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Abstract. In this paper we consider a Busemann-Petty type problem for mixed radial Blaschke-
Minkowski homomorphisms.

1. Introduction

The setting for this paper is the n -dimensional Euclidean space R
n (n > 2). Let

K n denote the space of convex bodies (compact, convex subsets with non-empty inte-
riors) in R

n with the Hausdorff topology. Let B denote the unit ball in R
n , the surface

of B is Sn−1 . A compact, convex set K is uniquely determined by its support function
h(K, ·) on the unit sphere Sn−1 , defined by h(K,u) = max{u · x : x ∈ K}.

Associated with a compact subset K ∈ R
n , which is star-shaped with respect to

the origin, is its radial function ρ(K, ·) : Sn−1 → R , defined for u∈ Sn−1 , by ρ(K,u) =
max{λ � 0 : λu∈ K} . If ρ(K, ·) is positive and continuous, we call K a star body. Let
S n denote the set of star bodies in R

n , and S n
e denote the subset of S n that contains

the origin-symmetric star bodies.
The intersection body IK of a star body K is defined by

ρ(IK,u) = voln−1(K ∩u⊥), u ∈ Sn−1.

Intersection bodies have attracted increased interest in recent years. They appear al-
ready in a paper by Busemann [2] but were first explicitly defined and named by Lutwak
[20]. Intersection bodies turned out to be critical for the solution of the Busemann-Petty
problem (see [3–5, 10, 13–15, 29]).

Recently, Schuster [23] introduced a class of operators, called radial Blaschke-
Minkowski homomorphisms which generalize the well known intersection operator.

DEFINITION 1.1. A map Φ : S n → S n is called a radial Blaschke-Minkowski
homomorphism if it satisfies (a), (b) and (c).

(a) Φ is continuous with respect to radial Hausdorff metric.
(b) Φ(K #̃L) = ΦK +̃ ΦL for all K,L ∈ S n .
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(c) Φ is SO(n) equivariant, i.e., Φ(ϑK) = ϑΦK for all ϑ ∈ SO(n) , where SO(n)
is the group of rotations in R

n .
Here ΦK+̃ΦL is the radial Minkowski sum of ΦK and ΦL , K#̃L is the radial

Blaschke sum of K and L , i.e.,

ρ(K#̃L,u)n−1 = ρ(K,u)n−1 + ρ(L,u)n−1.

Schuster [25] studied the following Busemann-Petty type problem for radial Bla-
schke-Minkowski homomorphisms and obtained answers analogous to the famous Bu-
semann-Petty problem.

THEOREM A. [25] Let Φ : S n → S n be a radial Blaschke-Minkowski homo-
morphism. If K ∈ ΦS n and L ∈ S n , then

ΦK ⊆ ΦL ⇒V (K) � V (L),

and V (K) = V (L) if and only if K = L.

THEOREM B. [25] Let Φ : S n →S n be a radial Blaschke-Minkowski homomor-
phism. If S n(Φ) does not coincide with S n , then there exist star bodies K,L ∈ S n ,
such that

ΦK ⊆ ΦL,

but
V (K) > V (L).

Here S n(Φ) denotes the injectivity set of Φ (see section 3 for a precise definition).

Schuster first introduced the concept of mixed radial Blaschke-Minkowski ho-
momorphisms. Let Φ : S n → S n be a radial Blaschke-Minkowski homomorphism.
There is a continuous operator

Φ : S n×·· ·×S n︸ ︷︷ ︸
n−1

→ S n,

symmetric in its arguments such that, for K1, . . . ,Km and λ1, . . . ,λm � 0,

Φ(λ1K1+̃ · · · +̃λmKm) =
∼
∑

i1,···,in−1

Φ(Ki1 , . . . ,Kin−1)λi1 · · ·λin−1 .

Clearly, it generalizes the notion of radial Blaschke-Minkowski homomorphisms.
We call

Φ : S n×·· ·×S n → S n

the mixed radial Blaschke-Minkowski homomorphism induced by Φ . If K1 = · · · =
Kn−i−1 = K,Kn−i = · · · = Kn−1 = B , we write ΦiK for Φ(K, . . . ,K︸ ︷︷ ︸

n−i−1

,B, . . . ,B︸ ︷︷ ︸
i

) . For

i = 0, · · · ,n− 1, we write Φi(K,L) for Φ(K, . . . ,K︸ ︷︷ ︸
n−i−1

,L, . . . ,L︸ ︷︷ ︸
i

) . In particular, if i = 0,

then Φ0(K,L)=ΦK
In this paper, we focus on the study of the Busemann-Petty type problem for mixed

radial Blaschke-Minkowski homomorphisms. We generalize Schuster’s results as fol-
lows:
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THEOREM 1.1. For i = 0, · · · ,n− 1 , let Φi : S n×·· ·×S n︸ ︷︷ ︸
n−i−1

→ S n be a mixed

radial Blaschke-Minkowski homomorphism. If K ∈ ΦiS
n and L ∈ S n , then

ΦiK ⊆ ΦiL ⇒ W̃i(K) � W̃i(L),

and W̃i(K) = W̃i(L) if and only if K = L.

THEOREM 1.2. For i = 0, · · · ,n− 1 , let Φi : S n×·· ·×S n︸ ︷︷ ︸
n−i−1

→ S n be a mixed

radial Blaschke-Minkowski homomorphism. If S n(Φi) does not coincide with S n ,
then there exist star bodies K,L ∈ S n , such that

ΦiK ⊆ ΦiL,

but
W̃i(K) > W̃i(L).

Here S n(Φi) denotes the injectivity set of Φi (see section 3 for a precise definition).

2. Notation and background material

2.1. Dual mixed volumes and mixed radial Blaschke-Minkowski homomorphisms

For K1,K2 ∈S n and λ1,λ2 � 0, the radial Minkowski linear combination λ1K1+̃
λ2K2 is the star body defined by

ρ(λ1K1+̃λ2K2, ·) = λ1ρ(K1, ·)+ λ2ρ(K2, ·). (2.1)

If Ki ∈ S n(i = 1,2, . . . ,m) and λi(i = 1,2, . . . ,m) are nonnegative real numbers,
then the volume of λ1K1+̃ · · · +̃λmKm is a homogeneous polynomial of degree n in λi

given by
V (λ1K1+̃ · · · +̃λmKm) = ∑

i1,...,in

Ṽ (Ki1 , . . . ,Kin)λi1 · · ·λin , (2.2)

where the sum is taken over all n -tuples (i1, . . . , in) of positive integers not exceed-
ing m . The coefficient Ṽ (Ki1 , . . . ,Kin) depends only on the bodies Ki1 , . . . ,Kin , and
is uniquely determined by the above identity, it is called the dual mixed volume of
Ki1 , . . . ,Kin . More explicitly, the dual mixed volume Ṽ (Ki1 , . . . ,Kin) has the following
integral representation [19] :

Ṽ (Ki1 , . . . ,Kin) =
1
n

∫
Sn−1

ρ(Ki1 ,u) · · ·ρ(Kin ,u)du, (2.3)

where du is the spherical Lebesgue measure on Sn−1 .
The coefficients Ṽ (Ki1 , . . . ,Kin) are nonnegative, symmetric and monotone (with

respect to set inclusion). They are also multilinear with respect to radial Minkowski
addition and Ṽ (K, . . . ,K) = V (K) . Let K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn =
L , then the dual mixed volume Ṽ (K1, . . . ,Kn) is usually written as Ṽi(K,L) . If L = B ,
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then Ṽi(K,B) is the dual Quermassintegral of K and is written as W̃i(K) . For 0 � i � n ,
then we write W̃i(K,L) for the dual mixed volume Ṽi(K, . . . ,K︸ ︷︷ ︸

n−i−1

,B, . . . ,B︸ ︷︷ ︸
i

,L) .

From (2.3), if K,L ∈ S n , i ∈ R , we have

W̃i(K,L) =
∫

Sn−1
ρ(K,u)n−i−1ρ(L,u)du. (2.4)

LEMMA 2.1. [32] If K,L ∈ S n , and 0 � i � n−1 , then

W̃i(K,L)n−i � W̃i(K)n−i−1W̃i(L), (2.5)

equality holds if and only if K and L are dilatations of each other.

Schuster characterized completely all mixed radial Blaschke Minkowski homo-
morphisms.

LEMMA 2.2. [23] A map Φ : S n ×·· ·×S n︸ ︷︷ ︸
n−1

→ S n is a mixed radial Blaschke-

Minkowski homomorphism if and only if there is a nonnegativemeasure μ ∈M+(Sn−1,)
such that

ρ(Φ(K1, . . . ,Kn−1), ·) = (ρ(K1, ·) · · ·ρ(Kn−1, ·))∗ μ . (2.6)

In particular, if K1 = · · · = Kn−1 = K , then

ρ(ΦK, ·) = ρ(K, ·)n−1 ∗ μ . (2.7)

For the definition of the convolution, see the next section.

Additional information on convex body valued valuations or star body valued val-
uations can be found in references [1, 7–9, 11, 12, 16–18, 21–27, 30, 31].

2.2. Spherical harmonics

Some basic notions on spherical harmonics will be required. The article by Grin-
berg and Zhang [6] and the article by Schuster [25] are excellent general references on
spherical harmonics. As usual, SO(n) and Sn−1 will be equipped with the invariant
probability measures. Let C (SO(n)),C (Sn−1) be the spaces of continuous functions
on SO(n) and Sn−1 with uniform topology and let M (SO(n)),M (Sn−1) denote their
dual spaces of signed finite Borel measures with weak∗ topology. The group SO(n)
acts on these spaces by left translation, i.e., for f ∈ C (Sn−1) and μ ∈ M (Sn−1) , we
have ϑ f (u) = f (ϑ−1u),ϑ ∈ SO(n) , and ϑ μ is the image measure of μ under the
rotation ϑ . If μ ,σ ∈ M (SO(n)) , the convolution μ ∗σ is defined by:∫

SO(n)
f (ϑ)d(μ ∗σ)(ϑ) =

∫
SO(n)

∫
SO(n)

f (ητ)dμ(η)dσ(τ), (2.8)

for every f ∈ C (SO(n)) .
The sphere Sn−1 is identified with the homogeneous space SO(n)/SO(n− 1) ,

where SO(n− 1) denotes the subgroup of rotations leaving the pole ê of Sn−1 fixed.
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The projection from SO(n) onto Sn−1 is ϑ 
→ ϑ̂ := ϑ ê . Right SO(n− 1)-invariant
functions on SO(n) are defined by f̌ (ϑ) = f (ϑ̂ ) , for f ∈ C (Sn−1) . In fact, C (Sn−1)
is isomorphic to the subspace of right SO(n−1)-invariant functions in C (SO(n)) and
this correspondence carries over to an identification of the space M (Sn−1) with right
SO(n−1)-invariant measures in M (SO(n)) . It is easy to check that the Dirac measure
δê is the unique rightneutral element for the convolution on M (Sn−1) .

The convolution μ ∗ f ∈ C (Sn−1) of a measure μ ∈ M (SO(n)) and a function
f ∈ C (Sn−1) is defined by:

(μ ∗ f )(u) =
∫

SO(n)
ϑ f (u)dμ(ϑ). (2.9)

The canonical pairing of f ∈ C (Sn−1) and μ ∈ M (Sn−1) is defined by:

〈μ , f 〉 = 〈 f ,μ〉 =
∫

Sn−1
f (u)dμ(u). (2.10)

If μ ,ν ∈ M (Sn−1) and f ∈ C (Sn−1) , then

〈μ ∗ν, f 〉 = 〈μ , f ∗ν〉. (2.11)

A function f ∈ C (Sn−1) is called zonal, if ϑ f = f for every ϑ ∈ SO(n− 1) .
Zonal functions depend only on the value u · ê . The set of continuous zonal functions
on Sn−1 will be denoted by C (Sn−1, ê) and the definition of M (Sn−1, ê) is analogous.
A map Λ : C [−1,1]→ C (Sn−1, ê) defined by:

Λ f (u) = f (u · ê), u ∈ Sn−1. (2.12)

The map Λ is also an isomorphism between functions on [−1,1] and zonal func-
tions on Sn−1 .

If f ∈ C (Sn−1),μ ∈ M (Sn−1, ê) and η ∈ SO(n) , then

( f ∗ μ)(η̂) =
∫

Sn−1
f (ηu)dμ(u). (2.13)

If μ ∈ M (Sn−1, ê) , for each f ∈ C (Sn−1) and every ϑ ∈ SO(n) , then

(ϑ f )∗ μ = ϑ( f ∗ μ). (2.14)

We use H n
k to denote the finite dimensional vector space of spherical harmonics

of dimension n and order k . Let N(n,k) denote the dimension of H n
k . The space of all

finite sums of spherical harmonics of dimension n is denoted by H n . The spaces H n
k

are pairwise orthogonal with respect to the usual inner product on C (Sn−1) . Clearly,
H n

k is invariant with respect to rotations.
Let Pn

k ∈ C [−1,1] denote the Legendre polynomial of dimension n and order
k . The zonal function ΛPn

k is up to a multiplicative constant the unique zonal spherical
harmonic in H n

k . In each space H n
k we choose an orthonormal basis Hk1, · · · ,HkN(n,k) .
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The collection {Hk1, · · · ,HkN(n,k) : k ∈ N} forms a complete orthogonal system in
L 2(Sn−1) . In particular, for every f ∈ L 2(Sn−1) , the series

f ∼
∞

∑
k=0

πk f

converges to f in the L 2(Sn−1)-norm, where πk f ∈ H n
k is the orthogonal projection

of f on the space H n
k . Using well-known properties of the Legendre polynomials, it

is not hard to show that

πk f = N(n,k)( f ∗ΛPn
k ). (2.15)

This motivates the spherical expansion of a measure μ ∈ M (Sn−1) ,

μ ∼
∞

∑
k=0

πkμ ,

where πkμ ∈ H n
k is defined by:

πkμ = N(n,k)(μ ∗ΛPn
k ). (2.16)

From Pn
0 (t) = 1, N(n,0) = 1 and Pn

1 (t) = t , N(n,1) = n, we obtain, for μ ∈M (Sn−1) ,
the following special cases of (2.16):

π0μ = μ(Sn−1) and (π1μ)(u) = n
∫

Sn−1
u · vdμ(v). (2.17)

Let κn denote the volume of the Euclidean unit ball B . By (2.4) and (2.17), for every
star body K ∈ S n , it follows that

κnπ0ρ(K, ·) = W̃i(B,K) and κnπ0ρ(K, ·)n−i−1 = W̃i(K,B). (2.18)

A measure μ ∈ M (Sn−1) is uniquely determined by its series expansion. Using
the fact that ΛPn

k is (essentially) the unique zonal function in H n
k , a simple calculation

shows that for μ ∈ M (Sn−1, ê) , formula (2.16) becomes

πkμ = N(n,k)〈μ ,ΛPn
k 〉ΛPn

k . (2.19)

Thus, a zonal measure μ ∈ M (Sn−1, ê) is defined by its so-called Legendre coeffi-
cients μk := 〈μ ,ΛPn

k 〉 . Using πkH = H for every H ∈ H n
k and the fact that spherical

convolution of zonal measures is commutative, we have the Funk-Hecke Theorem: If
μ ∈ M (Sn−1, ê) and H ∈ H n

k , then H ∗ μ = μkH .
A map Φ : D ⊆ M (Sn−1) → M (Sn−1) is called a multiplier transformation if

there exist real numbers ck , the multipliers of Φ , such that, for every k ∈ N ,

πkΦμ = ckπkμ , ∀μ ∈ D . (2.20)
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3. Main results

THEOREM 3.1. If Φi : S n ×·· ·×S n︸ ︷︷ ︸
n−i−1

→S n is a mixed radial Blaschke-Minkowski

homomorphism, then, for K,L ∈ S n ,

W̃i(K,ΦiL) = W̃i(L,ΦiK). (3.1)

Proof. Let μ ∈M (Sn−1, ê) be the generating measure of Φi . Using (2.4), Lemma
2.2 and (2.11), it follows that

W̃i(K,ΦiL) = κn〈ρ(ΦiL, ·),ρ(K, ·)n−i−1〉

= κn〈ρ(L, ·)n−i−1 ∗ μ ,ρ(K, ·)n−i−1〉

= κn〈ρ(L, ·)n−i−1,ρ(K, ·)n−i−1 ∗ μ〉

= κn〈ρ(L, ·)n−i−1,ρ(ΦiK, ·)〉

= W̃i(L,ΦiK). �

Using Lemma 2.2 and the fact that spherical convolution operators are multiplier
transformations, one obtains that

LEMMA 3.2. If Φi is a mixed radial Blaschke-Minkowski homomorphism which
is generated by the zonal measure μ , then, for every star body K ∈ S n ,

πkρ(ΦiK, ·) = μkπkρ(K, ·)n−i−1, (3.2)

where the numbers μk are the Legendre coefficients of μ .

DEFINITION 3.1. If Φi is a mixed radial Blaschke-Minkowski homomorphism,
generated by the zonal measure μ , then we call the subset S n(Φi) of S n , defined by

S n(Φi) = {K ∈ S n : πkρ(K, ·)n−i−1 = o i f μk = 0},

the injectivity set of Φi .
It is easy to verify that for every mixed radial Blaschke-Minkowski homomor-

phism, the set S n(Φi) is a non-empty rotation and dilatation invariant subset of S n

which is closed under Ln−i−1 radial sum. By Lemma 3.2, a star body K ∈ S n(Φi) is
uniquely determined by its image ΦiK .

DEFINITION 3.2. A star body K ∈ S n is called polynomial if ρ(K, ·) ∈ H n .
Clearly, the set of polynomial star bodies is dense in S n and the set of all origin-

symmetric polynomial star bodies is dense in S n
e .
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THEOREM 3.3. If Φi : S n ×·· ·×S n︸ ︷︷ ︸
n−i−1

→S n is a mixed radial Blaschke-Minkowski

homomorphism such that S n
e ∈ S n(Φi) , then, for every polynomial body L ∈ S n

e ,
there exist symmetric star bodies K1,K2 ∈ S n

e such that

L+̃ΦiK1 = ΦiK2.

Proof. Let L ∈ S n
e be a polynomial star body. From definition 3.2 we have

ρ(L, ·) =
m

∑
k=0

πkρ(L, ·). (3.3)

Since L ∈ S n
e and by the properties of the orthogonal projection of f on the space

H n
k , we have πkρ(L, ·) = 0 for all odd k ∈ N .

Let μ ∈ M (Sn−1, ê) be the generating measure of Φi and let μk denote the Leg-
endre coefficients of μ . From S n

e ⊆ S n(Φi) and definition 3.1, it follows that μk �= 0
for every even k ∈ N . We define

f :=
m

∑
k=0

ckπkρ(L, ·), (3.4)

where ck = 0 for odd and ck = μ−1
k if k is even. Clearly, f is an even continuous func-

tion on Sn−1 and since spherical convolution operators are multiplier transformations,
one can obtain

f ∗ μ =
m

∑
k=0

ckμkπkρ(L, ·) =
m

∑
k=0

πkρ(L, ·) = ρ(L, ·). (3.5)

Denote by f + and f− the positive and negative parts of f , and let K1 and K2 be the
star bodies such that ρ(K1, ·)n−i−1 = f− and ρ(K2, ·)n−i−1 = f + . Hence, (3.5) can be
rewritten as

ρ(K2, ·)n−i−1 ∗ μ = ρ(K1, ·)n−i−1 ∗ μ + ρ(L, ·).
By Lemma 2.2, it follows that

L+̃ΦiK1 = ΦiK2. �

In this paper, we study the following Busemann-Petty type problem for mixed
radial Blaschke-Minkowski homomorphisms.

PROBLEM 3.1. Suppose Φi : S n×·· ·×S n︸ ︷︷ ︸
n−i−1

→ S n is a mixed radial Blaschke-

Minkowski homomorphism. If
ΦiK ⊆ ΦiL,

does it follow that
W̃i(K) � W̃i(L)?
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Proof of Theorem 1.1. For K ∈ ΦiS n , there exists a star body K0 such that K =
ΦiK0 . Using Theorem 3.1 and the fact that if 0 � i � n−1, the dual mixed volume W̃i

is monotone with respect to set inclusion, we can conclude

W̃i(L,K) = W̃i(L,ΦiK0) = W̃i(K0,ΦiL) � W̃i(K0,ΦiK) = W̃i(K,ΦiK0) = W̃i(K).

Applying the Minkowski inequality (2.5), we obtain

W̃i(K) � W̃i(L).

Equality holds if and only if K and L are dilatations of each other. Clearly, star
bodies of equal volume which are dilatations of each other must be equal. �

Proof of Theorem 1.2. Let μ ∈ M (Sn−1, ê) be the generating measure of Φi and
μk denote its Legendre coefficients. Since S n(Φi) �= S n and Φi is non-trivial, by
definition 3.1 there exists an integer k ∈ N and k � 1 such that μk = 0. We can choose
α > 0 such that the function f (u) = 1+ αPn

k (u · ê),u ∈ Sn−1, is positive. Let K ∈ S n

be the star body with ρ(K, ·)n−i−1 = f . Since πkρ(K, ·)n−i−1 = πk(1+αPn
k (u · ê)) �= 0,

from definition 3.1 we have K /∈ S n(Φi) .
From (2.18) and the properties of the orthogonal projection on the space H n

k , we
have

W̃i(K,B) = κnπ0ρ(K, ·)n−i−1 = κn = W̃i(B). (3.6)

Using the fact that a star body K ∈ S n(Φi) is uniquely determined by its image ΦiK ,
we see that ΦiB = ΦiK .

Noting that K is just a perturbation of B , we use (3.6) and the Minkowski inequal-
ity (2.5) to get

W̃i(B) = W̃i(K,B) < W̃i(B)
1

n−i W̃i(K)
n−i−1
n−i .

Hence
W̃i(B) < W̃i(K). �

THEOREM 3.4. Suppose S n
e ⊆ S n(Φi) . If L ∈ S n

e is a polynomial star body
whose radial function is positive, then, if L /∈ ΦiS n , there exists a star body K ∈ S n

e ,
such that

ΦiK ⊆ ΦiL,

but
W̃i(K) > W̃i(L).

Proof. Let μ ∈ M (Sn−1, ê) be the generating measure of Φi . Since L ∈ S n
e is a

polynomial star body, it follows from the proof of Theorem 3.3 that there exists an even
function f ∈ H n ,such that

ρ(L, ·) = f ∗ μ . (3.7)

The function f must assume negative values, otherwise, by Lemma 2.2 we have L =
ΦiL0 , where L0 is the star body with ρ(L0, ·)n−i−1 = f . Let F ∈ C (Sn−1) be a non-
constant even function, such that F(u) � 0 if f (u) < 0, and F(u) = 0 if f (u) � 0.
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By suitable approximation of the function F with spherical harmonics, we can find a
non-negative, even function G ∈ H n and an even function H ∈ H n such that

〈 f ,G〉 < 0, and G = H ∗ μ . (3.8)

Since the radial function ρ(L, ·) is positive, there exists a β > 0 and an origin-
symmetric star body K such that

ρ(K, ·)n−i−1 = ρ(L, ·)n−i−1−βH. (3.9)

From (3.7) and Lemma 2.2, we see that ρ(ΦiK, ·) = ρ(ΦiL, ·)−βG . Since G � 0,
it follows that

ρ(ΦiK, ·) � ρ(ΦiL, ·), (3.10)

or equivalently
ΦiK ⊆ ΦiL.

On the other hand, applying (2.4) (2.11) (3.8) and (3.9), we obtain

W̃i(L)−W̃i(K,L) =
1
n

∫
Sn−1

ρ(L,u)(ρ(L,u)n−i−1−ρ(K,u)n−i−1)dS(u)

= κnβ 〈 f ∗ μ ,H〉

= κnβ 〈 f ,H ∗ μ〉

= κnβ 〈 f ,G〉

< 0.

To complete the proof, we can use (2.5) to conclude

W̃i(K) > W̃i(L). �

REMARK. If i = 0, Theorem 1.1 and Theorem 1.2 are just Theorem A and Theo-
rem B, respectively.

An immediate consequence of Theorem 1.1 is:

COROLLARY 3.5. Suppose K,L ∈ ΦiS n , then ΦiK = ΦiL if and only if K = L.
A map Φ : S n → S n is called even if ΦK = Φ(−K) for every K ∈ S n .

Based on the intersection operator, Zhang [28] introduced the mixed intersection
operator Ii : S n×·· ·×S n︸ ︷︷ ︸

n−i−1

→ S n . If we restrict to origin-symmetric star bodies and

Φi changes to be the mixed intersection operator Ii , Problem 3.1 is just a generalization
of the famous Busemann-Petty problem. The mixed intersection operator Ii is an even
mixed radial Blaschke-Minkowski homomorphism. Its generating measure is the (suit-
ably normalized) invariant measure μSn−2

0
which is concentrated on Sn−2

0 = Sn−1∩ ê⊥ ,

i.e., ρ(IiK, ·) is the spherical Radon transform of ρ(K, ·)n−i−1 :

ρ(IiK, ·) = ρ(K, ·)n−i−1 ∗ μSn−2
0

.
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COROLLARY 3.6. If K ∈ IiS n and L ∈ S n
e , then

IiK ⊆ IiL ⇒ W̃i(K) � W̃i(L),

and W̃i(K) = W̃i(L) if and only if K = L.

COROLLARY 3.7. If L /∈ IiS n , then there exists a star body K such that

IiK ⊆ IiL,

but
W̃i(K) > W̃i(L).

The special case i = 0 of Corollary 3.6 and Corollary 3.7 are the following results
which are the answer to the famous Busemann-Petty problem.

COROLLARY 3.8. [20] If K is an intersection body and L ∈ S n
e , then

IK ⊆ IL ⇒V (K) � V (L),

and V (K) = V (L) if and only if K = L.

COROLLARY 3.9. [20] If L /∈ IS n , then there exists a star body K such that

IK ⊆ IL,

but
V (K) > V (L).
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