ε , then T can be extended to be a bounded linear operator from
Mp(·),u to Mq(·),u .

Proof. We have the following modification of inequality (2.2)

χB(z,r)(x)|(T f j)(x)|

� CχB(z,r)(x)
(∫

B(z,2 j+1r)
| f (y)|ε ′dy

) 1
ε ′

(∫
B(z,,2 j+1r)

|K(x,y)|εdy

) 1
ε

� C2 j(α− n
ε ′ )rα− n

ε ′ χB(z,r)(x)
(∫

B(z,2 j+1r)
| f (y)|ε ′dy

) 1
ε ′



372 KWOK-PUN HO

where ε ′ is the conjugate of ε . The identity ‖| f |ε ′ ‖Lp(·)/ε ′ (Rn) = ‖ f‖ε ′
Lp(·)(Rn)

and the

generalized Hölder inequality assert that
∫

B(z,2 j+1r)
| f (y)|ε ′dy � C

∥∥χB(z,2 j+1r)| f |ε
′∥∥

Lp(·)/ε ′ (Rn)‖χB(z,2 j+1r)‖L(p(·)/ε ′)′ (Rn)

� C‖χB(z,2 j+1r) f‖ε ′
Lp(·)(Rn)‖χB(z,2 j+1r)‖L(p(·)/ε ′)′ (Rn).

As ep(·) < ε , we have ε ′ < κp(·) . That is, there exists a ε ′ < q < κp(·) such that
p(·)
q ∈ B . Jensen’s inequality guarantees that p(·)

ε ′ ∈ B . Theorem 1.4 assures that

Proposition 1.5 is applicable to L(p(·)/ε ′)′(Rn) . Subsequently, we have

∫
B(z,2 j+1r)

| f (y)|ε ′dy � C2 jnrn
‖χB(z,2 j+1r) f‖ε ′

Lp(·)(Rn)

‖χB(z,2 j+1r)‖ε ′
Lp(·)(Rn)

.

Therefore, we obtain

χB(z,r)(x)|(T f j)(x)| � C2 jαrα χB(z,r)(x)
‖χB(z,2 j+1r) f‖Lp(·)(Rn)

‖χB(z,2 j+1r)‖Lp(·)(Rn)

and the rest of the proof is the same as the proof of Theorem 2.1. For brevity, we leave
the detail to the reader. �
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[19] J. GARCÍA-CUERVA, AND A. GATTO, Boundedness properties of fractional integral operator asso-

ciated to non-doubling measure, Studia. Math. 162 (2004), 245–261.
[20] V. GULIYEV, J. HASANOV, AND S. SAMKO, Boundedness of the maximal, potential and singular

operators in the generalized variable exponent Morrey spaces, Math. Scand. 107 (2010), 285–304.
[21] M. IZUKI, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat.

Palermo (2) 59 (2010), 199–213.
[22] M. IZUKI, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J. 40

(2010), 343–355.
[23] V. KOKILASHVILI, AND A. MESKHI, Boundedness of Maximal and Singular operators in Morrey

Spaces with Variable Exponent, Armen. J. Math. 1 (2008), 18–28.
[24] V. KOKILASHVILI, AND A. MESKHI, Maximal functions and potentials in variable exponent Morrey

spaces with non-doubling measure, Complex Var. Elliptic Equ. 55 (2010), 923–936.
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