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Abstract. In this paper we consider a Busemann-Petty type problem for mixed radial Blaschke-
Minkowski homomorphisms.

1. Introduction

The setting for this paper is the n-dimensional Euclidean space R"(n > 2). Let
" denote the space of convex bodies (compact, convex subsets with non-empty inte-
riors) in R" with the Hausdorff topology. Let B denote the unit ball in R”, the surface
of Bis §"~!. A compact, convex set K is uniquely determined by its support function
h(K,-) on the unit sphere S"~!, defined by h(K,u) = max{u-x: x € K}.

Associated with a compact subset K € R”, which is star-shaped with respect to
the origin, is its radial function p(K,-) : "' — R, defined for u € $"~!, by p(K,u) =
max{A >0:2uecK}.If p(K,-) is positive and continuous, we call K a star body. Let
" denote the set of star bodies in R”, and .7 denote the subset of . that contains
the origin-symmetric star bodies.

The intersection body /K of a star body K is defined by

p(IK,u) =vol, (KNu'), uecs .

Intersection bodies have attracted increased interest in recent years. They appear al-
ready in a paper by Busemann [2] but were first explicitly defined and named by Lutwak
[20]. Intersection bodies turned out to be critical for the solution of the Busemann-Petty
problem (see [3-5, 10, 13—15, 29]).

Recently, Schuster [23] introduced a class of operators, called radial Blaschke-
Minkowski homomorphisms which generalize the well known intersection operator.

DEFINITION 1.1. A map @ : ." — .%" is called a radial Blaschke-Minkowski
homomorphism if it satisfies (a), (b) and (c).

(a) @ is continuous with respect to radial Hausdorff metric.

(b) ®(K #L) = ®K + ®L forall K,L € .7".
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(c) @ is SO(n) equivariant, i.e., ®(¥K) = 9PK forall ¥ € SO(n), where SO(n)
is the group of rotations in R”". _

Here ®K+®L is the radial Minkowski sum of ®K and ®L, K#L is the radial
Blaschke sum of K and L, i.e.,

p(KAL.u)'™" = p(K,u)" + (L)',

Schuster [25] studied the following Busemann-Petty type problem for radial Bla-
schke-Minkowski homomorphisms and obtained answers analogous to the famous Bu-
semann-Petty problem.

THEOREM A. [25] Let ® :." — . be a radial Blaschke-Minkowski homo-
morphism. If K € ®." and L € /", then

®K COL = V(K) < V(L),
and V(K) =V (L) ifand only if K = L.

THEOREM B. [25] Let @ : ." — 9" be a radial Blaschke-Minkowski homomor-
phism. If S"(®) does not coincide with /", then there exist star bodies K,L € /",
such that

DK C DL,

but
V(K) > V(L).
Here "(®) denotes the injectivity set of @ (see section 3 for a precise definition).

Schuster first introduced the concept of mixed radial Blaschke-Minkowski ho-
momorphisms. Let @ : . — . be a radial Blaschke-Minkowski homomorphism.
There is a continuous operator

O: S x S S
—_———
n—1

symmetric in its arguments such that, for Ki,...,K,, and A{,..., 4, >0,

QMK+ FdnKy) = D, @K ,....K

in—1

iy <+ -
05501
Clearly, it generalizes the notion of radial Blaschke-Minkowski homomorphisms.
We call
Q.S S SN
the mixed radial Blaschke-Minkowski homomorphism induced by ®. If K} =--- =
K.—i1 =K,K,—i=-=K,_1 =B, we write ®;K for ®K,...,K,B,...,B). For
—— ——
n—i-1 i
i=0,---,n—1, we write ®;(K,L) for ®(X,...,K,L,...,L). In particular, if i =0,
—— ——
n—i—1 i
then @y(K,L)=®PK
In this paper, we focus on the study of the Busemann-Petty type problem for mixed
radial Blaschke-Minkowski homomorphisms. We generalize Schuster’s results as fol-
lows:
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THEOREM 1.1. For i=0,---,n—1, let ®; : /" x---x " — " be a mixed
—_——

n—i—1

radial Blaschke-Minkowski homomorphism. If K € ®;." and L € /", then

DK C ;L= Wi(K) < Wi(L),

and Wi(K) = Wi(L) if and only if K = L.
THEOREM 1.2. For i=0,---,n—1, let ®; : /" x---x " — " be a mixed
~—_———
n—i—1
radial Blaschke-Minkowski homomorphism. If " (®;) does not coincide with /",
then there exist star bodies K,L € .", such that

O,K C DL,

but
Wi(K) > Wi(L).

Here ""(®;) denotes the injectivity set of ®@; (see section 3 for a precise definition).

2. Notation and background material

2.1. Dual mixed volumes and mixed radial Blaschke-Minkowski homomorphisms

For K|,K, € .7" and A;, A, > 0, the radial Minkowski linear combination A, K} +
A2 K> is the star body defined by

P(MK+22Ks, ) = ip(Ki,-) + Aap (K2, -). (2.1)

If K;e S"(i=1,2,...,m) and A;(i = 1,2,...,m) are nonnegative real numbers,
then the volume of 4K+ ---+A,,K,, is a homogeneous polynomial of degree n in A;
given by _

VMK F - FAnKn) = Y V(i Koy Ay, (2.2)

where the sum is taken over all n-tuples (iy,...,i,) of positive integers not exceed-
ing m. The coefficient V(K;,,...,K;,) depends only on the bodies Kj,...,K;,, and
is uniquely determined by the above identity, it is called the dual mixed volume of
Ki,...,K;, . More explicitly, the dual mixed volume V(K;,,...,K;,) has the following
integral representation !°):

V(KooK = 3 [ oK) p Ky )i 23)
where du is the spherical Lebesgue measure on S"~!.
The coefficients V(Kil ,...,Kj,) are nonnegative, symmetric and monotone (with
respect to set inclusion). They are also multilinear with respect to radial Minkowski
additionand V(K,...,K)=V(K). Let K| =--- =K, ;=K and K, ;1 ==K, =
L, then the dual mixed volume V (K, ...,K,) is usually written as V;(K,L). If L =B,
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then V;(K,B) is the dual Quermassintegral of K and is written as Wi(K). For 0<i<n,
then we write W;(K, L) for the dual mixed volume V;(K,...,K,B,...,B,L).
—— ——

n—i—1 i

From (2.3),if K,L € .", i € R, we have

Wi(K,L) = - p(K,u)""'p(L,u)du. (2.4)

LEMMA 2.1. [32] If K,L€ ", and 0 <i<n—1, then
Wi(K,L)"™ < Wi(K)" ™' Wi(L), (2.5)
equality holds if and only if K and L are dilatations of each other.

Schuster characterized completely all mixed radial Blaschke Minkowski homo-
morphisms.

LEMMA 2.2. [23] Amap ©: .S/" x --- x " — " is a mixed radial Blaschke-
—_——
n—1
Minkowski homomorphism if and only if there is a nonnegative measure . € . (S"~'))
such that

P(D(Ky,... . Kn1),-) = (P(K1yo) -+ p(Kn—i,0)) * L (2.6)
In particular, if Ky = --- =K,,_1 =K, then
p(PK,) =p(K,-)" " p. (2.7)

For the definition of the convolution, see the next section.

Additional information on convex body valued valuations or star body valued val-
uations can be found in references [1, 7-9, 11, 12, 16-18, 21-27, 30, 31].

2.2. Spherical harmonics

Some basic notions on spherical harmonics will be required. The article by Grin-
berg and Zhang [6] and the article by Schuster [25] are excellent general references on
spherical harmonics. As usual, SO(n) and §"~! will be equipped with the invariant
probability measures. Let € (SO(n)),%(S"~!') be the spaces of continuous functions
on SO(n) and $"~! with uniform topology and let .# (SO(n)),.# (S"~!) denote their
dual spaces of signed finite Borel measures with weak* topology. The group SO(n)
acts on these spaces by left translation, i.e., for f € €(S""!) and u € .# (5" '), we
have ©f(u) = f(0'u),¥ € SO(n), and Y is the image measure of u under the
rotation ©. If u,0 € .#(SO(n)), the convolution i * ¢ is defined by:

F(0)d(p o)) = [ fne)du(mydo(e),  (28)
SO(n) SO(n) JSO(n)
forevery f € €(SO(n)).
The sphere $"~! is identified with the homogeneous space SO(n)/SO(n— 1),
where SO(n — 1) denotes the subgroup of rotations leaving the pole & of §"~! fixed.



MIXED RADIAL BLASCHKE-MINKOWSKI HOMOMORPHISMS AND COMPARISON OF VOLUMEs 405

The projection from SO(n) onto §"~! is © 9 := ve. Right SO(n — 1)-invariant
functions on SO(n) are defined by f(8) = f(9), for f € €(S"1). In fact, €(S" 1)
is isomorphic to the subspace of right SO(n — 1)-invariant functions in % (SO(n)) and
this correspondence carries over to an identification of the space .2 (S"~!) with right
SO(n— 1)-invariant measures in .# (SO(n)). It is easy to check that the Dirac measure
&, is the unique rightneutral element for the convolution on . (S"~!).

The convolution p * f € €(S"~!) of a measure y € .#(SO(n)) and a function
f€E(S"Y) is defined by:

(s f)w) = [ 0f(du(®) (2.9)

SO(n)

The canonical pairing of f € €(S"" ') and u € .#(S"') is defined by:
W)= oat) = [ Swan(o). (2.10)
If u,ve.z(S" ") and f € €(S* "), then

(v, f) = (W, f+v). (2.11)

A function f € €(S""!) is called zonal, if ©f = f for every ¥ € SO(n—1).
Zonal functions depend only on the value u-e. The set of continuous zonal functions
on §"~! will be denoted by %'(S"~!,2) and the definition of .# (S"~!,) is analogous.
Amap A:€[—1,1] — € (5" !,¢) defined by:

Af(u)=f(u-e), uecs" . (2.12)

The map A is also an isomorphism between functions on [—1, 1] and zonal func-
tions on S"~ 1.
If fe€(S" ), ue.#(5" e and n € SO(n), then

(@ = [ Fnduto) (2.13)
If ue.#(S"'e), foreach f € ¢(S"!) and every ¥ € SO(n), then

(Of) 1 =D(f*L0)- (2.14)

We use 77" to denote the finite dimensional vector space of spherical harmonics
of dimension n and order k. Let N(n,k) denote the dimension of .7 . The space of all
finite sums of spherical harmonics of dimension # is denoted by 7. The spaces J7}"
are pairwise orthogonal with respect to the usual inner product on €’ (S"~!). Clearly,
22" is invariant with respect to rotations.

Let P! € €[—1,1] denote the Legendre polynomial of dimension »n and order
k. The zonal function AP} is up to a multiplicative constant the unique zonal spherical
harmonicin 77". In each space 7" we choose an orthonormal basis Hyy, -, Hyy(n z) -
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The collection {Hkla"'7HkN(n,k) : k € N} forms a complete orthogonal system in
(5" 1. In particular, for every f € Z2(8"~!), the series

[~ mf

k=0

converges to f in the £2(S"~1)-norm, where 7 f € " is the orthogonal projection
of f on the space 77". Using well-known properties of the Legendre polynomials, it
is not hard to show that

mf = N(n,k)(f = AP}). (2.15)

This motivates the spherical expansion of a measure y € . (5" 1),

Mo~ 2 T
k=0
where m 1 € 2" is defined by:
Mt = N(n,k) (1= AP). (2.16)

From P}(t) =1, N(n,0) =1 and P}'(t) =t, N(n,1) = n, we obtain, for u € .2 (S""1),
the following special cases of (2.16):

mou = u(S" Y and (mp)(u) = n/snil w-vdu(v). (2.17)

Let x;, denote the volume of the Euclidean unit ball B. By (2.4) and (2.17), for every
star body K € ., it follows that

K,op (K, ) = Wi(B,K) and 1,mp(K,-)" "' =Wi(K,B). (2.18)

A measure u € .#(S"!) is uniquely determined by its series expansion. Using
the fact that AP is (essentially) the unique zonal function in 72", a simple calculation
shows that for u € .2 (S"~!,2), formula (2.16) becomes

Tt = N(n, k) {1, AP ) APY. (2.19)

Thus, a zonal measure y € . (S""!,&) is defined by its so-called Legendre coeffi-
cients py := (u,AP}). Using mH = H for every H € " and the fact that spherical
convolution of zonal measures is commutative, we have the Funk-Hecke Theorem: If
pue.#(Se) and H € 7", then H* = (i H.

Amap ®: 2 C .4 (S" ) — #(S"") is called a multiplier transformation if
there exist real numbers ¢y, the multipliers of @, such that, for every k € N,

mdu = cpmpu, Yu e . (2.20)
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3. Main results
THEOREM 3.1. If ®;: /" x --- x " — " is a mixed radial Blaschke-Minkowski
~—_———

n—i—1

homomorphism, then, for K,.L € ",

Proof. Let u € .2 (S"~!,&) be the generating measure of ®;. Using (2.4), Lemma
2.2 and (2.11), it follows that

Wi(K,D;L) = K, (p(®;L,-),p(K,-)" 1)

= K (p(L,-)" ", p (K, )"

Kn<p(L7 ')n7i71 7p(K’ ')niiil * nu>

K (P (L, ')n_i_lvp(q)iK? )

=W(L,®;K). O

Using Lemma 2.2 and the fact that spherical convolution operators are multiplier
transformations, one obtains that

LEMMA 3.2. If ®; is a mixed radial Blaschke-Minkowski homomorphism which
is generated by the zonal measure L, then, for every star body K € /",

op (q)iKa ) = Mk TP (K7 ')niiilv (32)

where the numbers | are the Legendre coefficients of L.

DEFINITION 3.1. If ®; is a mixed radial Blaschke-Minkowski homomorphism,
generated by the zonal measure (i, then we call the subset .7 (®;) of ", defined by

L@ ={K eI mp(K, )" " =0 if i =0},

the injectivity set of @;.

It is easy to verify that for every mixed radial Blaschke-Minkowski homomor-
phism, the set .”*(®;) is a non-empty rotation and dilatation invariant subset of "
which is closed under L,_;_; radial sum. By Lemma 3.2, a star body K € .%"(®;) is
uniquely determined by its image ®;K .

DEFINITION 3.2. A star body K € . is called polynomial if p(K,-) € 5"
Clearly, the set of polynomial star bodies is dense in .¥’" and the set of all origin-
symmetric polynomial star bodies is dense in .7’ .
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THEOREM 3.3. If ®;: /" x --- x " — " is a mixed radial Blaschke-Minkowski
—_———

n—i—1
homomorphism such that /' € " (®;), then, for every polynomial body L € ./},
there exist symmetric star bodies K\,K € .7}' such that

L+®;K) = DK,
Proof. Let L € .7]' be a polynomial star body. From definition 3.2 we have

Ly= 3 mp(L.). (33)
k=0

Since L € .7}" and by the properties of the orthogonal projection of f on the space
", we have mp(L,-) =0 for all odd k € N.

Let u € .#(5"!,2) be the generating measure of ®; and let y; denote the Leg-
endre coefficients of y. From . C ."(®;) and definition 3.1, it follows that i # 0
for every even k € N. We define

fi= i Ck”kp(Lf)» (34)
k=0

where ¢; =0 forodd and ¢; = 1~ U if k is even. Clearly, f is an even continuous func-
tion on $"~! and since spherical convolution operators are multiplier transformations,
one can obtain

[ru= Z cxlymp (L Z mep (L L,). (3.5)
k=0

Denote by f* and f~ the positive and negative parts of f, and let K} and K; be the
star bodies such that p(Ky,-)""~! = f~ and p(Ka,-)""~! = f*. Hence, (3.5) can be
rewritten as

p (Ko, )" = p(Ki, )"t (L.
By Lemma 2.2, it follows that

L+DK, =D;K,. O

In this paper, we study the following Busemann-Petty type problem for mixed
radial Blaschke-Minkowski homomorphisms.
PROBLEM 3.1. Suppose ®;: " x --- x " — " is a mixed radial Blaschke-
~—_———

n—i—1
Minkowski homomorphism. If
D,K C ;L

does it follow that
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Proof of Theorem 1.1. For K € ®;.", there exists a star body K such that K =
®D,;Ky . Using Theorem 3.1 and the fact that if 0 <i < n— 1, the dual mixed volume W,
is monotone with respect to set inclusion, we can conclude

i

Wi(L,K) = Wi(L, ®;Ko) = W;(Ko, D:L) > W(Ko, P;K) = Wi(K,P;Ko) = W;(K).
Applying the Minkowski inequality (2.5), we obtain
Wi(K) < Wi(L).

Equality holds if and only if K and L are dilatations of each other. Clearly, star
bodies of equal volume which are dilatations of each other must be equal. [

Proof of Theorem 1.2. Let u € . (S""!,&) be the generating measure of ®; and
W denote its Legendre coefficients. Since .#"(®;) # " and @; is non-trivial, by
definition 3.1 there exists an integer kK € N and k > 1 such that y; = 0. We can choose
o > 0 such that the function f(u) =1+ aP(u-e),u € S"~!, is positive. Let K € .7
be the star body with p(K,-)" "1 = f. Since mp(K,-)" ! = m(1+aP!(u-2)) #0,
from definition 3.1 we have K ¢ .7 (®;).
From (2.18) and the properties of the orthogonal projection on the space .77}, we
have
Wi(K,B) = k,mop (K,-)" ! =k, = Wi(B). (3.6)

Using the fact that a star body K € .#"*(®;) is uniquely determined by its image ®;K,
we see that ®;B = ;K.

Noting that K is just a perturbation of B, we use (3.6) and the Minkowski inequal-
ity (2.5) to get

n—i—1

Wi(B) = Wi(K, B) < Wi(B)m Wi(K) "7

Hence

THEOREM 3.4. Suppose S C /"(®;). If L € " is a polynomial star body
whose radial function is positive, then, if L ¢ ®;/", there exists a star body K € ./,
such that

O,K C DL,

but

Wi(K) > Wi(L).

Proof. Let u € . (S"~!,) be the generating measure of ®;. Since L € .%" is a
polynomial star body, it follows from the proof of Theorem 3.3 that there exists an even
function f € " ,such that

p(L,)=fx*p. (3.7)
The function f must assume negative values, otherwise, by Lemma 2.2 we have L =
®;Ly, where Ly is the star body with p(Lg,-)" "' = f. Let F € €(S""!) be a non-
constant even function, such that F(u) > 0 if f(«) <0, and F(u) =0 if f(u) > 0.
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By suitable approximation of the function F' with spherical harmonics, we can find a
non-negative, even function G € 7" and an even function H € J#" such that

(f,G) <0, and G=Hx* L. (3.3)

Since the radial function p(L,-) is positive, there exists a > 0 and an origin-
symmetric star body K such that

p(K,-)" "t =p(L,)""" —BH. (3.9)

From (3.7) and Lemma 2.2, we see that p(®;K,-) = p(®;L,) — BG. Since G >0,
it follows that
p(PiK,-) < p(BiL,), (3.10)

or equivalently
O,K C ;L.
On the other hand, applying (2.4) (2.11) (3.8) and (3.9), we obtain
1/ (17 1 —i— n—i—
WiL) = Wik, L) = [ (L (p (L)~ = p (K. )aS(w)

= Knﬁ<f*‘LL,H>
= KuB(f, H x )
= Knﬁ<f7G>

<0.
To complete the proof, we can use (2.5) to conclude

Wi(K) >W,(L). O

REMARK. If i =0, Theorem 1.1 and Theorem 1.2 are just Theorem A and Theo-
rem B, respectively.
An immediate consequence of Theorem 1.1 is:

COROLLARY 3.5. Suppose K,L € ®;./", then ®;K = ®;L if and only if K = L.

Amap ®: 5" — " is called even if DK = ®(—K) for every K € /",

Based on the intersection operator, Zhang [28] introduced the mixed intersection
operator [; : " x --- x " — " If we restrict to origin-symmetric star bodies and

—_———
n—i—1
®; changes to be the mixed intersection operator /;, Problem 3.1 is just a generalization
of the famous Busemann-Petty problem. The mixed intersection operator /; is an even
mixed radial Blaschke-Minkowski homomorphism. Its generating measure is the (suit-
ably normalized) invariant measure [ > which is concentrated on Sg’z =snet,
0

i.e., p(I,K,-) is the spherical Radon transform of p(K,-)"~~1:
piK,-) =p(K, .)n—i—l * ”ngz'
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COROLLARY 3.6. If K € ;" and L € ./}, then

LK C L= Wi(K) < Wi(L),

and Wi(K) = Wi(L) if and only if K = L.

COROLLARY 3.7. If L ¢ ", then there exists a star body K such that
LK C L,

but
Wi(K) > Wi(L).

The special case i = 0 of Corollary 3.6 and Corollary 3.7 are the following results
which are the answer to the famous Busemann-Petty problem.

COROLLARY 3.8. [20] If K is an intersection body and L € ., then
IKCIL=V(K)<V(L),

and V(K) =V(L) ifand only if K = L.
COROLLARY 3.9. [20] If L ¢ I.7", then there exists a star body K such that

IKCIL,

but
V(K) > V(L).

Acknowledgement. We are grateful to the referee for the suggested improvements.
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