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UNCERTAINTY PRINCIPLE INEQUALITIES
RELATED TO LAGUERRE-BESSEL TRANSFORM

SOUMEYA HAMEM AND LOTFI KAMOUN

(Communicated by I. Peri¢)

Abstract. In this paper, an analogous of Heisenberg inequality is established for Laguerre-Bessel
transform. Also, a local uncertainty principle for this transform is investigated.

1. Introduction

The uncertainty principle states that a nonzero function and its Fourier transform
cannot both be sharply localized. In the language of quantum mechanics, this prin-
ciple says that an observer cannot simultaneously and precisely determines the values
of position and momentum of a quantum particule. A mathematical formulation of
this physical ideas is firstly developed by Heisenberg [3] in 1927. For f € L*(R), a
precise quantitative formulation of the uncertainty principle, usually called Heisenberg
inequality, is the following

[2rekas [ g[fefa= 5 ([ f(X)I2dX>27 )

where f is the Fourier-Plancherel transform given for f € L'(R) NL*(R) by

FE) = —— x)e ¥ dx
7(&) = 7= [ e

This result does not appear in Heisenberg paper [3]. The relation (1) appears in Weyl
paper [16] who credits the result to Pauli. In framework of Hankel transform, Bowie
in [1] studied the Heisenberg uncertainty principle. Also for this transform, Rosler and
Voit in [13] established a Heisenberg uncertainty inequality. They give, in their paper, a
similar uncertainty inequality for Dunkl transform on the real line. On several variables,
Rosler in [12] and Shimeno in [ 14] have proved, by different methods, a Heisenberg in-
equality for the Dunkl transform. Li and Liu established in [5] a Heisenberg inequality
for Jacobi expansions. They generalized this result for Sturm-Liouville operators in
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[6]. Recently, Ma in [7] has provided a Heisenberg inequality for Jacobi transform. He
obtained in [8] a Heisenberg uncertainty principle for Chébli-Trimeche hypergroups as
a generalization of his previous statements in [7]. Since the 20’s of last century, many
works have been devoted to studying uncertainty principles in various forms. Among
these, we can cite the works of Price [10, 11], whose aim is to establish local uncer-
tainty inequality. In [9], Omri and Rachdi obtained a local uncertainty inequality in
framework of the Riemann-Liouville operator.

In this paper, firstly we obtain an analogous of the Heisenberg inequality for the
Laguerre-Bessel transform which will be defined below in section 2. Next, for this
transform we develop further inequalities in the sharpest forms, which constitue the
principle of local uncertainty. Throughout the paper, we denote K = [0, 4-c0) x [0, 4-o0),
K= [0,+0) x N and we designate by C a positive constant, which is not necessarily
same at each occurrence.

2. Laguerre-Bessel transform

In this section, we collect some notations and results about the Laguerre-Bessel
harmonics analysis. For more details, we refer the reader to [2].
For o > 0, we consider the following system of partial differential operators

22 2a 0
br=g2t7 o
2 2a+l1ad
Dy =~ +=————+x"Dp, (5,0) € (0,+00) x (0, +00).

For (A,m) € K, the system

Diu = —A%u

Dyu = -2A02m+oa+1)u @)
du du

u(0,0) =1, 5°(0,0) = 57(0,0) =0,

possesses a unique solution denoted ¢, ,,) and given by

Pm)(0,1) = jo_1 (A1) LX), (1) €K,

1
2
where j, is the normalized Bessel function given by

. S (D
Ja (%) :r(a+l)]§)k! T(o+k+1) (E)

and £ is the Laguerre function defined on [0, +c0) by

oy _ € 2L
= o)

m
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L% being the Laguerre polynomial of degree m and order o given by

& T(m+o+1)(—x)/
§ Tm—j+D)T(j+a+1)!"

The Laguerre function satisfies the following relations (see [2])

sup @ m(x.1)| =1, forall (A,m) € K. (3)
()€K :

Notations:
o .7,(K) the space of C* functions on R?, even with respect to each variable and
rapidly decreasing together with all their derivatives, that means

e

e L5 (K), p € [1,4c0], the spaces of measurable functions on K such that

opta

527 8t’1f(x’t)

Vk,p,q €N, Nipo(f) = sup {(1+x2+t2)k
(xr)eK

||fH0¢7P = |:/K|f(x’t)|pdma(x7t):| ! < +°°7 lfp S [17+°°)7

[[fllereo = esssUp [ f(x,2)| < o0,
(x1)eK

where my, is the positive measure defined on K by
1

dme(x,1) = 201 £20 g dr
ma(x,1) T(a+ H(a+1)" *

o Lb (K), p € [1,+o0], the spaces of measurable functions on K such that

p
el = | [ eum P arata,m]” < e it p e 1,40,

1811700 = esssup [g(A,m)| < +ee,
(A,m)eK

where 7, is the positive measure defined on K by

oo

~+oo
LO‘(O)/ g(,m) 237 1q).
0

1
/[‘O/“"OO)XNg( ’m) ycﬂ( 7m) 22a_1r(a+ %) lnz:/o m

We define the convolution product f * g of two functions f,g € .7 (K), by

(Fe8)wn) = [ T F05) g0r9)dmalrs). (1) €K,
T

where T(iog , (x,1) € K, are the translation operators associated to the operators D; and

D, . For more details about these operators, we refer to [2].
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LEMMA 2.1. If f e LL(K), g € L, (K) suchthat 1 < p,q <o and %—l—é—l:%,
then the function fxg € L (K), and

175 8lr < 1y gl
We consider the dilations on K defined by
8:(x,1) = (rx,7%t), r>0.
We also introduce a homogeneous norm, related to family (J,),~o defined by
(e0)] = (* +4e%) 7
We define the ball centered at (0,0) of radius r by
B, ={(x,t) eK | |(x0)|<r}.

Let f € L}, (K), the Laguerre-Bessel transform of f is defined by
Fin()(Rm) = [ F051) @3t )dma 1),
For f and g € L., (K), we have

F1p(f+g)(A,m) = F1p(f)(A,m) FLp(g)(A,m).

The integral transform can be extended to an isometric isomorphism L2 (K) to L%,a (HA{)
and we have the Plancherel formula

1oz = 1Z8(F)llyy2s  f € Lo (K) NLG(K).

Let L = —D, and define L’ for b € R, asin [15, p.117]. Then by (2),
F1p (Lbf> (A,m) = 2A2m+ o+ 1))" Zrs(f)(A,m).

On the other hand, L is hypoelliptic on K. Also, the heat operator L+ d, is hypoel-
liptic on K x (0,+-e0). Hence, similar arguments from the proof of Hunt’s theorem [4,
Theorem 3.4] give the following proposition

PROPOSITION 2.1. There is a unique C= function h((x,t),s) = hy(x,1) on K x
(0,+-00) with the following properties
i) (L+ds)h =0 on Kx (0,4c0),

ii) hs(x,2) >0 and/ hy dmg =1,
K

iii) hg, * hgy = hs 45,, 51,52 > 0.

LEMMA 2.2. Forany s >0, Z1g(hs)(A,m) = e 2+ @mtatl)s,
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Let {H® | s >0} be the heat semigroup. There is a unique smooth function
h((x,1),s) = hs(x,1) on K x (0,4-o0) such that H* f(x,1) = f * hs(x,1).
hy is called the heat kernel assocaited to L.

LEMMA 2.3.
30+2

hsllgp <Cs™72 )

Proof. By the Plancherel formula, we have [|As|[, 5 = [|-Z1a(hs)ll,, 2 -

1 +°o & - sm — \)
||9L3(h.v)||§a,2= m/o (2L,°,‘,(O)e 8 ) e~ ¥hslor) 341 )
2 m=0

By the generating function identity for the Laguerre polynomials,

E‘jtmLa( ) 1 = 7] <1
- - —i
2 m \X (l_t)oH_le 5 )
we have
302 oo ol
s 1
g L ’ _ 7/ v 30H-1d .
H 18 ( S)||)/a~,2 22(1711"(0‘_'_%) 0 (25inh(4u)> ! !
So. | Fs(h)|,<Cs B O

3. Heisenberg inequality for Laguerre-Bessel transform

LEMMA 3.1. Let 0 < a < 3a+2, then forall f € L2(K), we have

HHSfHaQ <Cs2 ” ‘(x7t)|a fHa,Z'

Proof. For r>0,let f. = f xp, and f" = f— f;.
Then, we have
el < (0] | f(xn)]
So, we get
1 f g < I Moz < 7 IHGu0I1 fllg -

On the other hand, we have

||Hsfr||a72: Hfr*hS”mz
< ”fr‘ml ”h-\'Ha,Z
< sl ] 1Get) [~ 28,

o2 H ‘(x7t)|a fHoc,Z'

Since

| 1G] x8, || p = Aca 7442,

2
a,
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where
Bo

A =
T 2203 (a4 Do+ 1) (3042 — a)

and By = B(O‘T“, 20‘2“ ), B is the beta function, we get
”H f||a2 ”H fr||a2+||Hf Ha2

< DI flla (14€ Dl 742).

By the relation (4), we obtain
1l < N 060 fllga (14+C 5775 P2).

Choosing r =57, we obtain  [|H*f]|,, < Cs 3 [(x,0)]* fllyn- O

In the sequal, by proceeding as the same way of the papers of Ma [7, 8], we can
derive the following result.

THEOREM 3.1. Let a,b > 0, then for all f € L2,(K), we have

2b

G0l fllgs”

11+2b

T2 lane )

|@m+a+ )A) Fus(f)

Proof. . (K) is dense in L2,(KK), so we need only to prove (5) for .7 (K).
Assume that a <30+ 2.
If b < 1, then by Lemma 3.1 it follows that
1A lla2 S NE fllgp + 111 = H) flla
<O Fllgat | (1=H) (L) GLPS|| -
Let g = (sL)’f. Then

=) 6L

= || (1= e Aty (22, 2m+ o 1)) Fin(g)

1172 Ya,z .

Since, if b < 1, the function 7 — (1 —e™") +~? is bounded for 7 > 0 and therefore

Fllaz < c( 6l flaa+5 |22 1].,,)-

By optimizing in s as in [7], we can obtain

a+2b

Henl FIEE (]2 > € 1l

Then the Plancherel formula yields the desired result.
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If b>1,then u < 1+u® for u > 0. Hence

202 DA 2(2 VAN
w@%%)  fore >0,

It follows that

|2Cm+ e+ 1)A) Zia(lly, 2 < ellflgate' ™ | 22m+a+ 1)2) Fus(f)

Yoo2 .
By optimizing in €, we get

b

12@2m+a+1)A) Fp(f)lly,2 < Cllinj 2@m+a+1)2) Fip(f)

Ya:2 )

Together with (5) for b= 1, we get the result for b > 1.
If a > 30+ 2 then we have

(0] oy [&D)]
€ g4

, €>0.

It follows that

Ol < €lfllga+ eI @DI flas -

Optimizing in €, we get

1-1 a st
1G] fllg < Cllflle" HEDI fllg -

Together with (5) for a = 1, we get the result for a > 300 +2. O

4. Local uncertainty inequalities

In this section, based on the ideas of Price [10, 11] and by similar techniques
used on the paper [9] of Omri and Rachdi, we establish a local uncertainty inequalities
related to Laguerre-Bessel transform.

THEOREM 4.1. Let s be a real number such that 0 < s <3+ 2. Then for all
nonzero f € L2,(K) and for all measurable subsets E C K such that 0 < Yy (E) < oo,
we have )

1718 (F)XE Ny, 2 < Kous Ya(E) B2 (60 fllg (©)

where

s

(30042 —5)By e 3042
220300+ )T (a4 1)s2 3a+2—s"

Ko s =

9

The equality in (6) does not hold.
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Proof. Let 0 <s<30+2 and f € L2,(K), by Minkowski’s inequality, it follows

18 () ey, 2 < 1708 (F a8 )xE Yy, 2 + | Fes(f s 2], -

Therefore
| Za(xE N2 < Vol E)? | F1s(F 8, 2E o+ (| Fes (F) 0 (D)
|8 (DEl 2 < Vel EVE N8, s + | Zen (s, (8)
On the other hand, using the Schwartz inequality, we get
128 oy < 1O e oo | 1660 2, - ©)

Therefore, we have

1
1 x5, oy < NGO Fm,llgn Ads P22,
[ 78 (F )|, o < 11D Fllas
HgLB(f)XE”ywz < gOt.,S(r) H |(xvt)|s fHoc,27

where gy ¢ is the function defined on (0,+oe) by

. 1 s
8as(r) =17+ (AasYa(E))? @27
In particular, taking the minimal value of g s, we get the inequality

178 (F)XEl 2 < 8as(ro) [ () fllga s
where

5 e A ~ 35077
— - s E o+ .
0= (5a1) AastalE)

s

However go.4(ro) = Yo (E)2o Ky .
Let us prove that the equality in (6) does not hold. Suppose that there exists a
nonzero function f € L2 (K) such that

17152 2 = Kas Ya(E)F (|06 flgs -

Combining the relations (7), (8) and (9), we get the following equalities

|7ty e, = v | Fustram,) | (10)
[#28,, = || Zeatren), (an
[zm, |, = @D Al | D1 2, |, (12)
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From the equality condition of the Schwart inequality, it follows from the relation (12)
that

[f(x0)] = C |(x,1)[ 7 x8,, (x,1).
By (3) and (11), it follows that there exists (Ao, mp) € K for which

/ |f(x,2)[dme (x,1) = ‘/B f(xvt)(p(lo,mo)(xvt) dme(x,1)

0

< ) 10t (1) (1)

0

</B £, ) | dma(x, 1)

0

Therefore, [@(, my)(x,7)| = 1 for (x,) € By, and thus, A9 =0 and f(x,t) =e'%|f(x,1)],
where 6y € R
On the other hand, by the relation (10), we get

J L8015, = | Ziah) o)) (2 =0
Then for almost every (A,m) € E, we have
[ Ze(f)(A,m)| = [ Fe(f)lly, =
Thus, we deduce that,
[ Zs(f)(A,m)| = | FLs(f)(0,mo)| ae (A,m) €E, (13)
which implies that A = 0. This contradicts the relation (13) because Y, (E) > 0. So the

inequality (6) is stictly satisfied. [

LEMMA 4.1. Let s be a real number such that s > 3o + 2, then for all nonzero
measurable function f on K, we have

3042
IIfHMSMo%s Iz * I IGe)l f|| , (14)

3o+2

where Mas = A B(—2122, 3052) (5302

We have equality in (14) if only if there exists a > 0 and b > 0 such that

1Fe0)] = (a+b |(xn)>)

Proof. The inequality (14) holds if || f{|o,5 = 4o or || [(x,0)[* f]lop = +e°.

Assume that HfHa,2 + ” |(xvt)‘s fHoc,Z < ree.

From the hypothesis s > 3o + 2, we deduce that for all @ >0 and b > 0, the
function

(0,1) — (a+b |(x,0)2) "
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belongs to L}, (K) and by Holder’s inequality, we have

12 1)
< o+ ot o ieor)™ (s)
o2 o,2
We have equality in (15) if and only if
o1
fn)[=C (1+ [(x)*) . (16)
But
(e 2 C 2
[t 1Py | = 10 12
a2
therefore
2 2 s £2
110 < N (IF12 2+ 110 152 (a7
where
12
Mo = (14 )
a2
By straightforward calculus, we get
s—=300—2 3a+2\ 30+2—s5
Na,s :Aa,s B ( s ) .
s s s
For r > 0, we put
_—(6a+d) o (X 1
fr(x7t)_r ( ¢ )f(;vr_2>
Then we have
”frHoc,l = HfHoc,h
1
2 2
”frHa,Z = 26014 Hf||a72’
1
2 2
” |(xvt)‘s frHa,Z - 760+4-25 H ‘(x7t)|s f||oc,2 :
Replacing f by f, in the relation (17), we deduce that for all » > 0, we have
2 — 2 s—60— K 2
10 < Nos (7O A0+ P2 1)l fla) -
In particular, for
1
(30+2) 1 £1l7
ro = /s 3 5
(S—30(—2) H |(xvt)| fHoc,Z
we get
2 2-Sets s oy 24
Aot < Mas 1 fllgn * I1GDF fllg s (18)
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Now suppose that we have equality in the relation (18). Then we have equality in (17)
for f,,, and by means of (16), we obtain

—1
[froe0)| =C (14 |(x,0)[*)
25\ —1
and then |f(x,2)| = (a+b |(x,1)*) . O
THEOREM 4.2. Let s be a real number such that s > 30 + 2.

Then for all nonzero f € L(zx (K) and for all measurable subset E C K such that
0 < Y4(E) < +oo, we have

3o+2 H | 3o+2
s

L 1 [tz s ;
|- ZLe(F)XEyy 2 < Mas Ya(E)Z (Ifllon * D fllgs (19)

where My s is the constant given by the relation (14). The equality in (19) does not
hold.

Proof. Suppose that the right-hand side of (19) is finite. Then, according to
Lemma 4.1, the function f belongs to L}, (K) and we have

1 (£)xE 1, 2 < Yo (E) | Z8(£)II3, -
<Y (E) | fllo
5 6otd L Gk
< Mos YalE) |fllgn * 11D fllgs

where My,  is the constant given by the relation (14).
Let us prove that the equality in (19) does not hold. Suppose that there exists a
nonzero function f € L2 (KK) such that

2 ;
178 (f) 2 |3 2 = Mavs Ya(E) £l

Consequently, we find

6o+4 S 60+4
[OF fllgs -

178 () xE 3, 2 = Yo (B) |- T8 ()5, e
1A et = 1728()ly, o

and
_ 3a+2 3a42

1 1 3o
1A llen =Mas IFllon ™ TO6DF fllgs (20)
Applying Lemma 4.1 and the relation (20), we deduce that

V(x,t) €K, flx.1) =w(x1) (a+b |(x7f)|zs)_1»

with |y(x,7)]=1,a>0and b > 0.
By the same arguments of the proof of theorem 4.1, we show that the inequality
(19) is stictly satisfied. [J
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THEOREM 4.3. Let s =30+ 2, then for all nonzero f € L2,(K) and for all mea-
surable set E C K such that 0 < Yy (E) < +oo, we have

|- Z(f)xElly 2 < Co Ya(E)™X ) HJ‘H“‘+2 G Fllg 3”‘”

with
_ 6o+l
Ca:(3a_|_2)2 (Bo+1) 2Ba+2) (Aa\(3a+2—5)) 3a+2)

Proof. We have s =3 +2 > 1, using the same manner as the end of the proof of
theorem 3.1, we obtain

1_ 1-1 1
1G] fllon < 5 (5= D5 Il 0P g -

By this inequality together with (6) taken for s = 1, we get the result for s = 3o +
2.0
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