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NON-ISOTROPIC SINGULAR INTEGRALS AND MAXIMAL
OPERATORS ALONG SURFACES OF REVOLUTION

DASHAN FAN AND HUOXIONG WU

(Communicated by B. Opic)

Abstract. The authors establish the L” -mapping properties for a class of non-isotropic singular
integrals along surfaces of revolution as well as the related maximal operators, where the integral
kernels are given by functions Q in L(logtL)*(X).

1. Introduction

Let R", n > 2, be the n-dimensional Euclidean space with a non-isotropic dila-
tion. Precisely, let P be an n x n real matrix whose eigenvalues have positive real parts
and let y = trace P. Define a dilation group {A, };~o on R" by A, =t = exp((logt)P).
There is a non-negative function r on R” associated with {A;},~¢. The function r is
continuous on R” and infinitely differentiable in R"\{0}; furthermore it satisfies:

(i) r(A;x) =tr(x), forall t >0 and x € R";

(ii) r(x+y) < C(r(x) + r(y)) for some C > 0;

(i)if ZE={xeR": r(x)=1},then T={0 cR": (BO,0) =1} for a positive
symmetric matrix B, where (-, -) denotes the inner product in R”. And then, the
Lebesgue measure can be written as dx = t"~dodt, that is,

for appropriate functions f, where do is a C* measure on X. See [4, 9, 12] for more
details.

Let Q be locally integrable in R"\{0} and homogeneous of degree 0 with respect
to the dilation group {4, }, that is, Q(A;x) = Q(x) for x # 0. We assume that

/ZQ(G)dG(G) —0. (1.1)
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Let L(log™L)*(X) (for a > 0) denote the space of all those functions Q on £ which
satisfy

[ 192(6) 0”2+ 1246)])do () < ==

For m e N, let T": [0, ) — R™ be a continuous mapping satisfying T'(0) =0,
h: [0,e0) — C be a measurable function. We define a singular integral operator along
the surface (y, ['(r(y)) by

Tora(Hn2) = pv. [ fr=3z=T(0)Kan()dy, (1.2)

where Kq 5 (y) = Q()r(y)"h(r(y)), y' = A,()-1y. We assume that the principal value
integral in (1.2) exists for every (x,z) € R" x R" = R"™ and f € .7 (R" x R™) (the
Schwartz class).

For I' = 0, the operator Tg ), essentially reduces to the following lower dimen-
sional non-isotropic singular integral

SN =pv. [ Fx=3)Kan()d.

The early study on the non-isotropic singular integral operator S can be found in Stein
and Wainger’s work [13] and Riviere’s work [9] for & = 1. Subsequently, Duoandikoetxea
and Rubio de Francia [7] showed that S is bounded on L? (R") for 1 < p < oo, provided
that Q € L9(X) for some g > 1 and h € Ay(R.), where, for v > 1, Ay(R.) denotes
the set of all measurable functions # on R, satisfying the condition

R 1/v
sup (R—l / |h(z)|th) < oo,
R>0 0

and Aw(Ry) =L7(R4). It is easy to show Aw(R4) C Ay, (R+) C Ay, (Ry), which are
proper inclusions, for v; < v, < eo. Recently, S. Sato [10] improved the above result to
the case Q € Llog"L(X) and h € .%,, which is more general than A, (R ) for v > 1
(see [10, Theorem 4] for the details). Furthermore, for the general mapping I", S. Sato
[10] established the following:

THEOREM A. Let Tor, be given by (1.2). Suppose that Q € Llog"L(X) and
he Ay(Ry) for some v > 1. Then Tor,, is bounded on LP(R"™™) provided that the
maximal operator Mt given by

Mg(c) = supR”! [ lg(z ) (1.3)

is bounded on L1(R™) forall > 1 and |1/p—1/2| <min{1/V’,1/2}, where 1/v+
/v =1.

Clearly, the range of p given in Theorem A is the full range (1, ) when v > 2.
However, the range of p becomes a tiny open interval around 2 as v approaches 1. It
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is natural to ask whether the L? -boundedness of T holds for p outside the range
[1/p—1/2|<min{1/2,1/V'} for 1 <v <2.

In this paper we will focus on the solution of the above question. By imposing a
more restrictive condition on 4, we obtain a affirmative answer. Precisely, for v > 1,
we define 7, (R.) to be the set of all measurable function 7 on R. satisfying the
condition

1/v
[l = Wil ot = (WO ) <o

and define (R, ) = L= (R, 'dt). Ttis easy to see that /(R ) = A(R,), and
6, (Ry) C Ay(Ry), which is a proper inclusion, for 1 < v < co. We will establish the
following

THEOREM 1.1. Let Tory be given by (1.2) and Mr given by (1.3). Suppose
that My is bounded on LI(R™) for all g > 1, h € 7,(Ry) for some 1 < v < oo
and Q € L(log* L)'V () satisfying (1.1). Then Tor is bounded on LP(R"™™) for
1< p<oo.

REMARK 1.1. Notice that L(log"L)*(Z) C L(log"L)B () for 0 < B < o, which
is proper, the condition on € in Theorem 1.1 is much weaker than those in Theorem
A, and the range of p in Theorem 1.1 is extended to the full range (1, ).

REMARK 1.2. We remark that such functions I" satisfying the condition in The-
orem 1.1 exist. See [11, 12] for examples. When r(x) = |x| (the Euclidean norm),
m=1 and T is a C?, convex and increasing function satisfying I'(0) = 0, Theorem
1.1 was proved by Al-Qassem (see [2, Theorem 1.3]). And the corresponding result
for h € Ay(Ry) (v >1)and Q € Llog"L(Z) was proved by Al-Salman and Pan (see
[3, Theorem 4.1]). Therefore, our result is also the generalization of Al-Qassem [2],
Al-Salman and Pan [3], even in the case r(x) = |x|.

To prove Theorem 1.1, we will use the following L”-mapping properties of the

related maximal operator ///((ZVIZ given by

Q///évl)-f(x,z) = sup |Tara(xz)|. (1.4)

' 170l () <1

THEOREM 1.2. Let ///S()v%, Mr be as above. Suppose that Mt is bounded on

LI(R™) forall ¢> 1, Q€ L(log" L)YV (£) and satisfies (1.1). Then ///g(zvl)- is bounded
on LP (R for v/ < p < oo and 1 <v <2, and it is bounded on L™ (R"™™) for v =1.

REMARK 1.3. Theorem 1.2 has itself interesting. In the case of Euclidean norm,
the study of the maximal operator //lg(zv% began by Chen and Lin in [5], and subse-
quently by many other authors [2, 6, 8]. It is still an open problem whether the L?” -
boundedness of //lg(zv% holds for 2 < v < e, even forthe case m =1 and I' = 0.

This paper is organized as follows. At first we will give some preliminary lemmas
in Section 2. Then the proof of Theorem 1.2 will be given in Section 3. Finally, we will
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prove Theorem 1.1 in Section 4. We remark that some ideas of our arguments are taken
from [2, 10], but we must establish some non-trivial estimates by new techniques.

Throughout this paper, we always use the letter C to denote positive constants that
may vary at each occurrence but are independent of the essential variables.

2. Preliminary lemmas

Following the notation in [10], let P* denote the adjoint of the matrix P. Then
A =exp((logr)P*). We write A} = B;. We can define a non-negative function s from
{B:} exactly in the same way as we define r from {A,}.

We will use the following estimates (see [12]):

o XM < r(x) < calx|®2, if r(x) =1, (2.1)
eslxPr < r(x) < ealxP, if 0<r(x) <1, (2.2)
and
di|§]" <s(8) <dr|5]™, if s(8) > 1, (2.3)
[E[" < s(8) <dalg|, if 0<s(§) <1, (2:4)

where ¢;,d; (j=1,2,3,4), o, B, ax, bx (k=1,2) are positive constants.

LEMMA 2.1. (cf. [10]) Let L be the degree of the minimal polynomial of P.
Then, for n,{ € R"\{0}, we have

' / " explilBm, £~ \di| < c\(m, PEy

for some positive constant C independent of N and .

Let Q € L(logL)*(X) for o > 0 and satisfy (1.1). Following the notation in [1],
let By :={¥ € X: 28 <|Q(x')| < 2¥*!} for k€ N and let Ey:= {x' € Z: |Q(¥)| < 2}.
Set A:={keN: o(E) >2"*},and for k > 1,

Q) = QW) xe, () — ()7 . Q(x)do(x'),

and Qo(x") = Q(x) — Drea Qi (). It is easy to check that

/ Q(W)do() =0, k>0, (2.5)
z

1911 z) < 20192051 (5) = 2Gk, k€A, (2.6)

19011 (5) < ClILoll 25y < C, (2.7)

Q) = Z Qi (), (2.8)

keAU{0}
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Y, (k+1)%Gr < ClIQll ogrye(x) for any o >0, (2.9)
keAU{0}

where Gy := ||QE, | 11(x) for k€ A and Go = 1.

For each Qy, k € AU {0}, we define a sequence of Borel measures {7 ;: j € Z}
on R"+m by

BEm) = [ e ETCOING (h(r(y)rly) T,
k,j

where Dy ;= {x € R": 20+1)J < (x) < 2*+DU+D} 7 denotes the Fourier transform

of 17 ; defined by 7 ;(§,n) = [ e~ 2milestz ”]di j(x,z). Here and below, the notation
u - v denotes the inner product of # and v in R” or R”. Then

Tora(f)x2)= Y D uj*fxz):= 2 To.ralf)xz2). (2.10)

keAU{0} jeZ keAU{0}

Also, we define the maximal function 7/, by

T () (x,2) = sup||Tk il* f(x,2)],
JEZ

where |7 ;| is defined by

| Tk, j

(Em= [ Ty )Ir() ay

In what follows, we will establish some lemmas, which will play key roles in the proofs
of our main theorems.

LEMMA 2.2. Let k € AU{0}, Q be as above. For j € Z, define
(k+1)(j+1)

2\ 12
r
?Lk,,-@,n):(/km, 7) .

Then for every (&,1M) € R*"™  there exists a positive number 8 > 0 such that

/ Q) 2HIEAY 1 T0) g5 (47

[Aei (6 )] < (k+1)1/2ka1n{ {z<k+1>.fs(€)r/(kﬂ>, [2(k+1)js(€)] 5/<k+1)}'
(2.11)

Proof. By the definition, it is easy to see that

|24, (&,m)| < Clk+1)!?Gy. (2.12)
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On the other hand, it follows from the cancellation condition (2.5) of €; and a change
of variables that

k+1 .
Ay ()] < ( / o ( / )efzm'[Az(H1),,y'~5+r(2<"“>-fr>-n] _e—zmr(zik“)fr).n‘
AR “\ >
1/2
X | do(y))* &)

2k+1 , , , 2dr 1/2
<c [ [fuaimngionen)

Note that |A,y’| = |y| and the estimates (2.1)—(2.4), there are two positive constants ¢
and oy such that

. o
Ay <O and  [Bygensé| <C[2(k+1)/s(§)] ’ (2.13)

Therefore,

: /2
) o 2k+1 d 1
A& <l [20Vis(2) ( / rm_r)

r (2.14)
< CGk(k+ 1)1/22(k+1)0¢1 [2(k+1)JS(§):| o
Interpolating between (2.12) and (2.14), we get
. 0 /(k+1)

[ ()| < Clk+ 1)!2G5 [ 2475 : (2.15)

It remains to prove the second estimate. Notice that

e 2

/ Qu(y Yo~k Y ST VD) da(y/)’

b (2.16)

_ / O ()l )e Bk S g (v )do (),
XX

which implies

2k+1

IXX

(&) = | ()l ( /1 om0 ) By & d-) do(y)do (i)
k _ 2 T

=3 [ )W) ( [ e B 5@) do(y)do ().
=0/ IxX 1 r

By Lemma 2.1, we have

2 S d _
/ o 20 ~u) By, _r‘ <C }p(y’ — ') By np € } ¢
1 r



NON-ISOTROPIC INTEGRALS AND OPERATORS ALONG SURFACES OF REVOLUTION 467

where 0 < € < 1/L, and L is the degree of the minimal polynomial of P. Using
Holder’s inequality, if 0 < € < min{1/4,1/L}, we get

//sz () (') |P(y/ — ') Bysn)jm & |7‘g do(y)do(u')
1/2
< (f L0 =0 P Bl *dot)aat)) i3

< ClIQ3 |Byunim€]°

where the last inequality follows from [7, p.533] (also see [ 10, the proof of Lemma 1]).
Therefore

k
2 - .
(&M < CIIZ Y. |Bywini]© (0 <& <min{1/4,1/L}).
1=0
By (2.3) and (2.4), there exists a positive number & > 0 such that

|Bz(k+1)./21§} =2C {2("“)]2%(5)]80, 1=0,1,- -k,

which leads to
k

K —E&&) .
3 |Bywinig €] E < 2 { (k+D)iglg(& )} <C(k+1)[2<k+1>fs(§)}
=0

—egy
Consequently,

A6 m] < Clk 12l [+ )]

Recall || Q]2 < C =CGy, and for k € A, G > C2 o (E;) > €273, we have
HQkHZ < C2k+IG(Ek)l/2 < C22<k+1)Gk.

Thus,
. — 2
|A4kj g n)’ (k"‘ 1)1/222(k+1)Gk |:2(k+1)js(é)i| egy/

This together with (2.12) and an application of interpolation theorem implies

; —egy/2(k+1
|)Lk7./'(€777)} < Ck+ 1)1/2Gk [2("*1)15(5)} egp/2(k+1)

and completes the proof of Lemma 2.2. [

REMARK 2.1. Define

2 (k+1)(j+1) 2 1/2
= dr
Ty (&) = (/ 7) :
Then by the same arguments as those used in the proof of Lemma 2.2, we can get
~ . —6/(k+1)
e < Coutier 1 2min{ 1, 2]

with 6 asin (2.11).

/ () |e 2HIEAY 1T g (41
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LEMMA 2.3. Let k € AU{0}, h € J,(Ry) for some v > 1. Then, for every
(E,n) € R"™™  there exists § > 0 such that

[5(&m)] < Clic+ 1)1/v’kam{ [ps0is(e)] " sy Vl(“”} ,
(2.17)

ol < et emin{1, @] L e
s lEm -~ falom)| < e ) e 2] @)

Proof. At first, we will prove (2.17). By the definition of ?k ; and the Holder
inequality, we have

2D+ dr

}/T\kj(éﬂfl” </ . h(r)|‘/gk(yl)e2ﬂi[5-Ary’+n-F(V)]do-(y/) _
’ 2(k+1)j

r

v 1/v
Vidr v
r

/Qk Yo 2l AN 411 T(r ]d(,() ar

) (k4+1)(j+1)

<(f
(L )
2(k+1)j r

2 (k+1)(j+1)

<(f,

In what follows, we will consider cases: 2 < V' < e and 1 < V' < 2, respectively. If

2 < V/ <, then
/v
2 dr
r

(2.20)

/ Q, (v e 2TIEAY 1T g5 (41

k+1 )(j+1)

%i(&m)] <l (/

<CG1 2V | k,j(é,n)}z/v~

/ Qu (e 2HIEAY 1T g5 (41

If 1 <V’ <2, then, by Holder’s inequality, we get

2 (k+1)(j+1) dr 1/2
}/T\k,j(évn)} < </ Yy /Qk *2771[5 Ay +10-T(r ]do—( ) 7)
akenen) o\ VL2 (2.21)

(%)

= (k+ 1)V |4 (&)

Thus, (2.17) follows from (2.20)—(2.21) and (2.11).
Similarly, by Remark 2.1, we can get (2.18).
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It remains to prove (2.19). By Holder’s inequality, it is easy to see that

2D g v
1% (&) = T j(0,m)] < 1Bl v, -1am) €11 (/ . —>

2(k+1)j r (222)
< Clk+1)VGy.

On the other hand, we have

| (&.1) — T;(0,1)]

2 (k+1)(j+1)
</k+l)/

2 (k+1)(j+1)
</k+l)/

2k+l
<(/

2k+1
<C</
1

Invoking (2.13) leads to

()~ 50| < (/

< CllQy 261 (/1

< CGk(k+ l)l/v k+1 oy 2(k+1

/ 19, (4 e~ 2T {efzmé'A’yl - 1} do(y)

/ /v
Vidr v
r
’ /v
Vidr v
r
v 1/v
Viodr v
r

!

1
/)vﬂ /v
. .

/ Q)| [2k i } do(y)

k1 /v

/ [oReY *2’”5 A 1‘da(y’)

L1000 [e20 B8 1 o)
z

L1911 By €| doty

2k+1

This together with (2.22) implies (2.19) and completes the proof of Lemma2.3. [

LEMMA 2.4. Let k € AU{0}, h € 4, (Ry) for some v > 1. If Mr given by
(1.3) is bounded on LY(R™) for all g > 1, then, for v! < p < oo,

< Clk+ DYV G|l f o remy.-

H Tlf,k (f) | Lp (R+m)

Proof. Let

faug = [ QU0 TO)r()

Rn+m
and pr(f)(x,z) =supjez ||k, ;| * £ (x,2)| . Then by Hélder’s inequality,

e < ([ o) 6l (i)

k,j r

v , /v
<CG (i) w2)
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Also, by Lemma 2.3’s (2.18) and (2.19) (invoking the results of the case v/ = 1) and
the same arguments as those used in the proof of Proposition 3’s (1) in [10], it is easy
to show that

1624 ) |y gremy < ChF DG Flrgosmy, 1< p<om  (223)

Therefore, for v/ < p < oo, we get

v

% 1/v
H Tl“,k (f) HLP (R}H»m) g CGk Lp/v/ (Rn+m)

< Clk+ DYV Gell fll o @remy

EalF17)

and completes the proof of Lemma 2.4. [

LEMMA 2.5. Let k€ AU{0} and h € %(RQ for some v > 2. Suppose that
Mr is bounded on L1(R™) for all ¢ > 1. Then, for V' < p < oo, there exists a positive
constant Cy, which is independent of k such that

12
(z |rk,j*g,->2)
JEZ

holds for arbitrary measurable functions {g;} on R"*".

1/2
<Cplk+ 1)1V Gy <2g,|2>

JEL

Lp (R+m) Lp(Rr+m)

Proof. Following the proof of Lemma 2.6 in [2], let v/ < p < oo, by Hélder’s
inequality and the condition on &, we get

k+1)(j+1)
2(+1) dr

e <Cof [ [0l AT doy)

2(k+1)j

Let d = p/V'. For {g;} € LY(R"™™,[?), by duality, there exists a nonnegative function
w € LY (R"™™) such that ||w||,» < 1 and

I/V, v/
! !
(Z Tk * gkl ) = / > 1t gj(x,2) Y wix, z)dxdz.
Rn+m JGZ

JEL
p

This together with a change of variables yields

v ||
(Z |7+ gl ) <cGy! /RM D k(x| pr () (—x, —z)dxdz,
JEZ

jez
14

where w(x,z) = w(—x,—z), Ui, is as in the proof of Lemma 2.4. By the L4 -boun-
dedness of uf-, and Holder’s inequality, we obtain

JEZ JEZ

/v /v
(Zrkﬁj*gﬂv/) Clk+1) l/va (Zgjv> . (2.24)
P P
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Moreover, by Lemma 2.4, we have

Tk (SUP |g,-|> (SUP g;l)
JEZ JEZ

Note that v’ € [1, 2], interpolating between (2.24) and (2.25), we complete the proof of
Lemma?2.5. O

mmn,*&\ < Clk+ 1)V Gy (2.25)

JEZ

P P P

3. Proof of Theorem 1.2
Our arguments are similar to those in the proof of Theorem 1.6 of [2]. By (2.8),

we have //llgg( F)(x,2) < Zkeaufo} //llggk (f)(x,2), where //llﬁgk is defined as in (1.4)
only replaced € by ;. Hence, by (2.9), to prove Theorem 1.2, it suffices to show that

|-, 0]| <cter G, (3.1)

holds for v/ < p < oo if 1 <v <2 and for p =o0 if v =1. We will consider the
following three cases.
Case 1 (v =2). By duality, we have

/ /Qk (x—An,z=T(r))do(y )drr

1/2
2dr /
r
1/2
Zdr /
. .

M (D) = s

1511 s ]R+ )<l

( |1 fotrt=anz=T()do ()
- </€Z/k+1

Let {yg ;}2 be asequence in C*((0, o)) such that

/Qk (x— Ay, z—T(r))do ()

supp(yy, ;) € [26FDEI7D o=l Y v () =
jez

(d/dr)y(n| </, (=12,
where C; is independent of k. Define the multiplier operators S ; in R"*" by

Sci(N)EM) = wij(s(E)F(Em)  for (&,m)eR™™. (3.2)

Then for any f € . (R"*") and j € Z, we have f(x,z) = ;S j+1(f)(x,z). Thus, by
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(3.2) and Minkowski’s inequality, we get

2) 2 (k+1)(j+1)
Mg, (f)(x,2) < / N Hy i (f)(x,2)
k1) €T

(k+1)(j+1) 1/2 (3.3)
dr :
. 2_
ZEZ (162/1‘“ ‘Hk,j-&-l,r(f)(xazﬂ - )
= E Ti(f

€T

where
Hig () (x,2) = /Z Siu(f)(x—An!, 2= T(M)) (Y )do (y),

A 1)(j+1) dr 1/2
Tl (2 [, Hesa G z>|2r> .
€7

Thus, to prove (3.1) for v = 2, it suffices to show

|17 ()]

wrnemy < ClkA 1227 G| | o enem) (34)

for some positive number 6 and forall 2 < p < eo.
By Plancherel’s theorem and Lemma 2.2, we have

2 (k+1)(j+1) 2dr
ITics ()13 = /an Z / oy At () (0, 2)[" —dxdz

2(k+l)(]+l)
B %/2(k+l)j /me

JjE
SN A& dgan

:2/

<y / o TgEmPIRE ) Pagan

()& )| dgan?”

=/ Dy j1
2 @Gy, [ [ |7 mPdgan,
JEZ " kj+l
where
Dy ={E eR": 20D~ () 20Dy, (3.5)

Noting that 5;(7 ;s are finitely overlapping, we get
1Tes(f)ll2 < Clk+ 1)1 262721 |2 (3.6)

On the other hand, by duality, for p > 2, there exists a function g € L/ 2)’(R’“r’")
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with HgH(p/Z)’ < 1 such that

k+1 )(j+1)

dr
In.NE=3, [ / e (P g2 dadz
JEZ
2 (k+1)(j+1)
<l S [ [, L)t a2 ro))
4 n-+m k+1)j b

JEZ
% |Skje1(£)(x,2)* do () L dxdz

Csz/ |Sk+1(F)(,2) | 1 4(8) (—x, —2)dxelz

< CGi || Y 1Sk 1)

JEL

g @ o2y

(p/2)

where g(x,z) = g(—x, —z). Therefore, by (2.23) and the Littlewood-Paley theory, we
have
|Tes()llp < Ch+DV2Gellfll,  for 2<p <eo. (3.7)

Consequently, (3.4) follows from the interpolation between (3.5) and (3.7). This com-
pletes the proof of (3.1) for v =2
Case2 (v =1). For fe L*(R"™™) and h € 54 (R, ), we have

s =| [ 10) [ 200l A= T0)ao )

< CGi|A| s (o) 11| 2= ey

holds for every (x,z). Consequently, for every (x,z) € R"™™ we get

A (12| = sup [Traun(f)@2)] < Gl oqnom),
1214 <1
which implies
|49, () < CG l=om)- (3.8)

(3.1)is proved for v =1.
Case 3 (1 < v <2). By duality, it is easy to see that

[ (R)Hrm )

A (f)(x,2) = NFx—Ay,2—T(r)do(y)

(3.9)
L (Ry,r—ldr)

Write
St (f)(x,z,7 /Qk (x—Ay,z=T(r))do(y).

Then,
|4, (1)

o) ISt Doy @y -1ar) e
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Hence, it follows from (3.1) (for v = 2) and (3.8) that
HSF,Qk (f)|‘LP(L2(R+,r*1dr),R”+m) <C(k+ 1)1/2Gka||U’(R”+m)a 2< p<eo, (3.10)

and
Hsr,ﬂk(f)HLN(LN(RJHfId,)’Rner) < CGka”L""(]R”*"’)' (3.11)

The real interpolation theorem for the Lebesgue mixed norm spaces tells us that, for
I<v<2,

HSF,Qk (f)|

that is,

<Clk+ DG fli@rm, V' <p<eo,

LP(LY (R Ldr) Ritm)

[ A8, i, < DY Gl f i

v/ € p < oo. This completes the proof of Theorem 1.2.

(Rn+n1)

4. Proof of Theorem 1.1

Notice that 7%, (R4 ) = Aw(R.), Theorem 1.1 directly follows from Theorem A
for v = co. Therefore, we need only to prove Theorem 1.1 in the following two cases.

Case 1 (1 < v <2): Withoutloss of generality, we may assume that ||| vz, ,14s)
= 1. Then,

[Traun()(x9)] < AG(F) (x.2):
Therefore, by Theorem 1.2, we get

(v) !
7)o remy < A, gy S iy for v <o
(4.1)
From this inequality and a standard duality argument, we also obtain
HTF%Q%h(f)HLI’(R"JF”’) < CHf||Lp(Rn+m) for 1< P < V. (42)

Thus, for v =2, we have
’|TF,Q,h(f)HLp(Rn+n1) < C”fHLI’(R"*”’) for 1< p <ce.
For 1 < v < 2, interpolating between (4.1) and (4.2) gives the L?-boundedness of

Tr o, for the remaining range of p: v <p <V’.
Case 2 (2 < v <e): By (2.9) and (2.10), it suffices to show that

’|TF,Qk,h(f)HLp(Rn+n1) <Clk+1)"Y Gl fllppatmy — for 1<p<eo.  (4.3)
Let {¢x ;}jez be a sequence in C*((0, «)) such that

supp(¢x, ;) C RUFDE=D kD=4 D B j(1)* =1,
JEZ
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‘(d/dt)ﬁ(bk?j(f)) <c/tP, (B=1,2,--).

—

Define :S’Vk,j by :S’Vk,j(f)(é,n) = (pk’j(s(é))f(é,n). Then we can write

Tro.n(f =y Sk, el (Tk i *S;+z ) =Y Viu(f)

€7 jETL 1€Z

In what follows, we estimate ||Vi;(f)||1p(wn+m) - Firstly, by Lemma 2.4 and Littlewood-
Paley inequality, for v/ < p < e,

N\ 172
Tk,j*gk,ﬂrl(f )' )

p

)1/2 (4.4)

HVk,l(f)Hp <C (2

=/

<Clk+ 1)V Gy (2 S+ (f

JEZ
P

< C(k+ 1)V Gel|f ]

Secondly, we estimate ||Vi;(f)2:

2
Vit ()5 < ‘Skﬁrl (Tk/*S’”” )>H2

/GZ

<3 [ L @l 17 Pagan,

=/ Dy jt1
where l~)k7 ;j are as in (3.4). This together with (2.17) implies
Vea(H)ll2 < Clk+ DYV G272 ] (45)
Interpolating between (4.4) and (4.5), we get
Vea(A)llp < Clk+ DY G2 M| £, v/ < p <o,
Hence, for v/ < p < oo,

T, < X MVia(H)llp <CR+ 1D Gl £llp X, 2771 < Clle+ 1)V G £
leZ leZ

Noting that 1 < v/ < 2, by duality, we have
1Tr o], < Ck+ DGl flp,  1<p<2,

which completes the proof of (4.3). Theorem 1.1 is proved.
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