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EMBEDDINGS PROPERTIES ON HERZ-TYPE
BESOV AND TRIEBEL-LIZORKIN SPACES

DOUADI DRIHEM

(Communicated by B. Opic)

Abstract. We study the embeddings problems on Herz-type Besov-Triebel-Lizorkin spaces. In
particular we will give a proof of the Sobolev-type embedding for these function spaces. All
these results generalize the classical results on Besov and Triebel-Lizorkin spaces.

1. Introduction

Many researchers are interested in the analysis of the class of function spaces,
because they are well-established tools in the analysis of partial differential equation.
Some example of these spaces can be mentioned such as: Holder spaces, Bessel poten-
tial spaces, Besov spaces and Triebel-Lizorkin spaces. For more details one can refer to
Triebel’s books [17], [18], [19] and other literatures. In recent years many researchers
have modified the classical spaces and have generalized the classical results to these
modified ones. For example. Besov-Morrey spaces which have been studied in [9].
Besov-Morrey spaces are modified Besov spaces where the base norm is of Morrey
type, instead of L”. For a general theory on these spaces see [9], [10], [11], [15] and
[20]. Another example can be mentioned, that is the Herz-type Besov and Triebel-
Lizorkin spaces. They are modelled on Besov spaces and Triebel-Lizorkin spaces, but
the underlying norm is of K; 7 type rather than L7 .

It is well known that Herz spaces play an important role in Harmonic Analysis.
After they have been introduced in [2], the theory of these spaces had a remarkable
development in part due to its usefulness in applications. For instance, they appear in
the characterization of multipliers on Hardy spaces [1], in the summability of Fourier
transforms [5] and in regularity theory for elliptic equations in divergence form [16].

The purpose of this paper is then to consider Herz-type Besov spaces K,f‘ o’ B% and

Herz-type Triebel-Lizorkin spaces K7 Fj. These function spaces introduced earlier
in the papers of J. Xu and D. Yang [21], [22] and [23].

The interest in these spaces comes not only from theoretical reasons but also from
their applications to several classical problems in analysis. In [14], Lu and Yang intro-
duced the Herz-type Sobolev and Bessel potential spaces. They gave some applications
to partial differential equations.
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440 D. DRIHEM

The main aim of this paper is to study the embeddings problems of Kg o’ st and

K,f‘ PES spaces. All these results generalize the existing classical results on Besov and
Triebel-Lizorkin spaces by taking oo =0 and p = gq.

Let us now present the contents of this paper. Section 2 collects fundamental no-
tation and concepts. Some necessary tools are given in Section 3. In particular we
generalize the classical Plancherel-Polya-Nikolskij inequality on K,f‘ P spaces instead
of L? spaces. In Section 4 we recall the definitions of the Herz-type Besov and Triebel-
Lizorkin spaces and present a few aspects of their properties. Finally, in Section 5 we
present some embeddings properties. In particular we will prove the Sobolev embed-
ding theorem for these function spaces and present some consequences.

2. Preliminaries

As usual, R" the n-dimensional real Euclidean space, N the collection of all nat-
ural numbers and No = NU{0}. The letter Z stands for the set of all integer numbers.

Forany u >0,k € Z we set C(u) = {x € R" : u/2 < |x| <u} and C; = C(2¥). For
x € R" and r > 0 we denote by B(x,r) the open ball in R” with center x and radius
r and B(x,r) is the closure of the open ball B(x,r). Let xi, for k € Z, denote the
characteristic function of the set Cy. The Euclidean scalar product of x = (x1,...,x,)
and y = (y1,...,yn) is given by x-y = x1y1 + ... + X, yn.

As usual LP(R") for 0 < p < oo stands for the Lebesgue spaces on R” normed by
(quasi-normed for p < 1)

1/p
@ =1, = ([ wra) <o 0<p<e

and
IFILZRY = fll. = ess-sup [f(x)] < ee.
xeR”?

We define for any x € R" and N,R >0
wrn(x) =R"(1+Rx|)™"

By . (R") we denote the Schwartz space of all complex-valued, infinitely differ-
entiable and rapidly decreasing functions on R”. The topology in the complete locally
convex space . (R") is generated by the norms

py(@) = sup (1+ )Y Y [D%(x)|, N=1,23,...

xeR” lot| <N

By /(R") we denote the dual space of all tempered distributions on R". We
define the Fourier transform of a function f € .(R") by

F(E = @0 [ e fwdx
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Its inverse is denoted by .% ~! f. Both .% and .# ~! are extended to the dual Schwartz
space .’ (R") in the usual way.

By /;, 0 < g < o, we denote the space of all (complex) sequences {ai};cy
equipped with the quasi-norm

Hahes 1ol = ( S tair) ™

k=—oco
(with the usual modification if g = oo).

Given two quasi-Banach spaces X and Y, we write X — Y if X C Y and the
natural embedding of X in Y is continuous. We use ¢ as a generic positive constant,
i.e. a constant whose value may change from appearance to appearance.

3. Basic tools

In this section we derive several technical lemmas that were used in the other
sections. We start by recalling the definition and some of the properties of the homoge-
neous Herz spaces K; 7.

DEFINITION 3.1. Let & € R,0 < p,gq < o. The homogeneous Herz space K"
is defined by

Ry = {f € Li (R {0)): [|£ | K7 <o),

loc

where

=

1/p
17| & = ( S giar ka||§> e

——o0

with the usual modifications made when p = e and/or g = co.

The spaces K,}x P are quasi-Banach spaces and if min(p,q) > 1 then I'(;C P are

Banach spaces. When oo =0 and 0 < p =g < oo then KI(,”’ coincides with the Lebesque
spaces LP(R"). If 0 < p; < pa < o, then we may derive the embedding

SOAPL oy KOP2
Kq Kq .

A detailed discussion of the properties of these spaces may be found in the papers [6],
[71, [12], [13], and references therein.

LEMMA 3.2. Let r,R >0 and m > n. Then there exists ¢ = c¢(r,m,n) >0 such
that for all g € ' (R") with supp -Zg C B(0,R), we have

20| < (wrm* gl (X)), xeR™
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This Lemma is from [4, Lemma A.7].

The classical Plancherel-Polya-Nikolskij inequality (cf. [17, 1.3.2/5, Rem. 1.4.1/4]),
says that |||, can be estimated by

¢ RM1/p=1/q) I£1l,

forany 0 < p < g <o, R>0 andany f € LP(R")N.'(R") with supp .Z f C B(O,R).
The constant ¢ > 0 is independent of R. This inequality plays an important role in
theory of function spaces and PDE’s. Our aim is to extend this result to Herz spaces.
Let us start with the following lemma.

LEMMA 3.3. Let ¢ € R,0 < p,g < oo and R > H > 0. Then there exists a con-
stant ¢ > 0 independent of R and H such that for all f € Kg*P N.7'(R") with supp
Zf CB(0,R), we have

n/d
wn il <e (5) B K|
xE€B(0,1/H)
Sforany 0 <d < min(q,1/(1/q+ o/n)).

Proof. By Lemma 3.2 we have for any d,R > 0,N > n/d and any x € B(0,1/H)
g p/d
0P < e ([ 10 wravte—ay)

p/d p/d
< -)d 4 / -)d ,
‘ </B(0722/H>( ) y) ‘ ( R"\E(OJZ/H)( ) y)

where p = min(1,d). Using the following decomposition

- )dy = / - )dy,
/3(0,22/11)( 4y ZZ) C(22*f/H>( n

Oy = / -
/1‘{11\?(0722/[_1)( ) Y Zb C(2j+3/H)( ) Y

and the well-known inequality

(i]a,-]) <i]a,-|", {a;},cC, o€l0.1] (3.4)
j=0

Jj=0

we obtain that |f(x)|” can be estimated by

oo

¢ Y (Virn ) +Vigu), (3.3)
j=0
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where

p/d
V,'I,R,H(x) = (WR,dN * |f%c(2271/H)|d(x)> ; VJZ,R,H('X:) = V—lj—l,R,H(x)'

Here N is chosen large enough such that N > max(n/d,n/d —n/q— c). Let us give
the estimation of the ﬁrst term in (3.5). A simple change of variables and the Holder

inequality (with 5 = 7= —) yield for any d,R > 0 and any x € B(0,1/H)
np/d P
Z RH ) <R Z f?Ccz2 iH)||,
27[10g2H] p
<R Y Hf)cgk ,
f—=—co

2—[lo
< c R/ Z ank(l/d 1/q) fo
=—o0

) (3.6)

where C = {x € R" : 2-2 < |x| < 2*} and [g] is the integer part of the real number a.
Now we can distinguish two cases as follows:
If 0 < p < p, then by the embedding ¢/, — ¢;, we obtain that the right-hand
side of (3.6) is bounded by
p/p
P
q)

)P/P

2—[log, H]
cRe( Y 2nk<1/d—1/q>pH e
k

k= —oo

. 5 nP/dH(n/q+a Z 2kap ’f
S H = ka
R np/d
<c o H(n/a+a)p Hf (3.7)

where we have used the fact that 1/d > 1/q+a/n and 2¥3H < 1.
If p < p, then the Holder inequality in £, implies that

i Vj R (%)
j=0

2—[log, H|
ScRwit 3 o

f% H ka (n/d—n/q—a)
= S\ PP /P 13- llogy H] (p=p)/p
< cRP/ okap okp(n/d—n/q—a)p/(p—p)
(Eral) (5

np/d
<c (5) H(n/a+a)p Hf| 'q

’f X,

I (3.8)



444 D. DRIHEM

where in the last inequality we have used (since, again 1/d > 1/g+ o:/n and 2873H <

1)
p—p)/p

2—[log, H] i\ P(n/d=n/a—a)p/(p—p) (
3 (z H) <e.

k=—oco

Now we estimate the second term in (3.5). We see that for any y € C(23*//H) and any
x € B(0,1/H), we have |x—y| > 2//H, so that for any d > 0,N € N and j € Ny

2/R

—N
< 27INRM,
H

wrn(x—y) <R" (

Hence by a simple change of variables and the Holder inequality (with % = }1 + % - }1 )s

2 V,'Z,R,H(x)
J=0
< RPN 2N Hf%c(sz/H) HZ
J=0

< cRWHAgNe Y kN fo@,
k=2—[log, H]

p
d

<cRPHEN Y potntdnla |y
k=2—[log, H] ‘

p
q

np/d . N
=c <B> 1 (/a+a)p 3 <2kH>( /d=n/q—N a)pzkpa
H k=2—[log, H|

p
Ixe, .

Since N >n/d —n/q— a and 2KH > 1, for any k > 2 — [log, H], the right-hand side
of the last expression is bounded by
p
q)
R

np/d
¢ (5) ’ H(n/q+a)p< sp 24
np/d ]
<ec (-) Hater || F1ReEe|P. (3.9)

Ixe
H k=2 [log, H] C
H

Finally, the desired estimate follows from (3.7), (3.8) and (3.9) taking into account the
decomposition (3.5). U

The following lemma is the K;‘ P _version of the Plancherel-Polya-Nikolskij in-
equality.

LEMMA 3.10. Let 0,05 € R and 0 <s,p,q,r < oo. We suppose that o +n/s >

0,0 < g<s<ooand o > 0. Then there exist a positive constant ¢ > 0 independent
of R such that for all f € K;>" N.7"(R") with supp .Z f C B(0,R), we have

Hf | K\thH < CRn/q—n/S+a2—a1

00,0
f IR0,
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where
o_1T if o =0y
n pif op > ay.
Proof. We write
oo L —[logy R] oo
2 2fals= X ()+ X ()=Ik+lg (1D
k=—oo k=—0co k=1-[log, R]

Estimate of Ig. Lemma 3.3 gives for any R > 0
—[log, R]

Ix < sup ‘f(x)|r z 2k(a1+n/.\')r < CR(n/qfn/erazfal)r ||f | ['(;52717||r7
x€B(0.2/R) k=—oo

because of o +n/s >0 and 22" 1R < 1.

Estimate of 1. First we consider the case g = s = oo. It is easy to see that

Iz = R~ i 2kR> (al_a2)r2ka2r 12kl

k=1—[log, R]
i (o1 —op)r
< Rlea—an)r sup(2ka2 el 2 <2kR> 1=%
keZ k=1—[log, R]
< ¢ Rle—a)r Hf | ngm”’,
if oo > oy . If op = o then it is clear that
r= % 2| full<|f1K2"|"

k=1—[log, R]

Now we consider the case g < eo. By Lemma 3.2 we have for any R > 0,N > n/d and
any x € Gy

)| <c (/R If(y)qWR,qN(x—y)dy)l/q

<c (/B(o,sz)(”')d)’)l/q_Fc </6v(”.)dy)l/q
1
e </W\B(o.,2k+2>(' ' ')dy) ‘1

= Ve x(x) + Vg 4 (x) + Vig 1 ().
Here C; := {xeR": 2572 < |x| <22} . We choose N such that

N >max (n/s,n/d,n/s— o+ oy +n/d,n/d—og), (3.12)
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with d as in Lemma 3.3. It is easy to verify that if x € C; and y € B(0,2872),
then |x—y| > 2¥2. This estimate and Lemma 3.3, yield for any x € C; and any
k> —[log, R]

1/q
! X < C su / w x—y)d )
Vi (x) . (07123#2) f(y)|< 22y ok RN (X —y)dy

<c R(/4=N) <2kR>n/d 9~ (0 +N)k ||f | ['(‘;12717” )

From this and (3.12), we get

=3

Y 2Vl
k=1—[log, R]

< ¢ R/a—N+n/d)r ||f | K“Z’PH’ Z ok(n/s+n/d+o4—0n—N)r
! k=1—[log, R]
< ¢ RWan/stop—oq)r ||f ‘ ngm”’.

Applying the Minkowski inequality, we obtain

Vil < e re R

Ixe, Hq < ¢ RManls

Ie,

)
s q

where we have used the fact that N > n/s. Hence

- 1/r
( s zkwuv,%,kxku:)

k=1—[log, R]

g cRn/qfn/S < i Zk(alfaz)rzkazr f){gk

k=1—[log, R]

1/r
)
- (01— 0t) 1/r
2kR 1= r)
‘1) (kl%ng]( )

if o > . The case o = oy can be easily solved. For V3, we see that Jrm po,22) (-
-)dy can be rewritten as

< c Rn/q—n/s+a2—a1 sup (2/{0{2 fxa
k

keZ

< ¢ RV a—n/sto—o Hf | K;@m” 7

2 / (---)dy.
i=0" Ck+it3
Then, using (3.4), we get for any x € C

oo

(Vae@)’ < 3 (wran * £ 20 l7(0) 7.
=0
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with p = min(1,q). Since |x—y| > 32 for any x € C; and any y € Cy,;y3, the
right-hand side of the last inequality is bounded by

¢ RP(n/a=N) if("“)’w ||f%ck+,-+3 ||Z

i=0

_ o RP/aN) i 290N | e, |1
j=kt3 o

< ¢ RP/a=N) i 20P01/4=N)qup | £ (x)[P
j=k+3 x€B(0,2/)
< ¢ RP(/a—N-+n/d) i 2IP(nfd-N-a) || | Koz |
okt
< ¢ RP(W/a=N+n/d)okp(n/d—N—0p) Hf | ng’PHP,

where we have used Lemma 3.3 (since j > k > — [log, R]) and (3.12). Therefore,

=

> 2Vl
k=1—[log, R]

<c R(n/quJrn/d)r Hf | ['([;xz,pH" i Zk(n/S*(Xer(xl*NJrn/d)r

k=1—[log, R]
<c R(n/flfn/.wraz*al)r ||f ‘ K;‘LPHr i <2kR> (n/s—op+oy —N+n/d)r
k=1—[logy R]

< ¢ R/ a—n/s+a—on)r Hf | ngm””

where we have used again (3.12). The proof is completed. [l

REMARK 3.13. We would like to mention that Lemma 3.10 generalizes the
classical Plancherel-Polya-Nikolskij inequality by taking oy = o =0, r=s and
by using the embedding £, — /.

In the previous lemma we have not treated the case s < ¢. The next lemma gives
a positive answer.

LEMMA 3.14. Let 0,00 €R and 0 <s,p,q,r < oo. We suppose that oy +n/s >
0,0<s<g<o and 0p > oy +n/s—n/q. Then there exist a positive constant ¢
independent of R such that for all f € K;>" N.'(R") with supp .7 f C B(O,R), we
have

I R < c e ).

Proof. We employ the notations I/Ig and Ig from (3.11). The estimate of Ir fol-
lows easily from the previous lemma. We only need to estimate the part //g. Holder’s
inequality gives

1 2lly < e 25057 YD | el (3.15)
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Therefore,
IIR < i 2k(n/s—n/q+a2—oc1)r2ka2r fok”;
k=1—[log, R]

< sup <2ka2 Hf?(k”q)r Z ok(n/s—n/q—on+oy)r
keZ k=1—[log, R]

<c R(n/qfn/erOtz*Otl)r Hf | ngm”’ i (sz> (n/s—n/q—ao+en)r

k=1—[log, R]
<c R(n/a—n/s+on—aq)r Hf | ngm”’,

since 2€R > 1. The proof is completed. [J

Using the estimate (3.15), we easily obtain that the previous lemma is true for

o =0y +n/s—n/q,s<q,r=pandany f € K;*".

The following statement can be found in [3], that plays an essential role later on.

LEMMA 3.16. Let real numbers sy < sy be given, and ¢ €)0,1[. For 0 < g < oo
there is ¢ > 0 such that

H{z("soﬂl—")ﬂ)f'a,} 4,

j ° : l1-o
<l 147 2 1)

holds for all complex sequences { 2%0iq j}j Ny in le.

4. Function spaces

In this section we present the Fourier analytical definition of Herz-type Besov
spaces Ky ¥ Bj; and Herz-type Triebel-Lizorkin spaces K;P F and recall their basic
properties. We first need the concept of a smooth dyadic resolution of unity.

DEFINITION 4.1. Let ¥ be a function in .7 (R") satisfying ¥(x) =1 for |x| < 1
and W(x) =0 for |x| > % We put ¢p(x) =¥(x), ¢;(x) =¥(x/2) —¥(x) and

0;j(x) =@ (277 ) for j=2,3,...

Then we have supp ¢; C {x € R": 2771 < [x| <3-2/71}, @j(x) =1 for 3-2/72 <
x| <27 and X7 ¢;(x) =1 for all x € R". The system of functions {qoj}jeNO is
called a smooth dyadic resolution of unity. We define the convolution operators A; by
the following:

Aif=F toixf, jEN and Aof=F '¥xf, feS(R.

Thus we obtain the Littlewood-Paley decomposition f = 2}":0 Ajf ofall fe ' (R")
(convergence in .7 (R")).
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We are now in a position to state the definitions of Herz-type Besov and Triebel-
Lizorkin spaces.

DEFINITION 4.2. (i) Let a,s € R and 0 < p,q,8 < . The Herz-type Besov
space K; 7 By is the collection of all f € .#/(R") such that

| 1&57;

o 1/B
- (Ebmsigp) <o
J=

with the obvious modification if = eo.
(ii) Let o, € R,0 < p,q < o and 0 < B < eo. The Herz-type Triebel-Lizorkin space

KSr Fj is the collection of all f €.7/(R") such that

ks

o 1/B
(B isar) e <o
=0

with the obvious modification if = eo.

REMARK 4.3. Let s€R,0< p,q,B <o (with 0< p,q < oo for Kg’ng spaces)
and o > —n/q. The spaces Ky Bj; and Kyr F are independent of the particular

choice of the smooth dyadic resolution of unity {(pj} appearing in their

JENy
definitions (in the sense of equivalent quasi-norms). In particular both I'(,?C b Bi;
and K;"" Fj are quasi-Banach spaces and if p,q,B > 1, then both KSr Bj and

K,f‘ b Fé are Banach spaces. Further results,concerning, for instance, lifting prop-

erties, Fourier multiplier and local means characterizations can be found in [22],
[23] and [25].

Now we give the definitions of the spaces B;. B and Flf B

DEFINITION 4.4. (i) Let s € R and 0 < p, 8 < o. The Besov space B), g is the
collection of all f € ./ (IR") such that

= /B
iz = (2 1a) <o

(ii) Let s € R,0 < p < oo and 0 < B < eo. The Triebel-Lizorkin space F, g is the
collection of all f € .7 (R") such that

o 1/B
sl = (£zeim) | <~

p
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The theory of the spaces Bfu q and Fli B has been developed in detail in [17], [18]
and [19] but has a longer history already including many contributors; we do not want
to discuss this here In particular, with p = g =0, 5 > 0, one recovers Holder-Zygmund
spaces ¢*° = om, cf. [17, Thm. 2.5.12]. Clearly, for seR,0<p<Loo (0<p<oo

for the Ky F3 spaces) and 0 < B <
S0,pps _ ps S0.ps _ s
Ky"By=B,p and K,"Fg=F,g.

5. Embeddings

The following theorem gives basic embeddings of the spaces K" Bj; and K)'F 5

For K,f‘ b Fé spaces these results are proved in [22, p, 649]. Their arguments are true
for Kg""Bj spaces.

THEOREM 5.1. Let s e R,0 < p,q < e and o0 > —n/q.
(i) If 0 < B1 < Ba < oo, then
o0, v, oq, o,
K; pr}I — K prjZ and K; ngl — K, ngz.
(ii) If 0 < B1,B2 < o and € > 0, then
0L, p RPS+E 0L, D RS SO, s+E€ O N
K, ”Bﬁl — K I’Bﬁ2 and K I’FB1 — K I’Fﬁz.
(iii) If 0 < p1 < pa < o, then
Ky "'By — KBy and  K""'Fy — K'P?Fj.
(iv) 0 < g1 < g2 < oo, then
Ka Bﬁ ;)KrpBﬁ and K‘LPFﬁ <_>K717Fﬁ’
where r=0o—n(1/g1—1/q2).
The following theorem gives basic embeddings between the spaces K;‘ o’ B% and
Ky "Fj.
THEOREM 5.2. Let s € R,0 < p,g < e0,0< B <o and o0 > —n/q. Then

K“”’B‘ <—>K°‘ I’F[; <—>K°‘ PB? (5.3)

min(B,p,q) max(B.p.q)’

Proof. Our proof is based upon ideas found in [17, Prop. 2.3.2/2]. We begin with
the following equalities

max (B, p,q) = max (B, max(p,q)) and min (B, p,q) = min (B, min(p,q)).
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We first consider 3 > max (p,q) thus the right-hand embedding of (5.3) reduces to

Kyr Fg — Kyr By. Let f € KP Fj. then the generalised triangle inequality yields
that

- 1/B
(2l 501

g\ /B
oo oo P
-2 (£ 2 tarmly)
=0 [

I/p

N

o o p/B
2 okap (2 JsP HAijka;)

k=—oo0
1/p

N

o 1/B
Z 2]{0{[7 (Z 2]5[3 }A f|ﬁxk>

k=—o0 /7
q

‘—>K 7PB\

Conversely, when 8 < max (p,q), we have K,f‘pFé — K PFS ()

] max(p,q)
This completes that

SOLD IS 0L D DS
K, FBqKq BmaX(ﬁ,p’q)'

Concerning the left-hand embedding of (5.3). We first consider f < mln(p q); thus
the left-hand embedding of (5.3) reduces to Ky " By — K;P Fj.Let f € K;P By, then

the generalised triangle inequality yields that

N N 1/B »\ U/p
5 2 (E2 sl
k=—oo j=0 .
T p/B\ /P
= | X ||Z 2
k= li=0 a/P
p/B\ /P
<( 5 (Blrmmnaral,,)
g/p\ VB
(5L bormral)
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/B

o - B/p
_ 22./’.¥ﬁ< 2 zkaPHAjkaHZ>

j=0 k= —oo

< ch | KJ""Bj

Now let B > min(p,q). From the case B < min(p,q) we immediately obtain the

embeddings K "B, K" Fyin ) < K" Fj . This completes the proof. [

REMARK 5.4. Theorem 5.1 when oo =0, p =g generalizes the corresponding
results on Besov and Triebel-Lizorkin spaces established in [17], Section 2.3.

THEOREM 5.5. (i) Let s € R,0 < p,q, < e and o« > —n/q. The Herz-type

Besov space K,f‘ o’ Bi3 is a quasi-Banach space. Furthermore,

S(R") = K¢PBYy — 7" (R"). (5.6)

If0<p,q,B <e,s €R and a > —n/q, then .7 (R") is dense in K;"pBE.
(ii) Let s e R,0< p,q < 0,0 < B < oo and o > —n/q. The Herz-type Triebel-Lizorkin
space K,}x b FB‘ is a quasi-Banach space. Furthermore,

S (R") — KEPFy — 5 (R"). (5.7)

If seR,0< p,q,B <o and o0 > —n/q, then ./ (R") is dense in Kg’ng.

Proof. The proof of the left-hand embedding of (5.7) and the density of . (R") in
K,f‘ o’ Fg are given in [22, Theorem 4.2] (a similar argument is valid to prove the density

of S (R") in K7 Bj;) and then Theorem 5.1(ii) and the right-hand embedding of (5.3)
yield the left-hand embedding of (5.6). Now we prove that

KPS, < ' (RM).
Let {(pj}j cry, be the smooth dyadic resolution of unity. We put @; = Zij{f} @; if

j=1,2,... (with ¢_; =0). If f € K;""BS, and y € .Z(R"), then f(y) denotes the
value of the functional f of .%/(R") for the test function y. We obtain

LW < DA (F o) = 3 ||Aif - (F o= w) ||,
j=0 Jj=0
ad a—1 z 0,1
A RERRI il
j=0
Recalling the definition of K? )1 spaces, this sum can be rewritten as

> X aif- 7 oy,

j=0k=—oo
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<Y Y s A F el

j=0k=—c0x€B(0,2¥)

We divide the last sum into two parts

o —j1

DI

J=0k=—oo J=0k=—j
Lemma 3.3, gives forany 0 <d < 1/max(1/q,1/q+ o/n) andany N >n/d—n/q— o

o —j—1

S X s (4] |5 o

j=0k=—00x€B(0,277)

o —j—1

<3 S 20 s | K |7 o
Jj=0k=—0c0
o —j—1
<ellf KB S 2 | gy
J=0k=—co

<ellr | kgrse||w st

Using again Lemma 3.3, we have forany 0 < d < 1/max(1/¢,1/q+ a/n)

> Y sw (A7 ey ud),
j=0k=—jx€B(0,2%)

oo

S e R
J ==J

< ellf KB B2 3 20 5 eyl
k=—j

<cl|lfIKSPBL, HHW|Kn/d n/g—al n/d |

Consequently

IF (W)l

CHf | Ka’sz HmaX<HW ‘ Boc+n/q s n/d—n/q—o,1 n/d—s

).

. From this and the

H VK
By our assumption on d we have . (R") — K"/d n/a-el "/dﬂ‘
embedding . (R") — B‘H"/ 77" we obtain

)| <cpylw)||f | KEPBL]|.

This proves that 1‘(;‘ "’BS_ is continuously embedded in .#’/(R"). Hence the right-hand
embeddings of (5.6) and (5.7) are proved in view of the embeddings (5.3). [
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We next consider embeddings of Sobolev-type. It is well-known that

B2, < B! F%2 s F

a.B s.pr Tae 5B (5.8)

if s1—n/s=s,—n/q, where 0 < g <s <o (0<g<s< oo for the Triebel-Lizorkin
spaces), s; < sp and 0 < 8 < o (see e.g. [17, Theorem 2.7.1]). In the following theo-
rem we generalize these embeddings to Herz-type Besov and Triebel-Lizorkin spaces.

THEOREM 5.9. Let 0,00,51,520 € R,0 < s,p,q,n,3 <oo,040 > —n/s and op >
—n/q. We suppose that

s1—n/s—oy <sp—n/qg— op. (5.10)
(i) Lt 0<g<s<eoand op 2 0y or 0 <s < qg< oo and
o +n/q>oq+n/s. (5.11)

Then
ng,eB;}z N KsalJB;sl’ (5.12)

where
_frifoo+n/g=o+n/s,s<qorop=0a1,q<s
T \pifoatn/g>oa+n/s,s<qgorop>a,qg<s.

(ii) Let 0 < s,p,q,r < oo and 0 < 3 < oo. We suppose that
wmtn/g=o+n/s, 0<s<g<e

or
ow+n/qg>o+n/s, max(0,015/q) <o < (ay+n/s)r/p—n/q.
Then
KPPF2 — KSO"”FI;I. (5.13)

Proof. (i). Let f € k;‘zf’Bg . Lemmas 3.10 and 3.14 give

HAjf | KSOCMH <c pJ(0a+n/q—n/s—oy)

)

‘A,-f | K;‘Z’e’

where ¢ > 0 is independent of j € Ny. However the desired embedding is an immediate
consequence of this estimate.

(ii). Let f € K;>PFS2. The case ap +n/q= 0y +n/s and s < g can be found
in [22]. The idea of the second case is from [8]. Let so = s» —n/q— 0. Since
0 +n/q> oy +n/s there is some o €]0,1] so that 6 (n/g+ 0p) = oy +n/s. Hence

os+(l—0)so =02+ (1—0)(s2—n/qg— )
>s1—n/s—oy+0(n/qg+a)

= 51-
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Lemma 3.16 gives for any k € Z and x € C;,
|28 @} o, 18
: c . 1-
< {28 @} e || {20} e, me
By Lemma 3.10 we obtain for any x € R”, 0o > 0 and 0 < p,q <
A f ()] < c 2/t ||A; | KPP

Therefore,

{ZSOjAjf(x)}jeNo |€°<,H < CHf | K;‘Z’PFQZH.

on— al/o

Since 1/os=1/q+ and op > oy /0, the Holder inequality gives

2]{0{1

28} e 1],

(227, e | o] 2]

. (e}
[28s8 e 1 -] ]

< 2]{0’0{2

The last expression in ¢, is bounded by

¢ < 252 A / Ko2:P ¢
<efl a1 18520]
<ellf1kprEz|°

) 1] 2

by the embedding K;>" — K;>°" (because of p (0o +n/q) <r(oy+n/s)). O

If oy = =0, p=gq and r = s, Theorem 5.9 reduces to the known results on

g and Fj : see (5.8) (by using the embedding {; — £, in the case of Bj, ; spaces).

Also under the hypothesis of this theorem, we have s; < 7.

Let us prove that (5.10) and (5.11) are necessary. Let ¢ € .(R") be a func-
tion such that supp F¢ C {£ e R":3/4 < |&| < 1}. For x € R” and N € N we put
fv(x) = @(2Vx). First we have ¢ € K- 29 VK" Due to the support properties of the
function ¢ we have for any j € Ny

Aij:{fNa J:N

0, otherwise.

Hence

| 1 &8y

. 1/r
=22 f | K =leN< ) 2k°‘"llfzv%k||§>

k=—oo

_ 1/r
2(sln/-Y)N< 3 2k°‘"||<pxk+zv§>

k=—oo
— olsi—o—n/s)N ||(P ‘ stla"H'
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The same arguments give

o | = 2t g g

|| fiv | KEPE2|| = 262 n/aN || o | kor ||

and
00,0 RS
| 5B

o 2(S2_a2_n/q)N H(p ‘ [‘([7279 H .

If the embeddings (5.12) and (5.13) hold then for any N € N

2(s1—52—a1+a2—n/s+n/q)N < c.

Thus, we conclude that (5.10) must necessarily hold by letting N — —+oo.

Let now y € .%(R") be a function such that supp Fy C {§ e R": || < 1}. For
x€R" and N € Z\N we put fy(x) = w(2Vx). We have y € K2 K" It easy to

see that
. _J S, J=0
Ajfv = { 0, otherwise.

Hence

|1 kB | = [ K| = 2t |y | gear |

The same arguments give

| &0

_ p—(a+n/s)N HW | Ksal’rH
[ fv | KPS| = 27 (tn/aN ||y | g2

and
’ ,0 s
HfN ‘ K;‘Z sz

_ p—(m+n/qN Hw | K;ﬂzﬂH .

If the embeddings (5.12) and (5.13) hold then for any N € Z\N

27(0617062+n/s7n/q)N <ec.

Thus, we conclude that (5.11) must necessarily hold by letting N — —oo.

From Theorem 5.9 and the fact that K° ’SB;; = Bilﬁ and KM FS! = Ffb we imme-
diately arrive at the following result.

THEOREM 5.14. Let ot,s1,50 € R,0 < s5,p,q <oo,51 —n/s <sp—n/q— o and
0<f oo
) foz200<g<s<eoora+n/g=n/sand0<s<q< oo, then

00,0 RS S
Ki"Bg — B,

where
_[sifo+n/g=n/s,s<qora=0,g<s

_{p ifa+n/qg>n/s,s<qgoro>0,qg<s. (5.15)
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(ii) If 0 < s,p,q < oo and o. > 0 such that n/s—n/q < o <n/p—n/q, then
o, s
K PF? — Fsb
Using this result, we have the following useful consequence.

COROLLARY 5.16. Let 51,50 € R,0 < s,p,q < oo,51 —n/s<sp—n/q and 0 <
B < oo. Then
0,5 ps2 S1 oo
Bqﬁ K Bﬁ€—>BI3, 0<g<s<oo.

To prove this it sufficient to take in Theorem 5.14, 8 =s and a = 0. However the
desired embeddings are an immediate consequence of the fact that

5 _ 0, 5 0,5 RS
B2y = KB — K*By

B B-
Let us define

1 _
Gq:I’Z(m—l) and qzmaX(Lq)

By Theorem 5.14, the embedding F 113 — Bqlma (@) and the Sobolev-type embeddings
(5.8), we get

K{PBY — Bl =B, a>0,0,<si<s—a
KO‘I’FI;2<—>F”13<—>Bql, O<a<n/p—n/q,0,<s1<s—0

for any 0 < p,q, < oo (with 0 < p,q < e in the F-case). In addition from the fact
that F,), = LI(R") forany 1 < g < o, we have

Kg’pFl‘;z — LIR"), O<a<n/p—n/qs>a

We further conclude that

1717 < EHAJfo—wa il <e|ri&grsy

and

Iflly < | KgrFy

This shows that under the above assumptions the elements from K7 By and K;'F, 5
are regular distributions.

PROPOSITION 5.17. Let o0 > 0,0 < s,p,g < o0 and 0 < f < oo
(i) If s > o4+ o, then B
K‘”’B;} — LI(R").
(ii) Let 0 < p,g< oo and 0 <o <n/p—n/q. If s>n/g—n+o and 0 < qg< 1 or

s> o and 1 < g < oo, then
Kg’pFﬁ — LI(R™).
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Let C, be the space of all bounded uniformly continuous functions on R” equipped
with the sup norm. Concerning embeddings into C,,, we have the following result.

COROLLARY 5.18. Let 00 >0 and 0 < p,q < oo. Then
Ky OB~ G,

where

0 — o if o0 =0
T\ pifa>0.

Proof. Tt follows from Theorem 5.14 that
0,0 potn
K&-OBIH BY |
Hence the result follows by the embedding Bg,_l — C,, see [17, Proposition2.5.7]. O

The following statement holds by Theorem 5.9 and the fact that f(g ’qB;}Z = B;%ﬁ
and KJ9F52 = F2,.

THEOREM 5.19. Let a,s1,50 € R,0 < s5,q,r <oo,51 —n/s— o < s5—n/q and
0<f,0 <eoo.
) If n/s<a<0,0<g<s<oor —n/s<oa<n/qg—n/s,0<s<q< o, then

B%

>0,0
aB K*“Bg

)
where

_Jaif oa=n/q—n/s,s<qora=0,qg<s
T\ rif-n/s<a<n/q—n/s,s<qor —n/s<o<0,q<s.

(i) Ifa=n/qg—n/5,0<s<g<e0,0<r<eoor 0<s<r<eo,0<g<oon/r—n/s<
o <0and o <n/q—n/s, then

K SO, F 181
Fp2 — KFy'.

Using this result, we obtain:

COROLLARY 5.20. Let 51,50 € R,0 < s,p,q < o081 —n/s<sp—n/qand 0 <
B < 0. Then

By — KBy — By, 0<g<s<eoe.

To prove this it sufficient to take in Theorem 5.19, 6 = ¢ and o = 0. Then the
desired embedding is an immediate consequence of the fact that K ’qB‘;}l — K "YB‘;31 =
BSlﬁ .
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