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NON–ISOTROPIC SINGULAR INTEGRALS AND MAXIMAL

OPERATORS ALONG SURFACES OF REVOLUTION

DASHAN FAN AND HUOXIONG WU

(Communicated by B. Opic)

Abstract. The authors establish the Lp -mapping properties for a class of non-isotropic singular
integrals along surfaces of revolution as well as the related maximal operators, where the integral
kernels are given by functions Ω in L(log+L)α (Σ) .

1. Introduction

Let Rn , n � 2, be the n -dimensional Euclidean space with a non-isotropic dila-
tion. Precisely, let P be an n×n real matrix whose eigenvalues have positive real parts
and let γ = traceP . Define a dilation group {At}t>0 on Rn by At = tP = exp((logt)P) .
There is a non-negative function r on Rn associated with {At}t>0 . The function r is
continuous on Rn and infinitely differentiable in Rn\{0} ; furthermore it satisfies:

(i) r(Atx) = tr(x) , for all t > 0 and x ∈ Rn ;
(ii) r(x+ y) � C(r(x)+ r(y)) for some C > 0;
(iii) if Σ = {x ∈ Rn : r(x) = 1} , then Σ = {θ ∈ Rn : 〈Bθ ,θ 〉 = 1} for a positive

symmetric matrix B , where 〈·, ·〉 denotes the inner product in Rn . And then, the
Lebesgue measure can be written as dx = tγ−1dσdt , that is,∫

Rn
f (x)dx =

∫ ∞

0

∫
Σ

f (Atθ )tγ−1dσ(θ )dt

for appropriate functions f , where dσ is a C∞ measure on Σ . See [4, 9, 12] for more
details.

Let Ω be locally integrable in Rn\{0} and homogeneous of degree 0 with respect
to the dilation group {At} , that is, Ω(Atx) = Ω(x) for x �= 0. We assume that∫

Σ
Ω(θ )dσ(θ ) = 0. (1.1)
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Let L(log+L)α(Σ) (for α > 0) denote the space of all those functions Ω on Σ which
satisfy ∫

Σ
|Ω(θ )|logα(2+ |Ω(θ )|)dσ(θ ) < ∞.

For m ∈ N , let Γ : [0, ∞) −→ Rm be a continuous mapping satisfying Γ(0) = 0,
h : [0, ∞)−→C be a measurable function. We define a singular integral operator along
the surface (y, Γ(r(y)) by

TΩ,Γ,h( f )(x,z) = p.v.

∫
Rn

f (x− y, z−Γ(r(y))KΩ,h(y)dy, (1.2)

where KΩ,h(y) = Ω(y′)r(y)γh(r(y)) , y′ = Ar(y)−1y . We assume that the principal value
integral in (1.2) exists for every (x, z) ∈ Rn ×Rm = Rn+m and f ∈ S (Rn ×Rm) (the
Schwartz class).

For Γ ≡ 0, the operator TΩ,Γ,h essentially reduces to the following lower dimen-
sional non-isotropic singular integral

S( f )(x) = p.v.

∫
Rn

f (x− y)KΩ,h(y)dy.

The early study on the non-isotropic singular integral operator S can be found in Stein
and Wainger’s work [13] and Riviere’s work [9] for h≡ 1. Subsequently, Duoandikoetxea
and Rubio de Francia [7] showed that S is bounded on Lp(Rn) for 1 < p < ∞ , provided
that Ω ∈ Lq(Σ) for some q > 1 and h ∈ Δ2(R+) , where, for ν > 1, Δν(R+) denotes
the set of all measurable functions h on R+ satisfying the condition

sup
R>0

(
R−1

∫ R

0
|h(t)|νdt

)1/ν
< ∞,

and Δ∞(R+) = L∞(R+) . It is easy to show Δ∞(R+) ⊂ Δν2(R+) ⊂ Δν1(R+) , which are
proper inclusions, for ν1 < ν2 < ∞ . Recently, S. Sato [10] improved the above result to
the case Ω ∈ Llog+L(Σ) and h ∈ La , which is more general than Δν(R+) for ν > 1
(see [10, Theorem 4] for the details). Furthermore, for the general mapping Γ , S. Sato
[10] established the following:

THEOREM A. Let TΩ,Γ,h be given by (1.2) . Suppose that Ω ∈ Llog+L(Σ) and
h ∈ Δν(R+) for some ν > 1 . Then TΩ,Γ,h is bounded on Lp(Rn+m) provided that the
maximal operator MΓ given by

MΓg(z) = sup
R>0

R−1
∫ R

0
|g(z−Γ(t))|dt (1.3)

is bounded on Lq(Rm) for all q > 1 and |1/p−1/2|< min{1/ν ′, 1/2} , where 1/ν +
1/ν ′ = 1 .

Clearly, the range of p given in Theorem A is the full range (1, ∞) when ν � 2.
However, the range of p becomes a tiny open interval around 2 as ν approaches 1. It
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is natural to ask whether the Lp -boundedness of TΩ,Γ,h holds for p outside the range
|1/p−1/2|< min{1/2, 1/ν ′} for 1 < ν < 2.

In this paper we will focus on the solution of the above question. By imposing a
more restrictive condition on h , we obtain a affirmative answer. Precisely, for ν > 1,
we define Hν(R+) to be the set of all measurable function h on R+ satisfying the
condition

‖h‖Hν(R+) := ‖h‖Lν(R+,t−1dt) =
(∫

R+
|h(t)|ν t−1dt

)1/ν
< ∞,

and define H∞(R+) = L∞(R+,t−1dt) . It is easy to see that H∞(R+) = Δ∞(R+) , and
Hν (R+) ⊂ Δν (R+) , which is a proper inclusion, for 1 < ν < ∞ . We will establish the
following

THEOREM 1.1. Let TΩ,Γ,h be given by (1.2) and MΓ given by (1.3) . Suppose
that MΓ is bounded on Lq(Rm) for all q > 1 , h ∈ Hν(R+) for some 1 < ν � ∞
and Ω ∈ L(log+L)1/ν ′

(Σ) satisfying (1.1) . Then TΩ,Γ,h is bounded on Lp(Rn+m) for
1 < p < ∞ .

REMARK 1.1. Notice that L(log+L)α (Σ)⊂ L(log+L)β (Σ) for 0 < β < α , which
is proper, the condition on Ω in Theorem 1.1 is much weaker than those in Theorem
A, and the range of p in Theorem 1.1 is extended to the full range (1, ∞) .

REMARK 1.2. We remark that such functions Γ satisfying the condition in The-
orem 1.1 exist. See [11, 12] for examples. When r(x) = |x| (the Euclidean norm),
m = 1 and Γ is a C2 , convex and increasing function satisfying Γ(0) = 0, Theorem
1.1 was proved by Al-Qassem (see [2, Theorem 1.3]). And the corresponding result
for h ∈ Δν(R+) (ν > 1) and Ω ∈ Llog+L(Σ) was proved by Al-Salman and Pan (see
[3, Theorem 4.1]). Therefore, our result is also the generalization of Al-Qassem [2],
Al-Salman and Pan [3], even in the case r(x) = |x| .

To prove Theorem 1.1, we will use the following Lp -mapping properties of the

related maximal operator M
(ν)
Ω,Γ given by

M
(ν)
Ω,Γ f (x,z) = sup

‖h‖Hν (R+)�1

∣∣TΩ,Γ,h(x,z)
∣∣ . (1.4)

THEOREM 1.2. Let M
(ν)
Ω,Γ , MΓ be as above. Suppose that MΓ is bounded on

Lq(Rm) for all q > 1 , Ω∈L(log+L)1/ν ′
(Σ) and satisfies (1.1) . Then M

(ν)
Ω,Γ is bounded

on Lp(Rn+m) for ν ′ � p< ∞ and 1 < ν � 2 , and it is bounded on L∞(Rn+m) for ν = 1 .

REMARK 1.3. Theorem 1.2 has itself interesting. In the case of Euclidean norm,

the study of the maximal operator M
(ν)
Ω,Γ began by Chen and Lin in [5], and subse-

quently by many other authors [2, 6, 8]. It is still an open problem whether the Lp -

boundedness of M
(ν)
Ω,Γ holds for 2 < ν < ∞ , even for the case m = 1 and Γ ≡ 0.

This paper is organized as follows. At first we will give some preliminary lemmas
in Section 2. Then the proof of Theorem 1.2 will be given in Section 3. Finally, we will
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prove Theorem 1.1 in Section 4. We remark that some ideas of our arguments are taken
from [2, 10], but we must establish some non-trivial estimates by new techniques.

Throughout this paper, we always use the letter C to denote positive constants that
may vary at each occurrence but are independent of the essential variables.

2. Preliminary lemmas

Following the notation in [10], let P∗ denote the adjoint of the matrix P . Then
A∗

t = exp((logt)P∗) . We write A∗
t = Bt . We can define a non-negative function s from

{Bt} exactly in the same way as we define r from {At} .
We will use the following estimates (see [12]):

c1|x|α1 < r(x) < c2|x|α2 , if r(x) � 1, (2.1)

c3|x|β1 < r(x) < c2|x|β2 , if 0 < r(x) � 1; (2.2)

and
d1|ξ |a1 < s(ξ ) < d2|ξ |a2 , if s(ξ ) � 1, (2.3)

d3|ξ |b1 < s(ξ ) < d4|ξ |b2 , if 0 < s(ξ ) � 1, (2.4)

where c j, d j ( j = 1, 2, 3, 4), αk, βk, ak, bk (k = 1, 2) are positive constants.

LEMMA 2.1. (cf. [10]) Let L be the degree of the minimal polynomial of P.
Then, for η ,ζ ∈ Rn\{0} , we have∣∣∣∣∫ 2

1
exp(i〈Btη ,ζ 〉)t−1dt

∣∣∣∣� C |〈η , Pζ 〉|−1/L

for some positive constant C independent of η and ζ .

Let Ω ∈ L(logL)α (Σ) for α > 0 and satisfy (1.1). Following the notation in [1],
let Ek := {x′ ∈ Σ : 2k � |Ω(x′)|< 2k+1} for k ∈ N and let E0 := {x′ ∈ Σ : |Ω(x′)|< 2} .
Set Λ := {k ∈ N : σ(Ek) > 2−4k} , and for k � 1,

Ωk(x′) = Ω(x′)χEk(x
′)−σ(Σ)−1

∫
Ek

Ω(x′)dσ(x′),

and Ω0(x′) = Ω(x′)−∑k∈Λ Ωk(x′) . It is easy to check that∫
Σ

Ωk(x′)dσ(x′) = 0, k � 0, (2.5)

‖Ωk‖L1(Σ) � 2‖ΩχEk‖L1(Σ) := 2Gk, k ∈ Λ, (2.6)

‖Ω0‖L1(Σ) � C‖Ω0‖L2(Σ) � C, (2.7)

Ω(x′) = ∑
k∈Λ∪{0}

Ωk(x′), (2.8)
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∑
k∈Λ∪{0}

(k+1)αGk � C‖Ω‖L(logL)α (Σ) for any α > 0, (2.9)

where Gk := ‖ΩχEk‖L1(Σ) for k ∈ Λ and G0 = 1.
For each Ωk , k ∈ Λ∪{0} , we define a sequence of Borel measures {τk, j : j ∈ Z}

on Rn+m by

τ̂k, j(ξ ,η) =
∫

Dk, j

e−2π i[y·ξ+Γ(r(y))·η]Ωk(y′)h(r(y))r(y)−γ dy,

where Dk, j = {x∈Rn : 2(k+1) j < r(x) � 2(k+1)( j+1)} , τ̂k, j denotes the Fourier transform
of τk, j defined by τ̂k, j(ξ ,η) =

∫
e−2π i[x·ξ+z·η]dτk, j(x,z) . Here and below, the notation

u · v denotes the inner product of u and v in Rn or Rm . Then

TΩ,Γ,h( f )(x,z) = ∑
k∈Λ∪{0}

∑
j∈Z

τk, j ∗ f (x,z) := ∑
k∈Λ∪{0}

TΩk,Γ,h( f )(x,z). (2.10)

Also, we define the maximal function τ∗Γ,k by

τ∗Γ,k( f )(x,z) = sup
j∈Z

∣∣|τk, j| ∗ f (x,z)
∣∣ ,

where |τk, j| is defined by

̂|τk, j|(ξ ,η) =
∫

Dk, j

e−2π i[ξ ·y+η·Γ(r(y))]|Ωk(y′)h(r(y))|r(y)−γ dy.

In what follows, we will establish some lemmas, which will play key roles in the proofs
of our main theorems.

LEMMA 2.2. Let k ∈ Λ∪{0} , Ωk be as above. For j ∈ Z , define

λk, j(ξ ,η) =

(∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
Ωk(y′)e−2π i[ξ ·Ary′+η·Γ(r)]dσ(y′)

∣∣∣∣2 dr
r

)1/2

.

Then for every (ξ ,η) ∈ Rn+m , there exists a positive number δ > 0 such that

∣∣λk, j(ξ ,η)
∣∣� C(k+1)1/2Gk min

{[
2(k+1) js(ξ )

]δ/(k+1)
,
[
2(k+1) js(ξ )

]−δ/(k+1)
}

.

(2.11)

Proof. By the definition, it is easy to see that∣∣λk, j(ξ ,η)
∣∣� C(k+1)1/2Gk. (2.12)
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On the other hand, it follows from the cancellation condition (2.5) of Ωk and a change
of variables that

∣∣λk, j(ξ ,η)
∣∣ �

(∫ 2k+1

1

(∫
Σ

∣∣∣e−2π i[A
2(k+1) jr

y′·ξ+Γ(2(k+1) jr)·η] − e−2π iΓ(2(k+1) jr)·η
∣∣∣

× |Ωk(y′)|dσ(y′))2 dr
r

)1/2

� C

(∫ 2k+1

1

∣∣∣∣∫Σ
|Ary

′||B2(k+1) j ξ ||Ωk(y′)|dσ(y′)
)2 dr

r

)1/2

.

Note that |Ary′| = |y| and the estimates (2.1)–(2.4), there are two positive constants α1

and α2 such that

|Ary
′| � Crα1 and

∣∣B2(k+1) j ξ
∣∣� C

[
2(k+1) js(ξ )

]α2
. (2.13)

Therefore,

∣∣λk, j(ξ ,η)
∣∣ � C||Ωk‖L1(Σ)

[
2(k+1) js(ξ )

]α2

(∫ 2k+1

1
r2α1

dr
r

)1/2

� CGk(k+1)1/22(k+1)α1

[
2(k+1) js(ξ )

]α2
.

(2.14)

Interpolating between (2.12) and (2.14), we get

∣∣λk, j(ξ ,η)
∣∣� C(k+1)1/2Gk

[
2(k+1) js(ξ )

]α2/(k+1)
. (2.15)

It remains to prove the second estimate. Notice that∣∣∣∣∫Σ
Ωk(y′)e

−2π i[A
2(k+1) j r

y′·ξ+Γ(2(k+1) jr)·η]dσ(y′)
∣∣∣∣2

=
∫

Σ×Σ
Ωk(y′)Ωk(u′)e

−2π i(y′−u′)·B
2(k+1) j r

ξ dσ(y′)dσ(u′),
(2.16)

which implies

∣∣λk, j(ξ ,η)
∣∣2 =

∫
Σ×Σ

Ωk(y′)Ωk(u′)

(∫ 2k+1

1
e−2π i(y′−u′)·B

2(k+1) j r
ξ dr

r

)
dσ(y′)dσ(u′)

=
k

∑
l=0

∫
Σ×Σ

Ωk(y′)Ωk(u′)
(∫ 2

1
e−2π i(y′−u′)·B

2(k+1) j2l r
ξ dr

r

)
dσ(y′)dσ(u′).

By Lemma 2.1, we have∣∣∣∣∫ 2

1
e−2π i(y′−u′)·B

2(k+1) j2l r
ξ dr

r

∣∣∣∣� C
∣∣P(y′ −u′) ·B2(k+1) j2l ξ

∣∣−ε
,
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where 0 < ε � 1/L , and L is the degree of the minimal polynomial of P . Using
Hölder’s inequality, if 0 < ε < min{1/4, 1/L} , we get∫ ∫

Σ×Σ
|Ωk(y′)Ωk(u′)|

∣∣P(y′ −u′) ·B2(k+1) j2l ξ
∣∣−ε

dσ(y′)dσ(u′)

�
(∫ ∫

Σ×Σ

∣∣(y′ −u′) ·P∗B2(k+1) j2l ξ
∣∣−2ε

dσ(y′)dσ(u′)
)1/2

‖Ωk‖2
2

� C‖Ωk‖2
2

∣∣B2(k+1) j2l ξ
∣∣−ε

,

where the last inequality follows from [7, p.533] (also see [10, the proof of Lemma 1]).
Therefore∣∣λk, j(ξ ,η)

∣∣2 � C‖Ωk‖2
2

k

∑
l=0

∣∣B2(k+1) j2l ξ
∣∣−ε (0 < ε < min{1/4,1/L}).

By (2.3) and (2.4), there exists a positive number ε0 > 0 such that∣∣B2(k+1) j2l ξ
∣∣� C

[
2(k+1) j2ls(ξ )

]ε0
, l = 0, 1, · · ·k,

which leads to
k

∑
l=0

∣∣B2(k+1) j2l ξ
∣∣−ε �

k

∑
l=0

C
[
2(k+1) j2ls(ξ )

]−εε0 � C(k+1)
[
2(k+1) js(ξ )

]−εε0
.

Consequently, ∣∣λk, j(ξ ,η)
∣∣� C(k+1)1/2‖Ωk‖2

[
2(k+1) js(ξ )

]−εε0/2
.

Recall ‖Ω0‖2 � C = CG0 , and for k ∈ Λ , Gk � C2kσ(Ek) � C2−3k , we have

‖Ωk‖2 � C2k+1σ(Ek)1/2 � C22(k+1)Gk.

Thus, ∣∣λk, j(ξ ,η)
∣∣� C(k+1)1/222(k+1)Gk

[
2(k+1) js(ξ )

]−εε0/2
.

This together with (2.12) and an application of interpolation theorem implies∣∣λk, j(ξ ,η)
∣∣� C(k+1)1/2Gk

[
2(k+1) js(ξ )

]−εε0/2(k+1)

and completes the proof of Lemma 2.2. �

REMARK 2.1. Define

λ̃k, j(ξ ,η) =

(∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
|Ωk(y′)|e−2π i[ξ ·Ary′+η·Γ(r)]dσ(y′)

∣∣∣∣2 dr
r

)1/2

.

Then by the same arguments as those used in the proof of Lemma 2.2, we can get∣∣∣λ̃k, j(ξ ,η)
∣∣∣� CGk(k+1)1/2 min

{
1,
[
2(k+1) js(ξ )

]−δ/(k+1)
}

with δ as in (2.11).
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LEMMA 2.3. Let k ∈ Λ∪{0} , h ∈ Hν (R+) for some ν > 1 . Then, for every
(ξ ,η) ∈ Rn+m , there exists δ > 0 such that

|τ̂k, j(ξ ,η)| � C(k+1)1/ν ′
Gk min

{[
2(k+1) js(ξ )

]δ/ν ′(k+1)
,
[
2(k+1) js(ξ )

]−δ/ν ′(k+1)
}

,

(2.17)∣∣∣̂|τk, j|(ξ ,η)
∣∣∣� C(k+1)1/ν ′

Gk min

{
1,
[
2(k+1) js(ξ )

]−δ/ν ′(k+1)
}

, (2.18)

∣∣∣̂|τk, j|(ξ ,η)− |̂τk, j|(0,η)
∣∣∣� C(k+1)1/ν ′

Gk

[
2(k+1) js(ξ )

]δ/ν ′(k+1)
. (2.19)

Proof. At first, we will prove (2.17). By the definition of τ̂k, j and the Hölder
inequality, we have

∣∣τ̂k, j(ξ ,η)
∣∣ �

∫ 2(k+1)( j+1)

2(k+1) j
|h(r)|

∣∣∣∣∫Σ
Ωk(y′)e−2π i[ξ ·Ary′+η·Γ(r)]dσ(y′)

∣∣∣∣ dr
r

�
(∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
Ωk(y′)e−2π i[ξ ·Ary′+η·Γ(r)]dσ(y′)

∣∣∣∣ν ′
dr
r

)1/ν ′

×
(∫ 2(k+1)( j+1)

2(k+1) j
|h(r)|ν dr

r

)1/ν

� C

(∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
Ωk(y′)e−2π i[ξ ·Ary′+η·Γ(r)]dσ(y′)

∣∣∣∣ν ′
dr
r

)1/ν ′

.

In what follows, we will consider cases: 2 � ν ′ < ∞ and 1 < ν ′ < 2, respectively. If
2 � ν ′ < ∞ , then

∣∣τ̂k, j(ξ ,η)
∣∣ � C‖Ωk‖1−2/ν ′

1

(∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
Ωk(y′)e−2π i[ξ ·Ary′+η·Γ(r)]dσ(y′)

∣∣∣∣2 dr
r

)1/ν ′

� CG1−2/ν ′
k

∣∣λk, j(ξ ,η)
∣∣2/ν ′

.
(2.20)

If 1 < ν ′ < 2, then, by Hölder’s inequality, we get

∣∣τ̂k, j(ξ ,η)
∣∣ �

(∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
Ωk(y′)e−2π i[ξ ·Ary′+η·Γ(r)]dσ(y′)

∣∣∣∣2 dr
r

)1/2

×
(∫ 2(k+1)( j+1)

2(k+1) j

dr
r

)1/ν ′−1/2

= (k+1)1/ν ′−1/2
∣∣λk, j(ξ ,η)

∣∣ .
(2.21)

Thus, (2.17) follows from (2.20)–(2.21) and (2.11).
Similarly, by Remark 2.1, we can get (2.18).
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It remains to prove (2.19). By Hölder’s inequality, it is easy to see that

∣∣τ̂k, j(ξ ,η)− τ̂k, j(0,η)
∣∣ � ‖h‖Lν(R+,r−1dr)‖Ωk‖1

(∫ 2(k+1)( j+1)

2(k+1) j

dr
r

)1/ν ′

� C(k+1)1/ν ′
Gk.

(2.22)

On the other hand, we have∣∣τ̂k, j(ξ ,η)− τ̂k, j(0,η)
∣∣

�
(∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
|Ωk(y′)|e−2π iη·Γ(r)

[
e−2π iξ ·Ary′ −1

]
dσ(y′)

∣∣∣∣ν ′
dr
r

)1/ν ′

�
(∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
|Ωk(y′)|

∣∣∣e−2π iξ ·Ary′ −1
∣∣∣dσ(y′)

∣∣∣∣ν ′
dr
r

)1/ν ′

�
(∫ 2k+1

1

∣∣∣∣∫Σ
|Ωk(y′)|

∣∣∣e−2π iAry′·B2(k+1) j ξ −1
∣∣∣dσ(y′)

∣∣∣∣ν ′
dr
r

)1/ν ′

� C

(∫ 2k+1

1

∣∣∣∣∫Σ
|Ωk(y′)||Ary

′| ∣∣B2(k+1) jξ
∣∣dσ(y′)

∣∣∣∣ν ′
dr
r

)1/ν ′

.

Invoking (2.13) leads to

∣∣τ̂k, j(ξ ,η)− τ̂k, j(0,η)
∣∣ � C

(∫ 2k+1

1

∣∣∣∣∫Σ
|Ωk(y′)|rα1

[
2(k+1) js(ξ )

]α2
dσ(y′)

∣∣∣∣ν ′
dr
r

)1/ν ′

� C‖Ωk‖1

[
2(k+1) js(ξ )

]α2

(∫ 2k+1

1
rν ′α2

dr
r

)1/ν ′

� CGk(k+1)1/ν ′
2(k+1)α1

[
2(k+1) js(ξ )

]α2
.

This together with (2.22) implies (2.19) and completes the proof of Lemma 2.3. �

LEMMA 2.4. Let k ∈ Λ∪ {0} , h ∈ Hν (R+) for some ν > 1 . If MΓ given by
(1.3) is bounded on Lq(Rm) for all q > 1 , then, for ν ′ < p � ∞ ,∥∥τ∗Γ,k( f )

∥∥
Lp(Rn+m) � C(k+1)1/ν ′

Gk‖ f‖Lp(Rn+m).

Proof. Let ∫
Rn+m

f dμk, j =
∫

Dk, j

Ωk(y′) f (y, Γ(r(y))r(y)−γ dy,

and μ∗
Γ,k( f )(x,z) = sup j∈Z

∣∣|μk, j| ∗ f (x,z)
∣∣ . Then by Hölder’s inequality,

τ∗Γ,k( f )(x,z) �
(∫

Ik, j
|h(r)|ν dr

r

)1/ν
G1/ν

k

(
μ∗

Γ,k(| f |ν
′
)(x,z)

)1/ν ′

� CG1/ν
k

(
μ∗

Γ,k(| f |ν
′
)(x,z)

)1/ν ′
.
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Also, by Lemma 2.3’s (2.18) and (2.19) (invoking the results of the case ν ′ = 1) and
the same arguments as those used in the proof of Proposition 3’s (1) in [10], it is easy
to show that ∥∥μ∗

Γ,k( f )
∥∥

Lp(Rn+m) � C(k+1)Gk‖ f‖Lp(Rn+m), 1 < p � ∞. (2.23)

Therefore, for ν ′ < p � ∞ , we get

‖τ∗Γ,k( f )‖Lp(Rn+m) � CG1/ν
k

∥∥∥μ∗
Γ,k(| f |ν

′
)
∥∥∥1/ν ′

Lp/ν′ (Rn+m)
� C(k+1)1/ν ′

Gk‖ f‖Lp(Rn+m),

and completes the proof of Lemma 2.4. �

LEMMA 2.5. Let k ∈ Λ∪{0} and h ∈ Hν (R+) for some ν � 2 . Suppose that
MΓ is bounded on Lq(Rm) for all q > 1 . Then, for ν ′ < p < ∞ , there exists a positive
constant Cp which is independent of k such that∥∥∥∥∥∥

(
∑
j∈Z

∣∣τk, j ∗ g j
∣∣2)1/2

∥∥∥∥∥∥
Lp(Rn+m)

� Cp(k+1)1/ν ′
Gk

∥∥∥∥∥∥
(

∑
j∈Z

|g j|2
)1/2

∥∥∥∥∥∥
Lp(Rn+m)

holds for arbitrary measurable functions {g j} on Rn+m .

Proof. Following the proof of Lemma 2.6 in [2], let ν ′ < p < ∞ , by Hölder’s
inequality and the condition on h , we get

∣∣τk, j ∗ gk(x,z)
∣∣ν ′

� CGν ′−1
k

∫ 2(k+1)( j+1)

2(k+1) j

∫
Σ
|Ωk(y′)||g j(x−Ary

′,z−Γ(r))|ν ′
dσ(y′)

dr
r

.

Let d = p/ν ′ . For {g j} ∈ Ld(Rn+m, l2) , by duality, there exists a nonnegative function
w ∈ Ld′(Rn+m) such that ‖w‖Ld′ � 1 and∥∥∥∥∥∥

(
∑
j∈Z

|τk, j ∗ gk|ν ′
)1/ν ′∥∥∥∥∥∥

ν ′

p

=
∫

Rn+m
∑
j∈Z

|τk, j ∗ g j(x,z)|ν ′
w(x,z)dxdz.

This together with a change of variables yields∥∥∥∥∥∥
(

∑
j∈Z

|τk, j ∗ g j|ν ′
)1/ν ′∥∥∥∥∥∥

ν ′

p

� CGν ′−1
k

∫
Rn+m

∑
j∈Z

|gk(x,z)|ν ′
μ∗

Γ,k(w̃)(−x,−z)dxdz,

where w̃(x,z) = w(−x,−z) , μ∗
Γ,k is as in the proof of Lemma 2.4. By the Ld′ -boun-

dedness of μ∗
Γ,k and Hölder’s inequality, we obtain∥∥∥∥∥∥

(
∑
j∈Z

|τk, j ∗ g j|ν ′
)1/ν ′∥∥∥∥∥∥

p

� C(k+1)1/ν ′
Gk

∥∥∥∥∥∥
(

∑
j∈Z

|g j|ν ′
)1/ν ′∥∥∥∥∥∥

p

. (2.24)
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Moreover, by Lemma 2.4, we have∥∥∥∥∥sup
j∈Z

|τk, j ∗ g j|
∥∥∥∥∥

p

�
∥∥∥∥∥τ∗Γ,k

(
sup
j∈Z

|g j|
)∥∥∥∥∥

p

� C(k+1)1/ν ′
Gk

∥∥∥∥∥
(

sup
j∈Z

|g j|
)∥∥∥∥∥

p

. (2.25)

Note that ν ′ ∈ [1, 2] , interpolating between (2.24) and (2.25), we complete the proof of
Lemma 2.5. �

3. Proof of Theorem 1.2

Our arguments are similar to those in the proof of Theorem 1.6 of [2]. By (2.8),

we have M
(ν)
Γ,Ω( f )(x,z) � ∑k∈Λ∪{0}M

(ν)
Γ,Ωk

( f )(x,z) , where M
(ν)
Γ,Ωk

is defined as in (1.4)
only replaced Ω by Ωk . Hence, by (2.9), to prove Theorem 1.2, it suffices to show that∥∥∥M (ν)

Γ,Ωk
( f )
∥∥∥

p
� C(k+1)1/ν ′

Gk‖ f‖p (3.1)

holds for ν ′ � p < ∞ if 1 < ν � 2 and for p = ∞ if ν = 1. We will consider the
following three cases.

Case 1 (ν = 2). By duality, we have

M
(2)
Γ,Ωk

( f )(x,z) = sup
‖h‖H2(R+)�1

∣∣∣∣∫ ∞

0
h(r)

∫
Σ

Ωk(y′) f (x−Ary
′,z−Γ(r))dσ(y′)

dr
r

∣∣∣∣
�
(∫ ∞

0

∣∣∣∣∫Σ
Ωk(y′) f (x−Ary

′,z−Γ(r))dσ(y′)
∣∣∣∣2 dr

r

)1/2

=

(
∑
j∈Z

∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∫Σ
Ωk(y′) f (x−Ary

′,z−Γ(r))dσ(y′)
∣∣∣∣2 dr

r

)1/2

.

Let {ψk, j}∞
∞ be a sequence in C∞((0, ∞)) such that

supp(ψk, j) ⊂ [2(k+1)(− j−1), 2(k+1)(− j+1)], ∑
j∈Z

ψk, j(r) = 1,

∣∣∣(d/dr)lψk, j(r)
∣∣∣� Cl/rl, (l = 1,2, · · ·),

where Cl is independent of k . Define the multiplier operators Sk, j in Rn+m by

Ŝk, j( f )(ξ ,η) = ψk, j(s(ξ )) f̂ (ξ ,η) for (ξ ,η) ∈ Rn+m. (3.2)

Then for any f ∈ S (Rn+m) and j ∈ Z , we have f (x,z) = ∑ j Sk, j+l( f )(x,z) . Thus, by



472 DASHAN FAN AND HUOXIONG WU

(3.2) and Minkowski’s inequality, we get

M
(2)
Γ,Ωk

( f )(x,z) �

⎛⎝∑
∈Z

∫ 2(k+1)( j+1)

2(k+1) j

∣∣∣∣∣∑l∈Z

Hk, j+l,r( f )(x,z)

∣∣∣∣∣
2
dr
r

⎞⎠1/2

� ∑
l∈Z

(
∑
j∈Z

∫ 2(k+1)( j+1)

2(k+1) j
|Hk, j+l,r( f )(x,z)|2 dr

r

)1/2

:= ∑
l∈Z

Tk,l( f )(x,z),

(3.3)

where

Hk,l,r( f )(x,z) =
∫

Σ
Sk,l( f )(x−Ary

′,z−Γ(r))Ωk(y′)dσ(y′),

Tk,l( f )(x,z) =

(
∑
j∈Z

∫ 2(k+1)( j+1)

2(k+1) j
|Hk, j+l,r( f )(x,z)|2 dr

r

)1/2

.

Thus, to prove (3.1) for ν = 2, it suffices to show∥∥Tk,l( f )
∥∥

Lp(Rn+m) � C(k+1)1/22−θ |l|Gk‖ f‖Lp(Rn+m) (3.4)

for some positive number θ and for all 2 � p < ∞ .
By Plancherel’s theorem and Lemma 2.2, we have

‖Tk,l( f )‖2
2 =

∫
Rn+m

∑
j∈Z

∫ 2(k+1)( j+1)

2(k+1) j
|Hk, j+l,r( f )(x,z)|2 dr

r
dxdz

= ∑
j∈Z

∫ 2(k+1)( j+1)

2(k+1) j

∫
Rn+m

∣∣∣Ĥk, j+l,r( f )(ξ ,η)
∣∣∣2 dξdη

dr
r

= ∑
j∈Z

∫
Rn+m

∣∣∣Ŝk, j+l( f )(ξ ,η)
∣∣∣2 ∣∣λk, j(ξ ,η)

∣∣2 dξdη

� ∑
j∈Z

∫
Rm

∫
D̃k, j+l

|λ̂k, j(ξ ,η)|2| f̂ (ξ ,η)|2dξdη

� C(k+1)2−2δ |l|G2
k ∑

j∈Z

∫
Rm

∫
D̃k, j+l

| f̂ (ξ ,η)|2dξdη ,

where

D̃k, j = {ξ ∈ Rn : 2(k+1)(− j−1) � s(ξ ) � 2(k+1)(− j+1)}. (3.5)

Noting that D̃k, j ’s are finitely overlapping, we get

‖Tk,l( f )‖2 � C(k+1)1/2Gk2
−δ |l|‖ f‖2. (3.6)

On the other hand, by duality, for p > 2, there exists a function g∈ L(p/2)′(Rn+m)
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with ‖g‖(p/2)′ � 1 such that

‖Tk,l( f )‖2
p = ∑

j∈Z

∫
Rn+m

∫ 2(k+1)( j+1)

2(k+1) j
|Hk, j+l,r( f )(x,z)|2 dr

r
|g(x,z)|dxdz

� ‖Ωk‖1 ∑
j∈Z

∫
Rn+m

∫ 2(k+1)( j+1)

2(k+1) j

∫
Σ
|Ωk(y′)||g(x+Ary

′,z+ Γ(r))|

× ∣∣Sk, j+l( f )(x,z)
∣∣2 dσ(y′) dr

r dxdz

� CGk ∑
j∈Z

∫
Rn+m

∣∣Sk, j+l( f )(x,z)
∣∣2 μ∗

Γ,k(g̃)(−x,−z)dxdz

� CGk

∥∥∥∥∥∑
j∈Z

|Sk, j+l( f )|2
∥∥∥∥∥

(p/2)

‖μ∗
Γ,k(g̃)‖(p/2)′,

where g̃(x,z) = g(−x,−z) . Therefore, by (2.23) and the Littlewood-Paley theory, we
have

‖Tk,l( f )‖p � C(k+1)1/2Gk‖ f‖p for 2 � p < ∞. (3.7)

Consequently, (3.4) follows from the interpolation between (3.5) and (3.7). This com-
pletes the proof of (3.1) for ν = 2.

Case 2 (ν = 1). For f ∈ L∞(Rn+m) and h ∈ H1(R+) , we have

∣∣TΓ,Ωk ,h( f )(x,z)
∣∣ =

∣∣∣∣∫ ∞

0
h(r)

∫
Σ

Ωk(y′) f (x−Ary
′,z−Γ(r))dσ(y′)

dr
r

∣∣∣∣
� CGk‖h‖H1(R+)‖ f‖L∞(Rn+m)

holds for every (x,z) . Consequently, for every (x,z) ∈ Rn+m , we get∣∣∣M (1)
Γ,Ωk

( f )(x,z)
∣∣∣ = sup

‖h‖H1
�1

∣∣TΓ,Ωk,h( f )(x,z)
∣∣ � CGk‖ f‖L∞(Rn+m),

which implies ∥∥∥M (1)
Γ,Ωk

( f )
∥∥∥

L∞(Rn+m)
� CGk‖ f‖L∞(Rn+m). (3.8)

(3.1) is proved for ν = 1.
Case 3 (1 < ν < 2). By duality, it is easy to see that

M
(ν)
Γ,Ωk

( f )(x,z) =
∥∥∥∥∫Σ

Ω(y′) f (x−Ary
′,z−Γ(r))dσ(y′)

∥∥∥∥
Lν′ (R+,r−1dr)

. (3.9)

Write

SΓ,Ωk( f )(x,z,r) =
∫

Σ
Ωk(y′) f (x−Ary

′,z−Γ(r))dσ(y′).

Then, ∥∥∥M (ν)
Γ,Ωk

( f )
∥∥∥

Lp(Rn+m)
=
∥∥SΓ,Ωk( f )

∥∥
Lp(Lν′ (R+,r−1dr),Rn+m) .
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Hence, it follows from (3.1) (for ν = 2) and (3.8) that∥∥SΓ,Ωk( f )
∥∥

Lp(L2(R+,r−1dr),Rn+m) � C(k+1)1/2Gk‖ f‖Lp(Rn+m), 2 � p < ∞, (3.10)

and ∥∥SΓ,Ωk( f )
∥∥

L∞(L∞(R+,r−1dr),Rn+m) � CGk‖ f‖L∞(Rn+m). (3.11)

The real interpolation theorem for the Lebesgue mixed norm spaces tells us that, for
1 < ν < 2,∥∥SΓ,Ωk( f )

∥∥
Lp(Lν′ (R+,r−1dr),Rn+m) � C(k+1)1/ν ′

Gk‖ f‖Lp(Rn+m), ν ′ � p < ∞,

that is, ∥∥∥M (ν)
Γ,Ωk

( f )
∥∥∥

Lp(Rn+m)
� C(k+1)1/ν ′

Gk‖ f‖Lp(Rn+m),

ν ′ � p < ∞ . This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.1

Notice that H∞(R+) = Δ∞(R+) , Theorem 1.1 directly follows from Theorem A
for ν = ∞ . Therefore, we need only to prove Theorem 1.1 in the following two cases.

Case 1 (1 < ν � 2): Without loss of generality, we may assume that ‖h‖Lν(R+,r−1dr)
= 1. Then, ∣∣TΓ,Ω,h( f )(x,z)

∣∣ � M
(ν)
Γ,Ω( f )(x,z).

Therefore, by Theorem 1.2, we get∥∥TΓ,Ω,h( f )
∥∥

Lp(Rn+m) �
∥∥∥M (ν)

Γ,Ω( f )
∥∥∥

Lp(Rn+m)
� C‖ f‖Lp(Rn+m) for ν ′ � p < ∞.

(4.1)
From this inequality and a standard duality argument, we also obtain∥∥TΓ,Ω,h( f )

∥∥
Lp(Rn+m) � C‖ f‖Lp(Rn+m) for 1 < p � ν. (4.2)

Thus, for ν = 2, we have∥∥TΓ,Ω,h( f )
∥∥

Lp(Rn+m) � C‖ f‖Lp(Rn+m) for 1 < p < ∞.

For 1 < ν < 2, interpolating between (4.1) and (4.2) gives the Lp -boundedness of
TΓ,Ω,h for the remaining range of p : ν < p < ν ′ .

Case 2 (2 < ν < ∞): By (2.9) and (2.10), it suffices to show that∥∥TΓ,Ωk ,h( f )
∥∥

Lp(Rn+m) � C(k+1)1/ν ′
Gk‖ f‖Lp(Rn+m) for 1 < p < ∞. (4.3)

Let {φk, j} j∈Z be a sequence in C∞((0, ∞)) such that

supp(φk, j) ⊂ [2(k+1)(− j−1), 2(k+1)(− j+1)], ∑
j∈Z

φk, j(t)2 = 1,
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∣∣∣� C/tβ , (β = 1, 2, · · ·).

Define S̃k, j by ̂̃Sk, j( f )(ξ ,η) = φk, j(s(ξ )) f̂ (ξ ,η). Then we can write

TΓ,Ωk ,h( f )(x,z) = ∑
l∈Z

∑
j∈Z

S̃k, j+l

(
τk, j ∗ S̃ j+l( f )

)
(x,z) := ∑

l∈Z

Vk,l( f )(x,z).

In what follows, we estimate ‖Vk,l( f )‖Lp(Rn+m) . Firstly, by Lemma 2.4 and Littlewood-
Paley inequality, for ν ′ < p < ∞ ,

∥∥Vk,l( f )
∥∥

p � C

∥∥∥∥∥∥
(

∑
j∈Z

∣∣∣τk, j ∗ S̃k, j+l( f )
∣∣∣2)1/2

∥∥∥∥∥∥
p

� C(k+1)1/ν ′
Gk

∥∥∥∥∥∥
(

∑
j∈Z

|S̃k, j+l( f )|2
)1/2

∥∥∥∥∥∥
p

� C(k+1)1/ν ′
Gk‖ f‖p.

(4.4)

Secondly, we estimate ‖Vk,l( f )‖2 :

‖Vk,l( f )‖2
2 � ∑

j∈Z

∥∥∥S̃k, j+l

(
τk, j ∗ S̃k, j+l( f )

)∥∥∥2

2

� ∑
j∈Z

∫
Rm

∫
D̃k, j+l

∣∣τ̂k, j(ξ ,η)
∣∣2 | f̂ (ξ ,η)|2dξdη ,

where D̃k, j are as in (3.4). This together with (2.17) implies

‖Vk,l( f )‖2 � C(k+1)1/ν ′
Gk2

−δ |l|‖ f‖2. (4.5)

Interpolating between (4.4) and (4.5), we get

‖Vk,l( f )‖p � C(k+1)1/ν ′
Gk2

−δ ′|l|‖ f‖p, ν ′ < p < ∞.

Hence, for ν ′ < p < ∞ ,∥∥TΓ,Ωk,h( f )
∥∥

p � ∑
l∈Z

‖Vk,l( f )‖p �C(k+1)1/ν ′
Gk‖ f‖p ∑

l∈Z

2−δ ′|l| �C(k+1)1/ν ′
Gk‖ f‖p.

Noting that 1 < ν ′ < 2, by duality, we have∥∥TΓ,Ωk,h( f )
∥∥

p � C(k+1)1/ν ′
Gk‖ f‖p, 1 < p � 2,

which completes the proof of (4.3). Theorem 1.1 is proved.
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