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NECESSARY AND SUFFICIENT CONDITIONS FOR

SYMMETRIC HOMOGENEOUS POLYNOMIAL

INEQUALITIES IN NONNEGATIVE REAL VARIABLES

VASILE CIRTOAJE

(Communicated by I. Perić)

Abstract. Let fn(x,y,z) be a symmetric homogeneous polynomial of degree n . In this paper, we
give the necessary and sufficient conditions to have fn(x,y,z) � 0 for n � 6 and any nonnegative
real numbers x,y,z . In addition, we extend some results to n = 7 and n = 8 , and then apply the
proposed method to prove several elegant symmetric homogeneous polynomial inequalities of
degree n , 4 � n � 8 .

1. Introduction

The fourth degree Schur’s inequality is a well-known symmetric homogeneous
polynomial inequality which states that

∑x4 + xyz∑x � ∑xy(x2 + y2) (1.1)

for any real numbers x,y,z , where ∑ denotes throughout the paper a cyclic sum over
x , y , z . The following generalization of the fourth degree Schur’s inequality is proved
in [2] for any nonnegative real numbers x,y,z .

PROPOSITION 1.1. Let α and β be real numbers. The inequality

∑x4 + α ∑x2y2 +(1−α +2β )xyz∑x � (1+ β )∑xy(x2 + y2) (1.2)

holds for any nonnegative real numbers x,y,z if and only if

α �
{

2β , if β � 0

β 2 +2β , if β > 0
, (1.3)

with equality when x = y = z. For α = 2β and β � 0 , equality holds again when x = 0

and y = z, while for α = β 2 +2β and β > 0 - when
x
β

= y = z.
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On the other hand, it is known that if a,b,c are the side-lengths of a non-degenerate
or degenerate triangle, then we can use the following substitutions a = y+ z , b = z+ x
and c = x+ y , where x,y,z are nonnegative real numbers. Since

∑a4 + α ∑a2b2 +(1−α +2β )abc∑a− (1+ β )∑ab(a2 +b2) =

= (α−2β )∑x4 +(4−α +2β )∑x2y2−4(1−β )xyz∑x−2β ∑xy(x2 + y2), (1.4)

from Proposition 1.1, we can deduce the following two corollaries.

COROLLARY 1.1. Let α and β be real numbers. The inequality

∑a4 + α ∑a2b2 +(1−α +2β )abc∑a � (1+ β )∑ab(a2 +b2) (1.5)

holds for any side-lengths a,b,c of a non-degenerate or degenerate triangle if and only
if

α �

⎧⎪⎨
⎪⎩

2β , if β � 0

β 2 +2β , if 0 < β < 2

6β −4, if β � 2

, (1.6)

with equality when a = b = c. For α = 2β and β � 0 , equality also holds when a = 0

and b = c, for α = β 2 + 2β and 0 < β < 2 - when
a
β

= b = c, and for α = 6β − 4

and β � 2 - when
a
2

= b = c.

COROLLARY 1.2. Let α and β be real numbers. The inequality

∑a4 + α ∑a2b2 +(1−α +2β )abc∑a � (1+ β )∑ab(a2 +b2) (1.7)

holds for any side-lengths a,b,c of a non-degenerate or degenerate triangle if and only
if

α �
{

6β −4, if β � 1

2β , if β � 1
, (1.8)

with equality when a = b = c. For α = 6β − 4 and β � 1 , equality also holds when
a
2

= b = c, while for α = 2β and β � 1 - when a = 0 and b = c.

A symmetric and homogeneous polynomial of degree six has the general form

f6(x,y,z) = A1 ∑x6 +A2∑xy(x4 + y4)+A3∑x2y2(x2 + y2)

+A4∑x3y3 +A5xyz∑x3 +A6xyz∑xy(x+ y)+A7x
2y2z2, (1.9)

where A1, ...,A7 are real constants. Using the substitutions

p = x+ y+ z, q = xy+ yz+ zx, r = xyz, (1.10)
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and the identities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑x6 = 3r2 +6(p3−2pq)r+ p6−6p4q+9p2q2−2q3,

∑xy(x4 + y4) = −3r2 +(7pq− p3)r+ p4q−4p2q2 +2q3,

∑x2y2(x2 + y2) = −3r2−2(p3−2pq)r+ p2q2−2q3,

∑x3y3 = 3r2−3pqr+q3,

∑x4 = 4pr+ p4−4p2q+2q2, ∑xy(x2 + y2) = −pr+ p2q−2q2,

∑x3 = 3r+ p3−3pq, ∑xy(x+ y) = pq−3r,

(1.11)

we may express any polynomial f6(x,y,z) in terms of p,q,r as follows

f6(x,y,z) = Ar2 +g1(p,q)r+g2(p,q), (1.12)

where

g1(p,q) = Bp3 +Cpq, g2(p,q) = Dp6 +Ep4q+Fp2q2 +Gq3, (1.13)

A , B , C , D , E , F , G being real constants. Throughout the paper, we call the coeffi-
cient A of r2 in the expansion (1.12) the highest coefficient of f6(x,y,z) .

Our method for proving any inequality f6(x,y,z) � 0 by means of the neces-
sary and sufficient conditions has as starting-point the form (1.12) of the polynomial
f6(x,y,z) . To bring a given sixth degree symmetric homogeneous polynomial to this
form, the following identities can be also useful

(x− y)2(y− z)2(z− x)2 =∑x2y2(x2 + y2)−2∑x3y3 −2xyz∑x3

+2xyz∑xy(x+ y)−6x2y2z2, (1.14)

(x− y)2(y− z)2(z− x)2 = −27r2 +2(9pq−2p3)r+ p2q2−4q3. (1.15)

More general, for n ∈ {6,7,8} , the expansion of a symmetric and homogeneous
polynomial fn(x,y,z) of degree n in terms of p , q and r has the form

fn(x,y,z) = h0(p,q)r2 +h1(p,q)r+h2(p,q), (1.16)

where h0(p,q) , h1(p,q) and h2(p,q) are polynomial functions. The highest polyno-
mial h0(p,q) has the form

h0(p,q) =

⎧⎪⎨
⎪⎩

A, if n = 6

Ap, if n = 7 ,

Ap2 +Bq, if n = 8

(1.17)

where A and B are real constants. In the following section we will show that the
proof of an inequality fn(x,y,z) � 0 for n ∈ {6,7,8} is much simpler in the case when
h0(p,q) � 0 for all x,y,z � 0.
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The proposed necessary and sufficient conditions to have fn(x,y,z) � 0 for any
nonnegative real variables x,y,z are presented in section 2 and proved in section 3.
In section 4, we apply the obtained results for proving some interesting symmetric
homogeneous polynomial inequalities of degree five, six, seven and eight. Notice that
almost all these inequalities were recently posted on the well-known website Art of
Problem Solving, and no solution was given to some of them (see [3]...[9]).

2. Main Results

Our results rely on the following lemma.

LEMMA 2.1. Let x � y � z be nonnegative real numbers such that x+ y+ z = p
and xy+ yz + zx = q, where p and q are given nonnegative real numbers satisfying
p2 � 3q � 0 . Then, the product r = xyz is maximal when x = y, and is minimal when
y = z or x = 0; more exactly,

r ∈ [rmin(p,q),rmax(p,q)], (2.1)

where

rmax(p,q) =
(p−

√
p2−3q)2(p+2

√
p2−3q)

27
, (2.2)

and

rmin(p,q) =

⎧⎪⎨
⎪⎩

(p−2
√

p2−3q)(p+
√

p2 −3q)2

27
, if 3q � p2 < 4q

0, if p2 � 4q.

(2.3)

Using Lemma 2.1, we can prove the following theorems.

THEOREM 2.1. Let fn(x,y,z) be a symmetric homogeneous polynomial of degree
n � 5 . The inequality

fn(x,y,z) � 0

holds for all nonnegative real numbers x,y,z if and only if fn(x,1,1)� 0 and fn(0,y,z)�
0 for all x,y,z � 0 .

REMARK 2.1. Using Theorem 2.1, we can give short solutions for any fourth
degree symmetric homogeneous polynomial inequality in nonnegative real numbers.
For instant, with regard to Proposition 1.1, setting

f4(x,y,z) = ∑x4 + α ∑x2y2 +(1−α +2β )xyz∑x− (1+ β )∑xy(x2 + y2), (2.4)

we have

f4(x,1,1) =(x−1)2(x2 −2βx+ α −2β )

=(x−1)2[(x−β )2 + α −β 2−2β ] (2.5)
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and

f4(0,y,z) =(y− z)4 +(3−β )yz(y− z)2 +(α −2β )y2z2

=(y− z)4 +(3−β )yz(y− z)2 + β 2y2z2 +(α −β 2−2β )y2z2. (2.6)

Using Theorem 2.1, it is easy to reach the required conclusion.

THEOREM 2.2. Let f6(x,y,z) be a symmetric homogeneous polynomial of degree
six having the highest coefficient A � 0 . The inequality

f6(x,y,z) � 0

holds for all nonnegative real numbers x,y,z if and only if f6(x,1,1)� 0 and f6(0,y,z)�
0 for all x,y,z � 0 .

With regard to the polynomial f6(x,y,z) written in the form

f6(x,y,z) = Ar2 +g1(p,q)r+g2(p,q), (2.7)

let us denote
h(t) = 2At +g1(t +2,2t +1) (2.8)

and
d(p,q) = g2

1(p,q)−4Ag2(p,q). (2.9)

In addition, assume that

d(p,q) > 0 ⇐⇒ p2

q
∈ I∪J, (2.10)

where I is a union of intervals Ii ⊆ [3,4) , and J is a union of intervals Ji ⊆ [4,∞] , and

(t +2)2

2t +1
∈ Ii, 0 < t � 1 ⇐⇒ t ∈ Ki, (2.11)

(t +2)2

2t +1
∈ Ii, 1 � t < 4 ⇐⇒ t ∈ Li, (2.12)

(t +2)2

2t +1
∈ Ji, t � 4 ⇐⇒ t ∈ Mi. (2.13)

THEOREM 2.3. Let f6(x,y,z) be a symmetric homogeneous polynomial of degree
six having the highest coefficient A > 0 . The inequality

f6(x,y,z) � 0

holds for all nonnegative real numbers x,y,z if and only if the following three conditions
are fulfilled:

(a) f6(x,1,1) � 0 and f6(0,y,z) � 0 for all x,y,z � 0;
(b) for each interval Ii , we have h(t) � 0 for t ∈ Ki or h(t) � 0 for t ∈ Li;
(c) for each interval Ji , we have g1(

√
w,1) � 0 for w ∈ Ji or h(t) � 0 for

t ∈ Mi .
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The following corollary is an immediate consequence of Theorem 2.3.

COROLLARY 2.1. Let f6(x,y,z) be a symmetric homogeneous polynomial of de-
gree six having the highest coefficient A > 0 . The inequality

f6(x,y,z) � 0

holds for all x,y,z � 0 if the following three conditions are fulfilled:
(a) f6(x,1,1) � 0 and f6(0,y,z) � 0 for all x,y,z � 0;
(b) h(t) � 0 for t ∈ (0,1] or h(t) � 0 for t ∈ [1,4);
(c) g1(p,1) � 0 for p � 2 or h(t) � 0 for t � 4 .

In order to find similar results for the side-lengths of a non-degenerate or degener-
ate triangle, we need the following lemma.

LEMMA 2.2. Let a � b � c be the side-lengths of a non-degenerate or degenerate
triangle such that a+b+c= p and ab+bc+ca= q, where p and q are given positive
real numbers satisfying p2 � 3q > 0 . The product r = abc is minimal when a = b, and
is maximal when b = c or a = b+ c.

Using Lemma 2.2, we can prove the following theorems, which are useful to prove
symmetric homogeneous polynomial inequalities of the form gn(a,b,c) � 0, where
a,b,c are triangle side-lengths.

THEOREM 2.4. Let a,b,c be the side-lengths of a non-degenerate or degenerate
triangle, and let gn(a,b,c) be a symmetric homogeneous polynomial of degree n � 5 .
The inequality

gn(a,b,c) � 0

holds for any triangle if and only if gn(x,1,1) � 0 for all 0 � x � 2 , and gn(y+z,y,z) �
0 for all y,z � 0 .

THEOREM 2.5. Let a,b,c be the side-lengths of a non-degenerate or degener-
ate triangle, and let g6(a,b,c) be a symmetric homogeneous polynomial of degree six
whose highest coefficient is non-positive. The inequality

g6(a,b,c) � 0

holds for any triangle if and only if g6(x,1,1) � 0 for all 0 � x � 2 , and g6(y+z,y,z) �
0 for all y,z � 0 .

We can extend Theorem 2.2 and Theorem 2.5 to symmetric homogeneous polyno-
mial inequalities of degree n = 7 and n = 8.

THEOREM 2.6. Let f7(x,y,z) be a symmetric homogeneous polynomial of degree
seven whose highest polynomial is h0(p,q) = Ap, where A is a non-positive real con-
stant. The inequality

f7(x,y,z) � 0
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holds for all nonnegative real numbers x,y,z if and only if f7(x,1,1)� 0 and f7(0,y,z)�
0 for all x,y,z � 0 .

THEOREM 2.7. Let f8(x,y,z) be a symmetric homogeneous polynomial of degree
eight whose highest polynomial is h0(p,q) = Ap2 +Bq, where A and B are real con-
stants satisfying A � 0 , 3A+B � 0 . The inequality

f8(x,y,z) � 0

holds for all nonnegative real numbers x,y,z if and only if f8(x,1,1)� 0 and f8(0,y,z)�
0 for all x,y,z � 0 .

THEOREM 2.8. Let a,b,c be the side-lengths of a non-degenerate or degenerate
triangle, and let g7(a,b,c) be a symmetric homogeneous polynomial of degree seven
whose highest polynomial is h0(p,q) = Ap, where A is a non-positive real constant.
The inequality

g7(a,b,c) � 0

holds for any triangle if and only if g7(x,1,1) � 0 for all 0 � x � 2 , and g7(y+z,y,z) �
0 for all y,z � 0 .

THEOREM 2.9. Let a,b,c be the side-lengths of a non-degenerate or degenerate
triangle, and let g8(a,b,c) be a symmetric homogeneous polynomial of degree eight
whose highest polynomial is h0(p,q) = Ap2 +Bq, where A and B are real constants
satisfying 3A+B � 0 and 4A+B � 0 . The inequality

g8(a,b,c) � 0

holds for any triangle if and only if g8(x,1,1) � 0 for all 0 � x � 2 , and g8(y+z,y,z) �
0 for all y,z � 0 .

3. Proof of lemmas and theorems

Proof of Lemma 2.1. Writing the inequality (x− y)(x− z) � 0 in the equivalent
form 3x2−2px+q � 0, we get

x � xmax =
p−

√
p2−3q
3

,

with equality for x = y . Similarly, writing the inequality (y + z)2 � 4yz in the form
3x2−2px+4q− p2 � 0, we get

x � xmin =

⎧⎪⎨
⎪⎩

p−2
√

p2−3q
3

, if 3q � p2 < 4q

0, if p2 � 4q

,

with equality for y = z if 3q � p2 < 4q , and for x = 0 if p2 � 4q .
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On the other hand, the function r(x) = x3 − px2 + qx is strictly increasing on
[xmin,xmax] since r′(x) = 3x2−2px+q = (x−y)(x− z) � 0. Thus, r(x) is maximal for
x = xmax , when

x = y =
p−

√
p2−3q
3

, z =
p+2

√
p2−3q

3
,

and is minimal for x = xmin , when

x =
p−2

√
p2−3q

3
, y = z =

p+
√

p2−3q
3

if 3q � p2 < 4q , or
x = 0

if p2 � 4q . �

Proof of Theorem 2.1. Let p = x + y + z , q = xy + yz + zx and r = xyz . Any
symmetric and homogeneous polynomial fn(x,y,z) of degree n � 5 can be written as

fn(x,y,z) = An(p,q)r+Bn(p,q),

where An(p,q) and Bn(p,q) are polynomial functions. For fixed p and q , the linear
function gn(r) = An(p,q)r +Bn(p,q) is minimal when r is minimal or maximal; that
is, by Lemma 2.1, when two of x,y,z are equal or one of x,y,z is 0. Due to symmetry
and homogeneity, the conclusion follows. �

Proof of Theorem 2.2. For fixed p = x+y+ z and q = xy+yz+ zx , the inequality
f6(x,y,z) � 0 is equivalent to g(r) � 0, where g(r) is a quadratic function having the
form (2.7). Since g(r) is concave for A � 0, g(r) is minimal when r is minimal or
maximal; that is, by Lemma 2.1, when two of x,y,z are equal or one of x,y,z is 0. �

Proof of Theorem 2.3. If q = 0, then two of x,y,z are zero, and the desired in-
equality f6(x,y,z) � 0 holds according to the condition f6(0,y,z) � 0 in (a). On the
other hand, since d(p,q) is the discriminant of the quadratic function (defined for fixed
p and q )

g(r) = Ar2 +g1(p,q)r+g2(p,q), A > 0,

the desired inequality g(r) � 0 holds if d(p,q)� 0. Therefore, we will consider further
that q > 0 and d(p,q) > 0. By Lemma 2.1, for fixed p and q , r attains its extreme
values rmin and rmax when two of x,y,z are equal or one of them is 0. Then, the neces-
sary conditions g(rmin) � 0 and g(rmax) � 0 are satisfied if the necessary conditions in
(a) are fulfilled. In addition, the inequality g(r) � 0 holds for all x,y,z � 0 if and only

if rmin(p,q) � −g1(p,q)
2A

or rmax(p,q) � −g1(p,q)
2A

; that is, either

2Armin(p,q)+g1(p,q) � 0, (3.1)
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or
2Armax(p,q)+g1(p,q) � 0. (3.2)

We need to approach separately the cases p2/q ∈ Ii ⊆ [3,4) and p2/q ∈ Ji ⊆ [4,∞) ,
which generate the conditions in (b) and (c), respectively.

Case 1.
p2

q
∈ Ii ⊆ [3,4) .

Let

a =
p−2

√
p2−3q

3
> 0, b =

p+
√

p2−3q
3

, t =
a
b
.

From 3 � p2/q < 4, we get 0 < t � 1. We have

a+2b = p, 2ab+b2 = q,
p2

q
=

(t +2)2

2t +1
,

and hence the condition p2/q ∈ Ii is equivalent to

(t +2)2

2t +1
∈ Ii, 0 < t � 1.

On the other hand, by Lemma 2.1, the condition (3.1) becomes

2Aab2 +g1(a+2b,2ab+b2) � 0,

which is equivalent to h(t) � 0.
Let now

a =
p+2

√
p2−3q

3
, b =

p−
√

p2−3q
3

> 0, t =
a
b
.

From 3 � p2/q < 4, we get 1 � t < 4. We have

a+2b = p, 2ab+b2 = q,
p2

q
=

(t +2)2

2t +1
,

and hence the condition p2/q ∈ Ii is equivalent to

(t +2)2

2t +1
∈ Ii, 1 � t < 4.

On the other hand, by Lemma 2.1, the condition (3.2) becomes

2Aab2 +g1(a+2b,2ab+b2) � 0,

which is equivalent to h(t) � 0.
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Case 2.
p2

q
∈ Ji ⊆ [4,∞) .

By Lemma 2.1, the condition (3.1) becomes g1(p,q) � 0. Setting w = p2/q ∈ Ji , this
condition can be written as g1(

√
w,1) � 0.

Let now

a =
p+2

√
p2−3q

3
, b =

p−
√

p2−3q
3

> 0, t =
a
b
.

From p2/q � 4, we get t � 4. It is easy to check that

a+2b = p, 2ab+b2 = q,
p2

q
=

(t +2)2

2t +1
,

and therefore the condition p2/q ∈ Ji is equivalent to

(t +2)2

2t +1
∈ Ji, t � 4.

On the other hand, according to Lemma 2.1, the condition (3.2) becomes

2Aab2 +g1(a+2b,2ab+b2) � 0.

which is equivalent to h(t) � 0.
Combining all results in the cases 1 and 2, the conclusion follows. �

Proof of Lemma 2.2. We use the substitutions a = y + z , b = z + x , c = x + y ,
where x,y,z � 0. If a+b+ c and ab+bc+ ca are fixed, then from

a+b+ c = 2(x+ y+ z)

and
ab+bc+ ca = (x+ y+ z)2 + xy+ yz+ zx,

it follows that x+ y+ z and xy+ yz+ zx are fixed, and from

abc = (x+ y+ z)(xy+ yz+ zx)− xyz,

it follows that the product abc is minimal/maximal when the product xyz is maxi-
mal/minimal. So, by Lemma 2.1, the product abc is minimal when x = y � z , that
is a = b � c , and is maximal when y = z � x or x = 0, that is a/2 � b = c � a or
a = b+ c . �

Proof of Theorem 2.4. Let p = a+ b+ c , q = ab+ bc+ ca , r = abc . Any sym-
metric and homogeneous polynomial gn(a,b,c) of degree n � 5 can be written as

gn(a,b,c) = An(p,q)r+Bn(p,q),



SYMMETRIC HOMOGENEOUS POLYNOMIAL INEQUALITIES 423

where An(p,q) and Bn(p,q) are polynomial functions. For fixed p and q , the linear
function g(r) = An(p,q)r+Bn(p,q) is minimal when r is minimal or maximal; that is,
by Lemma 2.2, when two of a,b,c are equal or one of a,b,c is the sum of the others.
Due to symmetry and homogeneity, the conclusion follows. �

Proof of Theorem 2.5. Let p = a+b+ c , q = ab+bc+ ca , r = abc . For fixed p
and q , the inequality g6(a,b,c) � 0 is equivalent to g(r) � 0, where g(r) is a quadratic
function having the form (2.7). Since g(r) is concave for A � 0, g(r) is minimal when
r is minimal or maximal; that is, by Lemma 2.2, when two of a,b,c are equal or one
of a,b,c is the sum of the others. Thus, the proof is completed. �

Proof of Theorem 2.6. Since A � 0, the highest polynomial h0(p,q) = Ap is non-
positive for all x,y,z � 0. Further, the proof is similar to the one of Theorem 2.2. �

Proof of Theorem 2.7. Since A � 0, 3A+B � 0 and p2−3q � 0, we have

h0(p,q) = Ap2 +Bq = A(p2−3q)+ (3A+B)q� 0,

for all x,y,z � 0. Further, the proof is similar to the one of Theorem 2.2. �

Proof of Theorem 2.8. Since A � 0, the highest polynomial h0(p,q) = Ap is non-
positive. Further, the proof is similar to the one of Theorem 2.5. �

Proof of Theorem 2.9. Since 3A+B � 0, 4A+B � 0, p2−3q � 0 and

4q− p2 = 2∑ab−∑a2 = ∑a2−∑(b− c)2 = ∑(a+b− c)(a−b+ c)� 0,

we have

h0(p,q) = Ap2 +Bq = (4A+B)(p2−3q)+ (3A+B)(4q− p2) � 0.

Further, the proof is similar to the one of Theorem 2.5. �

4. Applications

We will prove several inequalities of degree five, six, seven and eight, in nonnega-
tive real variable and in triangle side-lengths. Notice that the coefficient of the product

(x− y)2(y− z)2(z− x)2

in Propositions 4.5 ... 4.9 has the best possible values.

PROPOSITION 4.1. Let x,y,z be nonnegative real numbers. If k � 2 , then

∑x(x− y)(x− z)(x− ky)(x− kz) � 0

with equality for x = y = z, for x = 0 and y = z (or any cyclic permutation), and for
x/k = y = z (or any cyclic permutation) if k > 0 ([3]) .
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Proof. Let f5(x,y,z) be the left side of the inequality. By Theorem 2.1, it suffices
to prove that f5(x,1,1) � 0 and f5(0,y,z) � 0 for all x,y,z � 0. Indeed, we have

f5(x,1,1) = x(x−1)2(x− k)2 � 0,

f5(0,y,z) = (y− z)2(y+ z)(y2 + z2− kyz) � 0. �

PROPOSITION 4.2. If x,y,z are nonnegative real numbers, then

∑x(x−2y)(x−2z)(x−5y)(x−5z)� 0,

with equality for x = 0 and y2 + z2−4yz = 0 (or any cyclic permutation) ([3]) .

Proof. By Theorem 2.1, we need to show that f5(x,1,1) � 0 and f5(0,y,z) � 0
for all x,y,z � 0, where f5(x,y,z) is the left side of the inequality. We have

f5(x,1,1) = x3(x−7)2 +20x3−60x2 +44x+8 � 20x3−60x2 +44x+8 > 0,

since
20x3−60x2 +44x+8 > 20x2(x−3) � 0

for x � 3, and

20x3−60x2 +44x+8 = 5(2x−3)2 +8− x � 8− x � 0

for x � 8. Also,

f6(0,y,z) = (y+ z)(y2 + z2−4yz)2 � 0. �

PROPOSITION 4.3. Let x,y,z be nonnegative real numbers. If k ∈ R , then

∑(y+ z)(x− y)(x− z)(x− ky)(x− kz)� 0

with equality for x = y = z, for y = z = 0 (or any cyclic permutation), and for x/k =
y = z (or any cyclic permutation) if k > 0 .

Proof. Let

f5(x,y,z) = ∑(y+ z)(x− y)(x− z)(x− ky)(x− kz).

By Theorem 2.1, it suffices to prove that f5(x,1,1) � 0 and f5(0,y,z) � 0 for all
x,y,z � 0. Indeed,

f5(x,1,1) = 2(x−1)2(x− k)2 � 0,

f5(0,y,z) = k2(y+ z)y2z2 + yz(y+ z)(y− z)2 � 0. �
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PROPOSITION 4.4. Let x,y,z be nonnegative real numbers, no two of which are
zero. If k > −2 , then

∑ x(y+ z)+ (k−1)yz
y2 + kyz+ z2 � 3(k+1)

k+2

with equality for x = y = z, and for x = 0 and y = z (or any cyclic permutation) ([1],
pp. 311) .

Proof. Write the inequality as f6(x,y,z) � 0, where

f6(x,y,z) =(k+2)∑[x(y+ z)+ (k−1)yz](x2 + kxy+ y2)(x2 + kxz+ z2)

−3(k+1)∏(y2 + kyz+ z2).

Let p = x+ y+ z , q = xy+ yz+ zx , r = xyz . From

f6(x,y,z) =(k+2)∑[q+(k−2)yz](p2−2q+ kxy− z2)(p2−2q+ kxz− y2)

−3(k+1)∏(p2−2q+ kyz− x2),

it follows that f6(x,y,z) has the same highest coefficient as

f (x,y,z) = (k+2)(k−2)∑yz(kxy− z2)(kxz− y2)−3(k+1)∏(kyz− x2)

= 3(−k3−4k2 + k+1)r2 + k(k2 +3k+8)r∑x3− (2k2 +3k+4)∑x3y3.

Therefore,

A = 3(−k3−4k2 + k+1)+3k(k2 +3k+8)−3(2k2+3k+4) = −9(k−1)2.

Since A � 0, it suffices to show that the desired inequality holds for y = z = 1 and for
x = 0 (Theorem 2.2). In these cases, the original inequality is equivalent to

(k+2)x(x−1)2 � 0

and
(y− z)2[(k+2)(y2 + z2)+ (k2 + k+1)yz] � 0,

respectively, which are clearly true for k > −2. �

PROPOSITION 4.5. If x,y,z are nonnegative real numbers, and

αk =

⎧⎨
⎩

4(k−2), if 2 � k � 6

(k+2)2

4
, if k > 6

,

then

∑x(x− y)(x− z)(x− ky)(x− kz)+
αk(x− y)2(y− z)2(z− x)2

x+ y+ z
� 0,

with equality for x = y = z, for x = 0 and y = z (or any cyclic permutation), for
x/k = y = z (or any cyclic permutation), and for x = 0 and y/z+ z/y = (k−2)/2 (or
any cyclic permutation) if k > 6 ([6]) .
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Proof. Write the inequality as f6(x,y,z) � 0, where

f6(x,y,z) = (x+ y+ z)∑x(x− y)(x− z)(x− ky)(x− kz)+ αk(x− y)2(y− z)2(z− x)2.

According to (1.15), the highest coefficient of f6(x,y,z) is A = −27αk . Since A � 0
for k � 2, it suffices to show that f6(x,1,1) � 0 and f6(0,y,z) � 0 for all x,y,z � 0
(Theorem 2.2). These conditions are true since

f6(x,1,1) = x(x+2)(x−1)2(x− k)2,

f6(0,y,z) =

⎧⎪⎪⎨
⎪⎪⎩

(y− z)4[(y− z)2 +(6− k)yz]
y+ z

, if 2 � k � 6

(y− z)2[2(y− z)2 +(6− k)yz]2

4(y+ z)
, if k > 6

. �

PROPOSITION 4.6. If x,y,z are nonnegative real numbers, then

∑x(y+ z)(x− y)(x− z)(x−2y)(x−2z)� (x− y)2(y− z)2(z− x)2,

with equality for x = y = z, for x = 0 and y = z (or any cyclic permutation), for
y = z = 0 (or any cyclic permutation), and for x/2 = y = z (or any cyclic permutation)
([9]) .

Proof. Write the inequality as f6(x,y,z) � 0, where

f6(x,y,z) = ∑x(y+ z)(x− y)(x− z)(x−2y)(x−2z)− (x− y)2(y− z)2(z− x)2.

Since

f6(x,y,z) = ∑(q− yz)(x2 +2yz−q)(x2 +6yz−2q)− (x− y)2(y− z)2(z− x)2,

where q = xy+ yz+ zx , it follows that f6 has the same highest coefficient as

f (x,y,z) = −∑yz(x2 +2yz)(x2 +6yz)+27x2y2z2

= −12∑y3z3− xyz∑x3 +3x2y2z2;

that is, A = −36− 3+ 3 = −36. Since A < 0, it suffices to show that f6(x,1,1) � 0
and f6(0,y,z) � 0 for all x,y,z � 0 (Theorem 2.2). We have

f6(x,1,1) = 2x(x+2)(x−1)2(x−2)2 � 0,

f6(0,y,z) = yz(y− z)4 � 0. �

PROPOSITION 4.7. Let x,y,z be nonnegative real numbers. If k > 0 , then

∑yz(x− y)(x− z)(x− ky)(x− kz) � 0,

with equality for x = y = z, for y = z = 0 (or any cyclic permutation), and for x/k =
y = z (or any cyclic permutation) ([9]) .



SYMMETRIC HOMOGENEOUS POLYNOMIAL INEQUALITIES 427

Proof. For k = 1, the inequality has the obvious form

∑yz(x− y)2(x− z)2 � 0.

We consider further that k 	= 1, denote the left side of the inequality by f6(x,y,z) and
apply Theorem 2.3. Let p = x+ y+ z , q = xy+ yz+ zx , r = xyz . From

f6(x,y,z) = k2 ∑x3y3 + r∑x3 − (k2 + k+1)r∑xy(x+ y)+3(k+1)2r2,

using (1.11), we can write f6(x,y,z) in the form (2.7), where

A = 9(k2 + k+1) > 0,

g1(p,q) = p3− (4k2 + k+4)pq, g2(p,q) = k2q3.

We have

h(t) = 18(k2 + k+1)t +(t +2)3− (4k2 + k+4)(t +2)(2t +1)

= t[t2−2(4k2 + k+1)t−2k2 +13k+10],

g1(
√

w,1) =
√

w(w−4k2− k−4)

and
d(p,q) = g2

1−4Ag2 = (p2 −w1q)(p2−w2q)(p2−w3q),

where

w1 = 4(k2 + k+1),

w2 = 2k2 − k+2+2(k−1)
√

k2 + k+1,

w3 = 2k2 − k+2−2(k−1)
√

k2 + k+1.

For t > 0, h(t) has the same sign as

h0(t) = t2−2(4k2 + k+1)t−2k2 +13k+10,

whose derivative is
h′0(t) = 2(t−4k2− k−1).

The condition (a) in Theorem 2.3 is fulfilled since

f6(x,1,1) = (x−1)2(x− k)2 � 0, f6(0,y,z) = k2y3z3 � 0.

We need to consider further the following three cases.

Case 1. k � 8
7

. Since w1 > w2 � 4 > 3 > w3 , we have

I1 = [3,4), J1 = [4,w2), J2 = (w1,∞).
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With regard to I1 , since h′0(t) < 0 for t ∈ (0,4) , h0(t) is decreasing. If h0(1) � 0,
then h0(t) � 0 for t ∈ (0,1] , and hence for t ∈ K1 . If h0(1) � 0, then h0(t) � 0 for
t ∈ [1,4) , and hence for t ∈ L1 .

With regard to J1 , we will show that h0(t) � 0 for t ∈ M1 . Since

w2 < 2k2− k+2+2(k−1)(k+1)= 4k2− k < 4k2,

we have

t ∈ M1 ⇐⇒ 4 � (t +2)2

2t +1
< w2, t � 4 =⇒ 4 � (t +2)2

2t +1
< 4k2, t � 4

⇐⇒ 4 � t < 2(2k2−1+ k
√

4k2−3) =⇒ 4 � t < 8k2.

Then, it suffices to show that h0(t) � 0 for 4 � t < 8k2 . Indeed,

h0(t) � h0(t)+ (t−4)(8k2− t) = −2(k−1)t−34k2 +13k+10

< −34k2 +13k+10 < 0.

With regard to J2 , we will show that g1(
√

w,1) � 0 for w ∈ J2 . This is true if
w1 � 4k2 + k+4, which is trivial.

Case 2. 1 < k � 8
7

. Since w1 > 4 � w2 > 3 > w3 , we have

I1 = [3,w2), J1 = (w1,∞).

With regard to I1 , we will show that h(t) � 0 for t ∈ (0,1] , and hence for t ∈ K1 .
Since h′0(t) < 0 for t ∈ (0,1] , h0(t) is decreasing, and hence h0(t) � h0(1) =−10k2 +
11k+9 > 0.

With regard to J1 , we will show that g1(
√

w,1) � 0 for w ∈ J1 . This is true if
w1 � 4k2 + k+4, which is clearly true.

Case 3. 0 < k < 1. Since w1 > 4 > w3 > 3 > w2 , we have

I1 = [3,w3), J1 = (w1,∞).

The proof is the same as the one of the case 2. �

PROPOSITION 4.8. Let x,y,z be nonnegative real numbers. If k � 4 , then

∑x2(x− y)(x− z)(x− ky)(x− kz) � (5−3k)(x− y)2(y− z)2(z− x)2,

with equality for x = y = z, for x = 0 and y = z (or any cyclic permutation), and for
x/k = y = z (or any cyclic permutation) if k > 0 ([4]) .

Proof. Denote the left-hand side of the inequality by f (x,y,z) and write the de-
sired inequality as f6(x,y,z) � 0. Using (1.11), we have

f (x,y,z) =∑x6 − (k+1)∑xy(x4 + y4)+ k∑x2y2(x2 + y2)

+ (k+1)2xyz∑x3− k(k+1)xyz∑xy(x+ y)+3k2x2y2z2

=9(k2 + k+1)r2 +[(k2 + k+8)p3−2(2k2 +5k+11)pq]r+ p6

− (k+7)p4q+(5k+13)p2q2−4(k+1)q3.
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Using then (1.15), we can write f6(x,y,z) in the form (2.7), where

A = 9(k2 + k+1)+27(5−3k)= 9(4− k)2,

g1(p,q) = (4− k)(7− k)p(p2−4q), g2(p,q) = (p2−4q)2[p2− (k−1)q].

We have

h(t) = 2At +g1(t +2,2t +1) = (4− k)t[(7− k)t2−2(7− k)t +2(8−5k)]

and
d(p,q) = g2

1−4Ag2 = (k−1)(k−4)2(p2−4q)2[36q− (13− k)p2].

We see that h(t) has for t > 0 the same sign as

h0(t) = (7− k)t2−2(7− k)t +2(8−5k).

For k = 1, the desired inequality f6(x,y,z) � 0 is true since A > 0 and d(p,q)= 0.
Also, for k = 4, the inequality is true because

f6(x,y,z) = (p2−3q)(p2−4q)2 � 0.

Thus, it remains to consider the cases 1 < k < 4 and k < 1.
The condition (a) in Theorem 2.3 is fulfilled since

f6(x,1,1) = x2(x−1)2(x− k)2 � 0

and
f6(0,y,z) = (y− z)4[y2 + z2 +(3− k)yz] � 0.

Case 1. 1 < k < 4. From d(p,q) > 0, we get

I1 =
[
3,

36
13− k

)
.

We will show that h0(t) � 0 for t ∈ L1 . Therefore, we need to prove that

1−3

√
k−1
7− k

� t � 1+3

√
k−1
7− k

for

t ∈ L1 ⇐⇒ 3 � (t +2)2

2t +1
<

36
13− k

, 1 � t < 4 ⇐⇒ 1 � t <
2k+10+6

√
3(k−1)

13− k
.

The left inequality is clearly true for t � 1. To prove the right inequality, it suffices to
show that

2k+10+6
√

3(k−1)
13− k

� 1+3

√
k−1
7− k

,
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which holds if and only if

13− k√
7− k

�
√

k−1+2
√

3.

Since √
k−1+2

√
3 =

13− k

2
√

3−√
k−1

,

we need to show that √
k−1+

√
7− k � 2

√
3.

Indeed,
√

k−1+
√

7− k < 2

√
(k−1)+ (7− k)

2
= 2

√
3.

Case 2. k < 1. Since the condition d(p,q) > 0 holds for p2 � 3q , we have

I1 = [3,4), J1 = [4,∞).

With regard to I1 , we have

h0(t) = (7− k)(t−1)2 +9(1− k) > 0

for any t > 0, and hence for t ∈ K1 .
With regard to J1 , we have

g1(
√

w,1) = (4− k)(7− k)
√

w(w−4) � 0

for w ∈ J1 . �

PROPOSITION 4.9. Let x,y,z be nonnegative real numbers, no two of which are
zero. If k > 0 , then

∑(x− y)(x− z)(x− ky)(x− kz) � (k+3)(x− y)2(y− z)2(z− x)2

xy+ yz+ zx

with equality for x = y = z, for x/k = y = z (or any cyclic permutation), and for x = 0
and y/z+ z/y = k+2 (or any cyclic permutation) ([7]) .

Proof. Write the inequality as f6(x,y,z) � 0, where

f6(x,y,z) =(xy+ yz+ zx)∑(x− y)(x− z)(x− ky)(x− kz)

− (k+3)(x− y)2(y− z)2(z− x)2,

and then apply Theorem 2.3. We have

∑(x− y)(x−z)(x− ky)(x− kz) =

= ∑x4− (k+1)∑xy(x2 + y2)− (k2−1)xyz∑x+(k2 +2k)∑x2y2

= 3(2− k− k2)pr+p4 − (k+5)p2q+(k+2)2q2.
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Using (1.15), we can write f6(x,y,z) in the form (2.7), where

A = 27(k+3),

g1(p,q) = 4(k+3)p3−3(k2 +7k+16)pq, g2(p,q) = q(p2− (k+4)q)2.

We have

h(t) = 54(k+3)t +4(k+3)(t +2)3−3(k2 +7k+16)(t +2)(2t +1)

= t[4(k+3)t2−6(k2 +3k+4)t−3(5k2 + k−22)],

g1(
√

w,1) =
√

w[4(k+3)w−3(k2 +7k+16)]

and
d(p,q) = g2

1−4Ag2 = (p2 −w1q)(p2−w2q)(p2−w3q),

where

w1 =
12

k+3
, w2 =

3(k+3)
4

, w3 =
3(k+4)2

4(k+3)
.

For t > 0, the sign of h(t) is the same with the sign of

h0(t) = 4(k+3)t2−6(k2 +3k+4)t−3(5k2 + k−22).

The condition (a) in Theorem 2.3 is fulfilled since

f6(x,1,1) = (2x+1)(x−1)2(x− k)2 � 0

and
f6(0,y,z) = yz[y2 + z2− (k+2)yz]2 � 0.

We need to consider the following four cases.

Case 1. k � 7
3

. Since w1 < 3 < 4 � w2 < w3 , we have

I1 = [3,4), J1 = [4,w2), J2 = (w3,∞).

With regard to I1 , we will show that h0(t) � 0 for t ∈ [1,4) , and hence for t ∈ L1 .
Since h0(t) is convex, it suffices to show that h0(1) � 0 and h0(4) � 0. Indeed,

h0(1) = −21k2−17k+54 < 0, h0(4) = −39k2−11k+162 < 0.

With regard to J1 , we will show that h0(t) � 0 for t ∈ M1 . We have

t ∈ M1 ⇐⇒ 4 � (t +2)2

2t +1
< w2, t � 4 ⇐⇒ 4 � t <

3k+1+3
√

k2 +2k−3
4

.

Since
3k+1+3

√
k2 +2k−3

4
<

3k+1+3(k+1)
4

=
3k+2

2
,
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it suffices to show that h0(t) � 0 for 4 � t <
3k+2

2
. Since h0(t) is convex, it suffices

to show that h0(4) � 0 and h0

(
3k+2

2

)
� 0. Indeed,

h0(4) = −39k2−11k+162< 0, h0

(
3k+2

2

)
= −9k2−17k+54 < 0.

With regard to J2 , we will show that g1(
√

w,1) � 0 for w ∈ J2 . This is true if
4(k+3)w3−3(k2 +7k+16) � 0, which is true for any k � 0.

Case 2.
−17+5

√
193

42
� k � 7

3
. Since w1 < 3 < w2 � 4 < w3 , we have

I1 = [3,w2), J1 = (w3,∞).

With regard to I1 , we will show that h0(t) � 0 for t ∈ L1 . We have

t ∈ L1 ⇐⇒ 3 � (t +2)2

2t +1
< w2, 1 � t < 4

⇐⇒ 4t2−2(3k+1)t−3k+7 < 0, 1 � t < 4 ⇐⇒ 1 � t < t1,

where

t1 =
3k+1+3

√
k2 +2k−3

4
.

Since h0(t) is convex, it suffices to show that h0(1) � 0 and h0(t1) � 0. Since k �
(−17+5

√
193)/42, we have

h0(1) = −21k2−17k+54 � 0.

From 4t21 = 2(3k+1)t1 +3k−7, we have

h0(t1) = (k+3)[2(3k+1)t1 +3k−7]−6(k2+3k+4)t1−3(5k2 + k−22)

= 2(k−9)t1−12k2− k+45.

Then, we need to show that 2(k−9)t1−12k2− k+45 � 0. Since

t1 >
3k+1+(3k−1)

4
=

3k
2

,

we have

2(k−9)t1−12k2− k+45 < 3k(k−9)−12k2− k+45 = −9k2−28k+45 < 0.

With regard to J1 , we will show that g1(
√

w,1) � 0 for w ∈ J1 . This is true if
4(k+3)w3−3(k2 +7k+16) � 0, which is true for any k � 0.

Case 3. 1 � k � −17+5
√

193
42

. Since w1 � 3 � w2 < 4 < w3 , we have

I1 = [3,w2), J1 = (w3,∞).
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With regard to I1 , we will show that h0(t) � 0 for t ∈ (0,1] , and hence for t ∈K1 .
Indeed,

h0(t) � h0(t)−4(k+3)(t−1)2 = −2k(3k+5)t−15k2−7k+54

� −2k(3k+5)−15k2−7k+54 = −21k2−17k+54 � 0.

With regard to J1 , we will show that g1(
√

w,1) � 0 for w ∈ J1 . This is true if
4(k+3)w3−3(k2 +7k+16) � 0, which is true for any k � 0.

Case 4. 0 � k � 1. Since w2 � 3 � w1 � 4 � w3 , we have

I1 = [3,w1), J1 = [w3,∞),

and the proof is the same as the one of the case 3. �

PROPOSITION 4.10. Let a,b,c be the side-lengths of a triangle. If a+b+ c= 3 ,
then

1
a

+
1
b

+
1
c

+
41
6

� 3(a2 +b2 + c2),

with equality for a degenerate triangle having a = 3/2 , b = 1 , c = 1/2 (or any per-
mutation) ([8]) .

Proof. Write the desired inequality in the form

1
abc

+6 � 121
6(ab+bc+ ca)

.

By Lemma 2.2, it suffices to prove this inequality for a/2� b = c � a and for a = b+c .

Case 1. a/2 � b = c � a . From a+b+c = 3, we have b = c = (3−a)/2, a∈ [1,3/2] .
The desired inequality is equivalent to

(3−a)(27a4−135a3 +202a2−102a+18)� 0,

which is true since

27a4−135a3 +202a2−102a+18=

= 27(a− 3
2
)4+27a(a− 3

2
)2 +

163
2

(a−1)(
3
2
−a)−2a+

57
16

> 0.

Case 2. a = b+c . From a+b+c= 3, we have a = 3/2 and b+c = 3/2. The desired
inequality reduces to (2bc−1)2 � 0. �

PROPOSITION 4.11. If a,b,c are the side-lengths of a triangle, then

a2

4a2 +5bc
+

b2

4b2 +5ca
+

c2

4c2 +5bc
� 1

3
,

with equality for an equilateral triangle, and for a degenerate triangle having a/2 =
b = c (or any cyclic permutation).
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Proof. Write the inequality as g6(a,b,c) � 0, where

g6(a,b,c) = 3∑a2(4b2 +5ca)(4c2 +5ab)−∏(4a2 +5bc)

= −45a2b2c2−25abc∑a3 +40∑a3b3.

Thus, g6(a,b,c) has the highest coefficient A = −45− 75 + 120 = 0. By Theorem
2.5, it suffices to prove the original inequality for b = c = 1 and 0 � a � 2, and for
a = b+ c .

For b = c = 1, the desired inequality is equivalent to the obvious inequality (2−
a)(a−1)2 � 0.

For a = b+ c , using the Cauchy-Schwarz inequality,

b2

4b2 +5ca
+

c2

4c2 +5ab
� (b+ c)2

4(b2 + c2)+5a(b+ c)
,

it suffices to show that

a2

4a2 +5bc
+

(b+ c)2

4(b2 + c2)+5a(b+ c)
� 1

3
.

This is equivalent to the obvious inequality

(b− c)2(3b2 +3c2−4bc) � 0. �

PROPOSITION 4.12. Let a,b,c be the side-lengths of a triangle. If k > −2 , then

∑ a(b+ c)+ (k+1)bc
b2 + kbc+ c2 � 3(k+3)

k+2
,

with equality for an equilateral triangle, and for a degenerate triangle with a/2 = b = c
(or any cyclic permutation) ([5]) .

Proof. Write the inequality as g6(a,b,c) � 0, where

g6(a,b,c) =3(k+3)∏(b2 + c2 + kbc)

− (k+2)∑[a(b+ c)+ (k+1)bc](a2+ c2 + kac)(a2 +b2 + kab).

Let p = a+b+ c and q = ab+bc+ ca . From

g6(a,b,c) =3(k+3)∏(p2−2q−a2+ kbc)

− (k+2)∑(q+ kbc)(p2−2q−b2+ kac)(p2−2q− c2 + kab),

it follows that g6 has the same highest coefficient as

g(a,b,c) =3(k+3)∏(−a2 + kbc)− k(k+2)∑bc(−b2 + kac)(−c2 + kab)

=3(k+3)[(k3−1)a2b2c2− k2abc∑a3 + k∑a3b3]

− k(k+2)(3k2a2b2c2−2kabc∑a3 +∑a3b3).
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Therefore,

A = 3(k+3)(k3−1−3k2 +3k)− k(k+2)(3k2−6k+3) = −9(k−1)2.

Since A � 0, by Theorem 2.5, it suffices to prove the original inequality for b = c = 1
and 0 � a � 2, and for a = b+ c .

For b = c = 1, the desired inequality is equivalent to the obvious inequality (2−
a)(a−1)2 � 0.

For a = b+ c , the inequality becomes

3bc
b2 + c2 + kbc

+
bc− c2

b2 +(k+2)(c2 +bc)
+

bc−b2

c2 +(k+2)(b2 +bc)
� 3

k+2
,

and is true since
3bc

b2 + c2 + kbc
� 3

k+2

and
bc− c2

b2 +(k+2)(c2 +bc)
+

bc−b2

c2 +(k+2)(b2 +bc)
� 0,

the last inequality being equivalent to (b− c)2(b2 +bc+ c2) � 0. �

PROPOSITION 4.13. Let a,b,c be the side-lengths of a triangle. If k > −2 , then

∑ 2a2 +(4k+9)bc
b2 + kbc+ c2 � 3(4k+11)

k+2
,

with equality for an equilateral triangle, and for a degenerate triangle with a/2 = b = c
(or any cyclic permutation) ([5]) .

Proof. Write the inequality as g6(a,b,c) � 0, where

g6(a,b,c) = 3(4k+11)∏(b2 + c2 + kbc)

−(k+2)∑[2a2 +(4k+9)bc](a2+ c2 + kac)(a2 +b2 + kab).

Let p = a+b+ c and q = ab+bc+ ca . From

g6(a,b,c) = 3(4k+11)∏(p2 −2q−a2+ kbc)

−(k+2)∑[2a2 +(4k+9)bc](p2−2q−b2+ kac)(p2−2q− c2 + kab),

it follows that g6 has the same highest coefficient as

g(a,b,c) =3(4k+11)∏(−a2+kbc)−(k+2)∑[2a2+(4k+9)bc](−b2+kac)(−c2+kab)

=3(4k+11)[(k3−1)a2b2c2− k2abc∑a3 + k∑a3b3]

− (k+2)[3(4k3 +9k2 +2)a2b2c2−6k(k+3)abc∑a3 +9∑a3b3].
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Therefore,

A =3(4k+11)(k3−1−3k2 +3k)− (k+2)[3(4k3+9k2 +2)−18k(k+3)+27]

=−9(4k+11)(k−1)2.

Since A � 0, by Theorem 2.5, it suffices to prove the original inequality for b = c = 1
and 0 � a � 2, and for a = b+ c .

For b = c = 1, the desired inequality is equivalent to the obvious inequality (2−
a)(a−1)2 � 0.

For a = b+ c , the inequality becomes

(2k+13)bc
b2 + c2 + kbc

+
(2k+5)(b+ c)c

b2 +(k+2)(c2 +bc)
+

(2k+5)(b+ c)b
c2 +(k+2)(b2 +bc)

� 3(2k+7)
k+2

.

Setting x = b/c+ c/b , x � 2, we can write this inequality as follows

2k+13
x+ k

+
(2k+5)(x+2)(x+2k+3)

(k+2)x2 +(k+2)(k+3)x+2k2+6k+5
� 3(2k+7)

k+2
,

(x−2)[4(k+2)(k+4)x2+2(k+2)Ax+B] � 0,

where
A = 2k2 +13k+22, B = 8k3 +51k2 +98k+65,

This is true since

A = 2(k+2)2 +5(k+2)+4 > 0, B = 8(k+2)3 +2k2 +(k+1)2 > 0. �

PROPOSITION 4.14. Let x,y,z be positive real numbers. If k �
√

2−1 , then

x2(y+ z)
kx2 + y2 + z2 +

y2(x+ x)
ky2 + z2 + x2 +

z2(x+ y)
kz2 + x2 + y2 � 2(x+ y+ z)

k+2
,

with equality for x = y = z. If k =
√

2−1 , then equality also holds for x/
√

2 = y = z
(or any cyclic permutation).

Proof. Write the inequality as f7(x,y,z) � 0, where

f7(x,y,z) =2(x+ y+ z)∏(kx2 + y2 + z2)

− (k+2)∑x2(y+ z)(ky2 + z2 + x2)(kz2 + x2 + y2).

Let p = x+ y+ z , q = xy+ yz+ zx , r = xyz . From

f7(x,y,z) =2p∏[p2 −2q+(k−1)x2]

− (k+2)∑x2(p− x)[p2−2q+(k−1)y2][p2−2q+(k−1)z2],
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it follows that the highest polynomial of f7(x,y,z) is

h0(p,q) = 2(k−1)3p− (k+2)(k−1)2∑(p− x) = −6(k−1)2p.

By Theorem 2.6, since h0(p,q) � 0, it suffices to show that the desired inequality holds
for y = z = 1 and for x = 0. For y = z = 1, the original inequality is equivalent to

(x−1)2(x+1)[kx2 +2(k−1)x+2k] � 0,

which is true since

kx2 +2(k−1)x+2k = k(x−1+
1
k
)2 +

k2 +2k−1
k

� 0.

For x = 0, the original inequality becomes

2kt2− (k+2)t + k2−5k+4 � 0,

where t = y/z+ z/y � 2. This is also true since

2kt2− (k+2)t + k2−5k+4 = 2k(t−2)2 +(7k−2)(t−2)+ k(k+1)> 0. �

PROPOSITION 4.15. If x,y,z are nonnegative real numbers, no two of which are
zero, then

1
2x2 + yz

+
1

2y2 + zx
+

1
2z2 + xy

� 1
xy+ yz+ zx

+
2

x2 + y2 + z2 ,

with equality for x = y = z, and for x = 0 and y = z (or any cyclic permutation).

Proof. Let p = x + y + z , q = xy + yz + zx , r = xyz . Write the inequality as
f8(x,y,z) � 0, where

f8(x,y,z) = q(p2−2q)∑(2y2 + zx)(2z2 + xy)− p2∏(2x2 + yz).

Clearly, f8(x,y,z) has the same highest polynomial as

f (x,y,z) = −p2∏(2x2 + yz) = −p2(9x2y2z2 +2xyz∑x3 +4∑y3z3);

that is, h0(p,q) = −(9+ 6+ 12)p2 = −27p2 . By Theorem 2.7, since h0(p,q) < 0, it
suffices to show that the desired inequality holds for y = z = 1 and for x = 0. In these
cases, the original inequality reduces to the obvious forms

x(x−1)2(x2 + x+1) � 0

and
(y2 − z2)2 � 0,

respectively. �
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