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Abstract. Let V be a subset of an Abelian group G and let ω : V ×V → [0,∞] be given. We
say that a function f : V → R is ω(·, ·) -midconvex if

f (x) � f (x−δ )+ f (x+δ )
2

+ω(x−δ ,x+δ )

for x ∈ V,δ ∈ G such that x− δ ,x+ δ ∈V . Our aim is to provide a computer assisted method
to estimate

sup{ f ∈V → R : f ∈B(V ;W ), f is ω(·, ·) -midconvex},
where B(V ;W ) denotes the set of real-valued, bounded from above functions on V which

are zero on W (W ⊂ V ) . We present an algorithm which for given ε > 0 enables us, under
reasonable assumptions, to find the above supremum with accuracy ε . We test our results for
V = {0, 1

N , . . . , N−1
N ,1} and W = {0,1} , where N ∈ N is fixed.

1. Introduction

The main idea of our investigation lies in joining together the notions of approxi-
mate convexity and convexity on non-convex sets.

Let us first recall some basic information concerning approximate convexity. The
term “approximate convexity” was introduced by D. H. Hyers and S. M. Ulam [5] in
1952. Its variation adapted to Jensen convexity can be stated as follows:

DEFINITION 1.1. ([13]) Let X be a normed space, V be a convex subset of X ,
and ε be a nonnegative constant. A function f : V → R is said to be ε -midconvex (or
ε -Jensen convex) if

J f (x,y) = f

(
x+ y

2

)
− f (x)+ f (y)

2
� ε for x,y ∈V :

x+ y
2
∈V .

A natural generalization of this definition for normed spaces lies in replacing the
constant ε by a function ω which depends on the norm of the difference ‖x− y‖ :
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DEFINITION 1.2. Let V be a convex subset of a normed space X and let ω : R+→
R+ be a given function. We say that f : V → R is ω(·)-midconvex (or ω(·)-Jensen
convex) if

f

(
x+ y

2

)
� f (x)+ f (y)

2
+ ω(‖x− y‖) for x,y ∈V :

x+ y
2
∈V.

For some recent results we refer the reader to [14, 16]. The general research ques-
tion lies in verifying how far from convex functions are ω(·)-approximately convex
functions. To measure this we will the convexity difference operator defined by

C f (x,y; t) := f (tx+(1− t)y)− t f (x)− (1− t) f (y) for x,y ∈V,t ∈ [0,1]

will be useful. The method of attack of this problem in many cases is based on the
reduction to one dimensional case, which is stated in the following trivial observation:

OBSERVATION 1.3. Let V be a convex subset of a Banach space and let f : V →
R be given. Then f is ω(·)-midconvex iff for every x,y∈V , the function ϕx,y : [0,1]→
R defined by

ϕx,y(t) : [0,1] � t→C f (x,y; t) ∈ R,

is ωx,y(·)-midconvex, where ωx,y(r) := ω(‖x− y‖r) .
Observe that the above mentioned function ϕx,y satisfies ϕx,y(0) = ϕx,y(1) = 0.

As in general case to obtain convexity from Jensen convexity we need (local) bounded-
ness, we see that the study of ω(·)-approximately convex functions can be reduced to
investigation of the set

Jω([0,1],{0,1}) := { f ∈B([0,1];{0,1}) : f is ω(·)-midconvex},
where ω : [0,1]→R+ is given and B(V ;W ) denotes the set of all real-valued bounded
from above functions on set V which are zero on W . It occurs that the optimal bound
of this set, defined by

fω ([0,1],{0,1}) := sup{ f ∈ Jω([0,1],{0,1})}
is usually fractal Takagi-like functions, see [1, 2, 9, 10, 13, 17].

Our second motivation lies in the recent generalization of (Jensen) convexity to
non-convex sets (or in general arbitrary subsets of groups) proposed and studied by W.
Jarczyk and M. Laczkovich [7, 8]:

DEFINITION 1.4. ([8]) Let G be an Abelian group and let V be a subset of G .
We say that f : V → R is convex if the following inequality holds

f (x) � f (x− δ )+ f (x+ δ )
2

for x ∈V,δ ∈ G such that x− δ ,x+ δ ∈V .

In our paper we generalize the definition of approximate convexity in the spirit of
the previous definition:
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DEFINITION 1.5. Let V be a subset of an Abelian group G and let ω : V ×V →
[0,∞] such that ω(x,x) = 0 for x ∈V be given.

We say that a function f : V → R is ω(·, ·)-midconvex (or ω(·, ·)-Jensen convex)
if

f (x) � f (x− δ )+ f (x+ δ )
2

+ ω(x− δ ,x+ δ ) for x ∈V,δ ∈ G : x− δ ,x+ δ ∈V.

Observe that for ω ≡ 0 we directly obtain Definition 1.4.
Similarly to the standard case, the study of ω(·, ·)-midconvex functions and their

understanding can be often deduced from the properties of the set

Jω(V ;W ) := { f ∈B(V ;W ) : f is ω(·, ·)-midconvex}.
Our aim in this paper is to present a computer assisted approach which given a finite
set V can find within a specified error bound the optimal estimation from above of
Jω(V,W ) , that is

fω (V,W ) := sup{ f ∈ Jω(V,W )}.
We illustrate our approach in the simplest case when V = {0,1/N, . . . , (N−1)/N,1}
and W = {0,1} .

2. Estimate of optimal ω(·, ·)-midconvex functions

In this section we discuss the construction of optimal ω -Jensen convex functions.
Let V be a given subset of an Abelian group G . From now on we assume that

ω : V ×V → [0,∞] such that ω(x,x) = 0 for x ∈V is fixed.
For x ∈V and δ ∈ G such that x− δ ,x+ δ ∈V we define

R f (x,δ ) := min{ f (x), f (x− δ )+ f (x+ δ )
2

+ ω(x− δ ,x+ δ )}

for f ∈ [−∞,∞)V .
Now, we introduce the operation P : [−∞,∞)V → [−∞,∞)V as follows

P f (x) := inf{R f (x,δ )|δ ∈ G : x− δ ,x+ δ ∈V} for f ∈ [−∞,∞)V .

PROPOSITION 2.1. Let f ,g ∈ [−∞,∞)V be arbitrary functions. Then operation
P has following properties:

(i) Pg � g ,

(ii) if g � f , then Pg � P f ,

(iii) P(0)≡ 0,

(iv) Pg � 0 for g � 0.
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Proof. Properties (i) and (ii) are obvious. Assumption ω � 0 implies property
(iii). Last property is a simple consequence of properties (ii) and (iii). �

Furthermore, because P is decreasing the operation P∞ : [−∞,∞)V → [−∞,∞)V

P∞ f := lim
n→∞

Pn f

is well-defined. By Proposition 2.1 we get that P∞g � 0 for g � 0.
As a consequence of Proposition 2.1 we get:

LEMMA 2.2. Let f ∈ [−∞,∞)V be ω(·, ·)-midconvex. Then f = P f = P∞ f .

Proof. Since f is ω(·, ·)-midconvex:

f (x) � f (x− δ )+ f (x+ δ )
2

+ ω(x− δ ,x+ δ ) for x ∈V,δ ∈ G : x− δ ,x+ δ ∈V.

Thus

f (x) = min{ f (x), f (x− δ )+ f (x+ δ )
2

+ ω(x− δ ,x+ δ )}= R f (x,δ )

for x ∈ V,δ ∈ G such that x− δ ,x+ δ ∈ V . Consequently f = P f , which trivially
implies that f = P∞ f . �

LEMMA 2.3. Let f ∈ [−∞,∞)V be ω(·, ·)-midconvex and let g ∈ [−∞,∞)V be
such that g � f . Then f � P∞g .

Proof. By Lemma 2.2 and Proposition 2.1 (iii) we obtain f = P f � Pg . Con-
sequently by induction we have f � Png for n ∈ N and therefore f = P∞g . �

Let W ⊂V be fixed. We are interested in the class of approximately convex func-
tions which are zero on W . We want to find the optimal estimation (from above) of
elements of this class. We put

fω (V ;W ) := sup{ f ∈ Jω(V ;W )}.
There appears a question how to compute the function fω (V ;W ) .

In many cases, the estimation and properties of the ω(·, ·)-Jensen convex func-
tions can be deduced from the knowledge of fω (V ;W ) . For example, if we want to
find an estimate of f (which we assume to be bounded form above and ω -Jensen
convex) on the interval [a,b] , by subtracting the respective affine function (namely
x→ f (a)+ x−a

b−a [ f (b)− f (a)]) we can reduce to the case when f (a) = f (b) = 0. Thus
we can restrict to investigation of bounded approximately Jensen convex functions on
the interval [0,1] , which are zero at 0 and 1 (so V = [0,1] and W = {0,1} ).

Next theorem gives us the procedure how to find the upper bound of fω (V ;W ) .
By �V ;W : V → R we denote

�V ;W : V ∈ v→
{

1 for v ∈V \W ,
0 for v ∈W .



STRICT VERIFICATION OF APPROXIMATE MIDCONVEXITY ON NON-CONVEX SETS 393

THEOREM 2.4. Let V and W ⊂ V be given subsets of an Abelian group G. We
assume that

∃ A � 0 ∀ f ∈ Jω(V ;W ) : f � A. (1)

Then
fω (V ;W ) = P∞(A�V ;W )

and fω is ω(·, ·)-midconvex.

Proof. Since fω (V ;W ) = sup{ f ∈ Jω(V ;W )} by (1) we trivially obtain

fω (V ;W ) � A�V ;W

and consequently, by Lemma 2.3, the inequality

fω (V ;W ) � P∞(A�V ;W )

holds.
We prove the opposite inequality. For n ∈ N∪{∞} we put

gn := Pn(A�V ;W ).

Clearly, gn converges pointwise, as n→∞ , to g∞ := lim
n→∞

gn . On the other hand directly

from the definition of operation P we know that

gn+1(v) � gn(v− δ )+gn(v+ δ )
2

+ ω(v− δ ,v+ δ ) for δ ∈ G : v− δ ,v+ δ ∈V.

By taking the limit we get

g∞(v) � g∞(v− δ )+g∞(v+ δ )
2

+ ω(v− δ ,v+ δ ) for δ ∈ G : v− δ ,v+ δ ∈V,

which implies that g∞ is ω(·, ·)-Jensen convex, and consequently g∞ ∈ Jω(V ;W ) . �
The assumption (1) does not always hold. Let us consider following examples.

EXAMPLE 2.5. Let V ⊂ [0,1] be such that

x ∈ [0,1/2]∩V ⇒ 2x ∈V, x ∈ [1/2,1]∩V ⇒ 2x−1 ∈V

and W = {0,1} ⊂V . Then by [16, Proposition 2.1] condition (1) is satisfied.

EXAMPLE 2.6. Let V = {0, 1
3 ,1} and W = {0,1} . Then an arbitrary function

f : V → R such that f |W ≡ 0 is ω(·, ·)-midconvex. Consequently condition (1) is not
satisfy for the pair (V,W ) .

An interesting problem is to characterize properties of sets satisfies condition (1).
Now we can easily obtain lower bound of optimal ω(·, ·)-midconvex function.
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THEOREM 2.7. Let V and W ⊂ V be given subsets of an Abelian group G. We
assume that condition (1) holds. Let h : V → R be such that

h � P∞(A�V ;W ).

If (1− ε)h is ω(·, ·)-midconvex for some ε ∈ (0,1) , then

(1− ε)h � fω (V ;W ) � h. (2)

Proof. According to Theorem 2.4 we get fω � h , because function P∞(A�V ;W )
is ω(·, ·)-midconvex. Lower bound of fω in (2) is a consequence of definition fw as a
supremum of set Jω(V ;W ) while directly from the assumptions (1− ε)h ∈ Jω(V ;W ) .

�

3. Strict numerical verification

In this section we give two algorithms which help us to encode the results obtained
in the previous section and create application which founds bounds of fω (V ;W ) for V
and W ⊂V finite subsets of an Abelian group G .

We introduce algorithm that summarizes results obtained in Theorem 2.4 and
Theorem 2.7 which give us that outcome function from our construction is ω(·, ·)-
midconvex:

choose
A � 0 such that ∀ f ∈ Jω(V ;W ) : f � A
ε ∈ (0,1) (precision)
n ← 1
repeat

hn ← upper bound for Pn(A�V ;W )
n ← n+1

until (1− ε)hn is not ω(·, ·)-midconvex
return we get estimation (1− ε)hn � fω (V ;W ) � hn

As it occurs the above algorithm is inconvenient for implementation because states
calculate hn and check that (1−ε)hn is ω(·, ·)-midconvex slow it down. Hence we try
to modify those calculations to make it faster.

But first we have to answer the question: how we can find upper bound for
Pn(A�V ;W ) for fixed n ∈N? To solve this problem we prepared all calculations using
interval aritmetics which allows us to deal with finite precision of computer calculations
and control error value [3, 15] (for implementation see [6]). When we work with inter-
val arithmetic, instead of considering real number (ex.

√
3) we work with the interval

(ex. [1.7320;1.7321]) which contains our number lies between lower and upper bound
of this interval.

Let us start with useful notations:

K(V ) = {(v,δ )|v ∈V,δ ∈ G : v− δ ,v+ δ ∈V},
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where V is given finite subset of Abelian group G . Observe that then cardK(V ) is also
finite as cardK(V ) � (cardV )2 .

Now we introduce operator Q to speed up numerical computations.

DEFINITION 3.1. Let V be given finite subset of an Abelian group G and let
(v,δ ) ∈ K(V ) . We define operator Q(v,δ ) : [−∞,∞)V → [−∞,∞)V as follows:

Q(v,δ ) f : V � x→
{

R f (x,δ ) if x = v,
f (x) otherwise,

for f ∈ [−∞,∞)V .

As we see for every f ∈ [−∞,∞)V the operator Q(v,δ ) modifies the function f
most at the point v . Also we get that Q(v,δ ) f � f .

From now on, we fix the sequence s = (s1, . . . ,sn) of elements of K(V ) such that
K(V ) =

⋃n
i=1{si} , where n = cardK(V ) . We define

Qs := Qsn ◦ . . .◦Qs1 .

To simplify notation from now on we use the letter Q instead of Qs .
As we show, we can apply the operator Q for function hA : V � v→ A�V ;W ∈ R+

and obtain upper bound for P(A�V ;W ) .

LEMMA 3.2. Let V be a finite subset of Abelian group G . We have

PcardK(V ) f � Qf � P f for f ∈ [−∞,+∞)V .

Proof. Let f ∈ [−∞,+∞)V . According to Definition 3.1 we have that P f �
Q(v,δ ) f for all (v,δ ) ∈ K(V ) , which implies PcardK(V ) f � Qf .

We check now second inequality, so we want to show that for every v ∈ V :
Qf (v) � P f (v) . Let us choose arbitrary v ∈V . We have that

P f (v) = inf

{
f (v− δ )+ f (v+ δ )

2
+ ω(v− δ ,v+ δ )|δ ∈ G : v− δ ,v+ δ ∈V

}
.

Because V is finite there exists such δ ∈ G realize those infimum. Thus we obtain
Q(v,h) shuch that Q(v,h) f (v) � P f (v) . This finishes the proof, because v was arbitraty
choosen. �

We see that the operator Q converges faster then P , but from the perspective of
computer calculations these operators are similar.

It is left to verify that condition (1) holds. However in the case where V = [0,1]N =
{0,1/N, . . . ,(N−1)/N,1} and W = {0,1} we can put (see. [16, Corollary 2.1])

A = 2 sup
x,y∈[0,1]N

ω(x,y).

Thus we obtain the following observation (special case of Theorem 2.7).
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THEOREM 3.3. Let ω : [0,1]N × [0,1]N → R+ and A � 2supω be given. Let
h : [0,1]N →R be such that

h � Qk(A�[0,1]N ;{0,1})

for some k ∈ N . If (1− ε)h is ω(·, ·)-midconvex for some ε ∈ (0,1) , then

(1− ε)h � fω ([0,1]N ;{0,1}) � h.

We can conclude by presenting full algorithm for finding estimation of fω ([0,1]N ;
{0,1}) :

choose
A � 0 such that for fixed ω : V ×V → R+,A � 2supω
hA : V � v→ A�V ;W ∈R+
for n ∈ {1,2, . . . ,NMAX} do

hA←QhA

end for
return hA – upper bound of P∞(A�V ;W )

Using the operator Q we can get function hA – upper bound of fω ([0,1]N ;{0,1}) .
To obtain lower bound we calculate the error considered in Theorem 3.3 by choosing
ε ∈ (0,1) such that

1
1− ε

� sup

{
hA(x)− hA(x−δ )+hA(x+δ )

2

ω(x− δ ,x+ δ )
: x− δ ,x,x+ δ ∈ [0,1]N ,δ ∈ R,δ �= 0

}
. (3)

We created application (using Java programming language and following libraries:
Interval Arithmetics Library [6], NetBeans Pack for OpenGL Java Development [12])
which applied operator Q to specified function ω and construct obtained function plot.

This application is available to download from:

http://www.ii.uj.edu.pl/~misztalk/index.php?page=convex

Plots prepared in this program are presented on Figures 1 and 3. All this pictures
presents not one but two functions – lower and upper bound of Jω([0,1]N ; {0,1}) ,
however the distance between them is so small that we cannot separate them from each
other.

REMARK 3.4. (Numerical Experiments) We investigate how many iteration of the
operator Q we need to obtain small ε . So let us fix ω(x,y) = |x−y| for x,y∈ [0,1]1024 .
We apply operator Q and then calculate ε according to equation (3). The results are
presented on Figure 2. Surprising is that we need such few iterations to get high preci-
sion level – in this case it is sufficient to take 10 iterations to obtain ε = 5.684 ·10−14 .

http://www.ii.uj.edu.pl/~misztalk/index.php?page=convex
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Figure 1: Iteration of operator Q for different functions ω : (a) ω(x,y) = |x− y|0.001 ,
x,y ∈ [0,1]1024 . We obtain ε = 2.22 · 10−16 . (Compare with [13]). (b) ω(x,y) = |x− y| ,
x,y ∈ [0,1]1024 , ε = 4.663 · 10−15 . For this ω we have Takagi-like function [2]. (c) ω(x,y) =
(cos |x− y|)5 , x ∈ [0,1]1024 , ε = 8.882 · 10−16 . (d) ω(x,y) = sin(exp |x− y|) , x ∈ [0,1]1024 ,
ε = 2.22 ·10−16 .

Figure 2: Error ε as a function of iteration the operator Q for ω(x,y) = |x−y| under interval
[0,1]1024 .

4. Estimation of optimal midconvexity on [0,1]N

In this section we recall two estimations for locally bounded α(·)-midconvex
functions on [0,1]N . We put d(x) := 2dist(x,Z) for x ∈ R . Then the estimations
can be stated as follows:

THEOREM 4.1. ([16, Corollary 2.1, Proposition 3.1]) Let N = 2k for a certain k∈
N . Let h : [0,1]N →R , h(0) = h(1) = 0 be an α(·)-midconvex function. Then
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h(q) � min

{ ∞

∑
k=0

1
2k α(d(2kq))

︸ ︷︷ ︸
E1(q)

,
∞

∑
k=0

α(1/2k)d(2kq)

︸ ︷︷ ︸
E2(q)

}
for q ∈ [0,1]N . (4)

We estimate RHS of (4) using interval arithmetics. Certainly for fixed N = 2k ,
where k ∈ N we have for q ∈ [0,1]N

E1(q) =
N−1

∑
k=0

1
2k α(d(2kq))+

∞

∑
k=N

1
2k α(d(2kq)) =

N−1

∑
k=0

1
2k α(d(2kq))+

1
2N−1 α(0), (5)

E2(q) =
N−1

∑
k=0

α(
1
2k )d(2kq)+

∞

∑
k=N

α(
1
2k )d(2kq) =

N−1

∑
k=0

α(
1
2k )d(2kq). (6)

As you can see by doing a simple transformation we reduce the infinite sums to finite
expressions.

OBSERVATION 4.2. Let V and W ⊂ V be given subsets of an Abelian group G .
If V ⊂ V̂ , then fω (V̂ ;W )|V � fω (V ;W ) .

We prove that in some cases the estimation given by (4) is not optimal.

THEOREM 4.3. Let V = [0,1]N for N = 2k , k ∈ N , k � 3 and W = {0,1} . For
ω(x,y) = sin(cos(|x− y|)) approximations of fω ([0,1]N ,{0,1}) obtained by (4) are
not optimal (see Figure 3).

Proof. First we consider k = 3. Then N = 23 = 8. Using interval arithmetics for
estimations obtained in (5) and (6) we obtain

E1(3/8) ∈ [1.594665139738596− ε1,1.594665139738596+ ε1],
E2(3/8) ∈ [1.391691873308314− ε2,1.391691873308314+ ε2],

where ε1 = 7.327471962526033×10−15, ε2 = 7.105427357601002×10−15.
On the other hand, according to estimation calculated using our application we

have
P∞hA(3/8) � Q25hA(3/8) � 1.247341841544101,

where

hA = A�[0,1]8;{0,1},

A > 1.682941969615793� 2sin(1) = 2sup{sin(cos(|x− y|)) : x,y ∈ [0,1]8}.

Thus
P∞hA(3/8) � min{E1(3/8),E2(3/8)}. (7)



STRICT VERIFICATION OF APPROXIMATE MIDCONVEXITY ON NON-CONVEX SETS 399

Now we consider an arbitrary k � 3. Clearly by (4) we get that E1(3/8) and
E2(3/8) are independent of the choice of k . By Observation 4.2, we conclude that for
k � 3 by (7)

fω ([0,1]2k ,{0,1})(3/8) � fω ([0,1]23 ,{0,1})(3/8)

= P∞hA(3/8) � min{E1(3/8),E2(3/8)}. �

Figure 3: Graph of comparison of three estimators: (a) P∞ , (b) E1 , (c) E2 for ω(x,y) =
sin(cos(|x−y|)) on the set [0,1]256 .
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